
IV
JAVASCRIPT FOR BEHAVIOR

IN THIS CHAPTER

What JavaScript is and isn’t

Variables and arrays

if/else statements and loops

Native and custom functions

Browser objects

Event handlers

by Mat Marquis

In this chapter, I’m going to introduce you to JavaScript. Now, it’s possible
you’ve just recoiled a little bit, and I understand. We’re into full-blown “pro-
gramming language” territory now, and that can be a little intimidating. I
promise, it’s not so bad!

We’ll start by going over what JavaScript is—and what it isn’t—and discuss
some of the ways it is used. The majority of the chapter is made up of an
introduction to JavaScript syntax—variables, functions, operators, loops,
stuff like that. Will you be coding by the end of the chapter? Probably not.
But you will have a good head start toward understanding what’s going on
in a script when you see one. I’ll finish up with a look at some of the ways
you can manipulate the browser window and tie scripts to user actions such
as clicking or submitting a form.

WHAT IS JAVASCRIPT?

If you’ve made it this far in the book, you no doubt already know that
JavaScript is a programming language that adds interactivity and custom
behaviors to our sites. It is a client-side scripting language, which means it
runs on the user’s machine and not on the server, as other web programming
languages such as PHP and Ruby do. That means JavaScript (and the way we
use it) is reliant on the browser’s capabilities and settings. It may not even be
available at all, either because the user has chosen to turn it off or because the
device doesn’t support it, which good developers keep in mind and plan for.
JavaScript is also what is known as a dynamic and loosely typed program-
ming language. Don’t sweat this description too much; I’ll explain what all
that means later.

INTRODUCTION TO
JAVASCRIPT

21
CHAPTER

593

First, I want to establish that JavaScript is kind of misunderstood.

What It Isn’t
Right off the bat, the name is pretty confusing. Despite its name, JavaScript
has nothing to do with Java. It was created by Brendan Eich at Netscape in
1995 and originally named “LiveScript.” But Java was all the rage around that
time, so for the sake of marketing, “LiveScript” became “JavaScript.” Or just
“JS,” if you want to sound as cool as one possibly can while talking about
JavaScript.

JS also has something of a bad reputation. For a while it was synonymous
with all sorts of unscrupulous internet shenanigans—unwanted redirects,
obnoxious pop-up windows, and a host of nebulous “security vulnerabili-
ties,” just to name a few. There was a time when JavaScript allowed less repu-
table developers to do all these things (and worse), but modern browsers have
largely caught on to the darker side of JavaScript development and locked it
down. We shouldn’t fault JavaScript itself for that era, though. As the not-so-
old cliché goes, “with great power comes great responsibility.” JavaScript has
always allowed developers a tremendous amount of control over how pages
are rendered and how our browsers behave, and it’s up to us to use that con-
trol in responsible ways.

What It Is
Now we know what JavaScript isn’t: it isn’t related to Java, and it isn’t a
mustachioed villain lurking within your browser, wringing its hands and
waiting to alert you to “hot singles in your area.” Let’s talk more about what
JavaScript is.

JavaScript is a lightweight but incredibly powerful scripting language. We
most frequently encounter it through our browsers, but JavaScript has snuck
into everything from native applications to PDFs to ebooks. Even web servers
themselves can be powered by JavaScript.

As a dynamic programming language, JavaScript doesn’t need to be run
through any form of compiler that interprets our human-readable code into
something the browser can understand. The browser effectively reads the
code the same way we do and interprets it on the fly.

JavaScript is also loosely typed. All this means is that we don’t necessarily
have to tell JavaScript what a variable is. If we’re setting a variable to a value
of 5, we don’t have to programmatically specify that variable as a number;
that is, 5 is a number, and JavaScript recognizes it as such.

Now, you don’t necessarily need to memorize these terms to get started writ-
ing JS, mind you—to be honest, I didn’t. This is just to introduce you to a

NOTE

JavaScript was standardized in 1996 by
the European Computer Manufacturers
Association (ECMA), which is why you
sometimes hear it called ECMAScript.

Part IV. JavaScript for Behavior

What Is JavaScript?

594

few of the terms you’ll hear often while you’re learning JavaScript, and they’ll
start making more and more sense as you go along. This is also to provide
you with conversation material for your next cocktail party! “Oh, me? Well,
I’ve been really into loosely typed dynamic scripting languages lately.” People
will just nod silently at you, which I think means you’re doing well conversa-
tionally. I don’t go to a lot of cocktail parties.

What JavaScript Can Do
Most commonly we’ll encounter JavaScript as a way to add interactivity to a
page. Whereas the “structural” layer of a page is our HTML markup, and the
“presentational” layer of a page is made up of CSS, the third “behavioral” layer
is made up of our JavaScript. All of the elements, attributes, and text on a web
page can be accessed by scripts using the DOM (Document Object Model),
which we’ll be looking at in Chapter 22, Using JavaScript. We can also write
scripts that react to user input, altering either the contents of the page, the
CSS styles, or the browser’s behavior on the fly.

You’ve likely seen this in action if you’ve ever attempted to register for a web-
site, entered a username, and immediately received feedback that the user-
name you’ve entered is already taken by someone else (FIGURE 21-1). The red
border around the text input and the appearance of the “sorry, this username
is already in use” message are examples of JavaScript altering the contents of
the page. Blocking the form submission is an example of JavaScript altering
the browser’s default behavior. Ultimately, verifying this information is a job
for the server—but JavaScript allows the website to make that request and
offer immediate feedback without the need for a page reload.

FIGURE 21-1.   JavaScript inserts a message, alters styles to make errors apparent,
and blocks the form from submitting. It can also detect whether the email entries
match, but the username would more likely be detected by a program on the server.

21. Introduction to JavaScript

What Is JavaScript?

595

In short, JavaScript allows you to create highly responsive interfaces that
improve the user experience and provide dynamic functionality, without
waiting for the server to load up a new page. For example, we can use
JavaScript to do any of the following:

•	 Suggest the complete term a user might be entering in a search box as he
types. You can see this in action on Google.com (FIGURE 21-2).

FIGURE 21-2.   Google.com uses JavaScript to automatically complete a search term
as it is typed in.

•	 Request content and information from the server and inject it into the
current document as needed, without reloading the entire page—this is
commonly referred to as “Ajax.”

•	 Show and hide content based on a user clicking a link or heading, to cre-
ate a “collapsible” content area (FIGURE 21-3).

FIGURE 21-3.   JavaScript can be used to reveal and hide portions of content.

•	 Test for browsers’ individual features and capabilities. For example, one
can test for the presence of “touch events,” indicating that the user is inter-
acting with the page through a mobile device’s browser, and add more
touch-friendly styles and interaction methods.

•	 Fill in gaps where a browser’s built-in functionality falls short, or add
some of the features found in newer browsers to older browsers. These
kinds of scripts are usually called shims or polyfills.

•	 Load an image or content in a custom-styled “lightbox”—isolated on
the page with CSS—after a user clicks a thumbnail version of the image
(FIGURE 21-4).

This list is nowhere near exhaustive!

Part IV. JavaScript for Behavior

What Is JavaScript?

596

FIGURE 21-4.   JavaScript can be used to load images into a lightbox-style gallery.

ADDING JAVASCRIPT TO A PAGE

As with CSS, you can embed a script right in a document or keep it in an
external file and link it to the page. Both methods use the script element.

Embedded Script
To embed a script on a page, just add the code as the content of a script
element:

<script>
 … JavaScript code goes here
</script>

External Scripts
The other method uses the src attribute to point to a script file (with a .js
suffix) by its URL. In this case, the script element has no content:

<script src="my_script.js"></script>

The advantage to external scripts is that you can apply the same script to
multiple pages (the same benefit external style sheets offer). The downside,
of course, is that each external script requires an additional HTTP request of
the server, which slows down performance.

NOTE

For documents written in the stricter
XHTML syntax, you must identify the
content of the script element as CDATA
by wrapping the code in the following
wrapper:

<script type="text/javascript">
 // <![CDATA[
 …JavaScript code goes here
 //]]>
</script>

21. Introduction to JavaScript

Adding JavaScript to a Page

597

Script Placement
The script element can go anywhere in the document, but the most com-
mon places for scripts are in the head of the document and at the very end
of the body. It is recommended that you don’t sprinkle them throughout the
document, because they would be difficult to find and maintain.

For most scripts, the end of the document, just before the </body> tag, is the
preferred placement because the browser will be done parsing the document
and its DOM structure:

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 </head>
 <body>
 …contents of page…
 <script src="script.js"></script>
 </body>
</html>

Consequently, that information will be ready and available by the time it gets
to the scripts, and they can execute faster. In addition, the script download
and execution blocks the rendering of the page, so moving the script to the
bottom improves the perceived performance.

However, in some cases, you might want your script to do something before
the body completely loads, so putting it in the head will result in better per-
formance. For example, Modernizr (the feature detection tool discussed in
Chapter 19, More CSS Techniques) recommends its script be placed in the head
so the feature detection tests can be run up front.

THE ANATOMY OF A SCRIPT

There’s a reason why the book JavaScript: The Definitive Guide by David
Flanagan (O’Reilly) is 1,100 pages long. There’s a lot to say about JavaScript!
In this section, we have only a few pages to make you familiar with the basic
building blocks of JavaScript so you can begin to understand scripts when
you encounter them. Many developers have taught themselves to program by
finding existing scripts and adapting them for their own needs. After some
practice, they are ready to start writing their own from scratch. Recognizing
the parts of a script is the first step, so that’s where we’ll start.

Originally, JavaScript’s functionality was mostly limited to crude methods of
interaction with the user. We could use a few of JavaScript’s built-in functions
(FIGURE 21-5) to provide user feedback, such as alert() to push a notifica-
tion to a user, and confirm() to ask a user to approve or decline an action. To
request the user’s input, we were more or less limited to the built-in prompt()
function. Although these methods still have their time and place today, they’re

alert("Hi there");

confirm("I′m gonna do something, okay?");

prompt("What should I do?");

FIGURE 21-5.   Built-in JavaScript
functions: alert() (top), confirm()
(middle), and prompt() (bottom).

Part IV. JavaScript for Behavior

The Anatomy of a Script

598

jarring, obtrusive, and—in common opinion, at least—fairly obnoxious ways
of interacting with users. As JavaScript has evolved over time, we’ve been
afforded much more graceful ways of adding behavior to our pages, creating
a more seamless experience for our users.

In order to take advantage of these interaction methods, we have to first
understand the underlying logic that goes into scripting. These are logic pat-
terns common to all manner of programming languages, although the syntax
may vary. To draw a parallel between programming languages and spoken
languages: although the vocabulary may vary from one language to another,
many grammar patterns are shared by the majority of them.

By the end of this section, you’re going to know about variables, arrays, com-
parison operators, if/else statements, loops, functions, and more. Ready?

The Basics
There are a few common syntactical rules that wind their way though all of
JavaScript.

It is important to know that JavaScript is case-sensitive. A variable named
myVariable, a variable named myvariable, and a variable named MYVariable
will be treated as three different objects.

Also, whitespace such as tabs and spaces is ignored, unless it’s part of a string
of text and enclosed in quotes. All of the character spaces added to scripts
such as the ones in this chapter are for the benefit of humans—they make
reading through the code easier. JavaScript doesn’t see them.

Statements
A script is made up of a series of statements. A statement is a command
that tells the browser what to do. Here is a simple statement that makes the
browser display an alert with the phrase “Thank you”:

alert("Thank you.");

The semicolon at the end of the statement tells JavaScript that it’s the end of
the command, just as a period ends a sentence. According to the JavaScript
standard, a line break will also trigger the end of a command, but it is a best
practice to end each statement with a semicolon.

Comments
JavaScript allows you to leave comments that will be ignored at the time the
script is executed, so you can provide reminders and explanations through-
out your code. This is especially helpful if this code is likely to be edited by
another developer in the future.

JavaScript is case-sensitive.

21. Introduction to JavaScript

The Anatomy of a Script

599

There are two methods of using comments. For single-line comments, use
two slash characters (//) at the beginning of the line. You can put single-line
comments on the same line as a statement, as long as the comment comes
after the statement. It does not need to be closed, as a line break effectively
closes it.

// This is a single-line comment.

Multiple-line comments use the same syntax that you’ve seen in CSS.
Everything within the /* */ characters is ignored by the browser. You can
use this syntax to “comment out” notes and even chunks of the script when
troubleshooting.

/* This is a multiline comment.
Anything between these sets of characters will be
completely ignored when the script is executed.
This form of comment needs to be closed. */

I’ll be using the single-line comment notation to add short explanations to
example code, and we’ll make use of the alert() function we saw earlier
(FIGURE 21-5) so we can quickly view the results of our work.

Variables
If you’re anything like me, the very term “variables” triggers nightmarish
flashbacks to eighth-grade math class. The premise is pretty much the same,
though your teacher doesn’t have a bad comb-over this time around.

A variable is like an information container. You give it a name and then assign
it a value, which can be a number, text string, an element in the DOM, or a
function—anything, really. This gives us a convenient way to reference that
value later by name. The value itself can be modified and reassigned in what-
ever way our scripts’ logic dictates.

The following declaration creates a variable with the name foo and assigns
it the value 5:

var foo = 5;

We start by declaring the variable by using the var keyword. The single
equals sign (=) indicates that we are assigning it a value. Because that’s the
end of our statement, we end the line with a semicolon. Variables can also be
declared without the var keyword, which impacts what part of your script
will have access to the information they contain. We’ll discuss that further in
the section “Variable Scope and the var Keyword” later in this chapter.

You can use anything you like as a variable name, but make sure it’s a name
that will make sense to you later. You wouldn’t want to name a variable some-
thing like data; it should describe the information it contains. In our earlier
very specific example, productName might be a more useful name than foo.
There are a few rules for naming a variable:

A variable is like an
information container.

Part IV. JavaScript for Behavior

The Anatomy of a Script

600

•	 It must start with a letter or an underscore.

•	 It may contain letters, digits, and underscores in any combination.

•	 It may not contain character spaces. As an alternative, use underscores
in place of spaces, or close up the space and use camel case instead (for
example, my_variable or myVariable).

•	 It may not contain special characters (e.g., ! . , / \ + * =).

You can change the value of a variable at any time by redeclaring it anywhere
in your script. Remember: JavaScript is case-sensitive, and so are those vari-
able names.

Data types
The values we assign to variables fall under a few distinct data types:

Undefined

The simplest of these data types is likely undefined. If we declare a vari-
able by giving it a name but no value, that variable contains a value of
undefined.

var foo;
alert(foo); // This will open a dialog containing "undefined".

Odds are you won’t find a lot of use for this right away, but it’s worth
knowing for the sake of troubleshooting some of the errors you’re likely
to encounter early on in your JavaScript career. If a variable has a value
of undefined when it shouldn’t, you may want to double-check that it
has been declared correctly or that there isn’t a typo in the variable name.
(We’ve all been there.)

Null

Similar to undefined, assigning a variable of null (again, case-sensitive)
simply says, “Define this variable, but give it no inherent value.”

var foo = null;
alert(foo); // This will open a dialog containing "null".

Numbers

You can assign variables numeric values.

var foo = 5;
alert(foo); // This will open a dialog containing "5".

The word foo now means the exact same thing as the number 5 as far as
JavaScript is concerned. Because JavaScript is loosely typed, we don’t have
to tell our script to treat the variable foo as the number 5. The variable
behaves the same as the number itself, so you can do things to it that you
would do to any other number by using classic mathematical notation:
+, -, *, and / for plus, minus, multiply, and divide, respectively. In this
example, we use the plus sign (+) to add foo to itself (foo + foo).

21. Introduction to JavaScript

The Anatomy of a Script

601

var foo = 5;
alert(foo + foo); // This will alert "10".

Strings

Another type of data that can be saved to a variable is a string, which is
basically a line of text. Enclosing characters in a set of single or double
quotes indicates that it’s a string, as shown here:

var foo = "five";
alert(foo); // This will alert "five"

The variable foo is now treated exactly the same as the word five. This
applies to any combination of characters: letters, numbers, spaces, and
so on. If the value is wrapped in quotation marks, it will be treated as a
string of text. If we were to wrap the number 5 in quotes and assign it to
a variable, that variable wouldn’t behave as a number; instead, it would
behave as a string of text containing the character “5.”

Earlier we saw the plus sign (+) used to add numbers. When the plus sign
is used with strings, it sticks the strings together (called concatenation)
into one long string, as shown in this example.

var foo = "bye"
alert(foo + foo); // This will alert "byebye"

Notice what the alert returns in the following example when we define
the value 5 in quotation marks, treating it as a string instead of a number:

var foo = "5";
alert(foo + foo); // This will alert "55"

If we concatenate a string and a number, JavaScript will assume that the
number should be treated as a string as well, since the math would be
impossible.

var foo = "five";
var bar = 5;
alert(foo + bar); // This will alert "five5"

Booleans

We can also assign a variable a true or false value. This is called a Boolean
value, and it is the lynchpin for all manner of advanced logic. Boolean val-
ues use the true and false keywords built into JavaScript, so quotation
marks are not necessary.

var foo = true; // The variable "foo" is now true

Just as with numbers, if we were to wrap the preceding value in quotation
marks, we’d be saving the word true to our variable instead of the inherent
value of true (i.e., “not false”).

In a sense, everything in JavaScript has either an inherently true or false
value. For example, null, undefined, 0, and empty strings (" ") are all
inherently false, while every other value is inherently true. These values,
although not identical to the Booleans true and false, are commonly
referred to as being “truthy” and “falsy.” I promise I didn’t make that up.

Part IV. JavaScript for Behavior

The Anatomy of a Script

602

Arrays
An array is a group of multiple values (called members) that can be assigned
to a single variable. The values in an array are said to be indexed, meaning
you can refer to them by number according to the order in which they appear
in the list. The first member is given the index number 0, the second is 1,
and so on, which is why one almost invariably hears us nerds start counting
things at zero—because that’s how JavaScript counts things, and many other
programming languages do the same. We can avoid a lot of future coding
headaches by keeping this in mind.

So, let’s say our script needs all of the variables we defined earlier. We could
define them three times and name them something like foo1, foo2, and so on,
or we can store them in an array, indicated by square brackets ([]).

var foo = [5, "five", "5"];

Now anytime you need to access any of those values, you can grab them from
the single foo array by referencing their index number:

alert(foo[0]); // Alerts "5"

alert(foo[1]); // Alerts "five"

alert(foo[2]); // Also alerts "5"

Comparison Operators
Now that we know how to save values to variables and arrays, the next logi-
cal step is knowing how to compare those values. There is a set of special
characters called comparison operators that evaluate and compare values in
different ways:

== Is equal to

!= Is not equal to

=== Is identical to (equal to and of the same data type)

!== Is not identical to

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

There’s a reason all of these definitions read as parts of a statement. In com-
paring values, we’re making an assertion, and the goal is to obtain a result that
is either inherently true or inherently false. When we compare two values,
JavaScript evaluates the statement and gives us back a Boolean value depend-
ing on whether the statement is true or false.

alert(5 == 5); // This will alert "true"

alert(5 != 6); // This will alert "true"

alert(5 < 1); // This will alert "false"

21. Introduction to JavaScript

The Anatomy of a Script

603

Equal versus identical
The tricky part is understanding the difference between “equal to” (==) and
“identical to” (===). We already learned that all of these values fall under a
certain data type. For example, a string of “5” and a number 5 are similar, but
they’re not quite the same thing.

Well, that’s exactly what === is meant to check.

alert("5" == 5); // This will alert "true". They're both "5".

alert("5" === 5);
/* This will alert "false". They're both "5", but they're not the same
data type. */

alert("5" !== 5);
/* This will alert "true", since they're not the same data type. */

Even if you have to read through this part a couple of times, understanding
the difference between “equal” and “identical to” means you’ve already begun
to adopt the special kind of crazy one needs to be a programmer. Welcome!
You’re in good company.

Mathematical operators
The other type of operator is a mathematical operator, which performs math-
ematical functions on numeric values (and, of course, variables that contain
numeric values). We touched briefly on the straightforward mathematical
operators for add (+), subtract (-), multiply (*), and divide (/). There are also
some useful shortcuts you should be aware of:

+= Adds the value to itself

++ Increases the value of a number (or a variable containing a number
value) by 1

-- Decreases the value of a number (or a variable containing a number
value) by 1

if/else statements
if/else statements are how we get JavaScript to ask itself a true/false ques-
tion. They are more or less the foundation for all the advanced logic that can
be written in JavaScript, and they’re about as simple as programming gets. In
fact, they’re almost written in plain English. The structure of a conditional
statement is as follows:

if(true) {
 // Do something.
}

It tells the browser “if this condition is met, then execute the commands listed
between the curly brackets ({ }).” JavaScript doesn’t care about whitespace in

WARNIN G

Be careful not to accidentally use a sin-
gle equals sign, or you’ll be reassigning
the value of the first variable to the value
of the second variable!

Part IV. JavaScript for Behavior

The Anatomy of a Script

604

our code, remember, so the spaces on either side of the (true) are purely
for the sake of more readable code.

Here is a simple example using the array we declared earlier:

var foo = [5, "five", "5"];

if(foo[1] === "five") {
 alert("This is the word five, written in plain English.");
}

Since we’re making a comparison, JavaScript is going to give us a value of
either true or false. The highlighted line of code says “true or false: the value
of the foo variable with an index of 1 is identical to the word ‘five’?”

In this case, the alert would fire because the foo variable with an index of 1
(the second in the list, if you’ll remember) is identical to “five”. It is indeed
true, and the alert fires.

We can also explicitly check if something is false by using the != comparison
operator, which reads as “not equal to.”

if(1 != 2) {
 alert("If you're not seeing this alert, we have bigger problems than
JavaScript.");
 // 1 is never equal to 2, so we should always see this alert.
}

I’m not much good at math, but near as I can tell, 1 will never be equal to 2.
JavaScript says, “That ‘1 is not equal to 2’ line is a true statement, so I’ll run
this code.”

If the statement doesn’t evaluate to true, the code inside the curly brackets
will be skipped over completely:

if(1 == 2) {
 alert("If you're seeing this alert, we have bigger problems than
JavaScript.");
// 1 is not equal to 2, so this code will never run.
}

That covers “if,” but what about “else”?
Lastly—and I promise we’re almost done here—what if we want to do one
thing if something is true and something else if that thing is false? We could
write two if statements, but that’s a little clunky. Instead, we can just say, “else,
do something…else.”

var test = "testing";
if(test == "testing") {
 alert("You haven't changed anything.");
} else {
 alert("You've changed something!");
}

Idiomatic JavaScript
There is an effort in the JavaScript
community to create a style guide
for writing JavaScript code. The
document “Principles of Writing
Consistent, Idiomatic JavaScript”
states the following: “All code in any
code-base should look like a single
person typed it, no matter how many
people contributed.” To achieve
that goal, a group of developers has
written an Idiomatic Style Manifesto
that describes how whitespace, line
breaks, quotation marks, functions,
variables, and more should be written
to achieve “beautiful code.” Learn
more about it at github.com/rwldrn/
idiomatic.js/.

21. Introduction to JavaScript

The Anatomy of a Script

605

Changing the value of the test variable to something else—anything other
than the word testing—will trigger the alert “You’ve changed something!”

EXERCISE 21-1 gives you a chance to write a bit of JavaScript yourself.

Loops
There are cases in which we’ll want to go through every item in an array and
do something with it, but we won’t want to write out the entire list of items
and repeat ourselves a dozen or more times. You are about to learn a tech-
nique of devastating power, readers: loops.

I know. Maybe I overstated how exciting loops can be, but they are incredibly
useful. With what we’ve covered already, we’re getting good at dealing with
single variables, but that can get us only so far. Loops allow us to easily deal
with huge sets of data.

Say we have a form that requires none of the fields to be left blank. If we use
the DOM to fetch every text input on the page, the DOM provides an array
of every text input element. (I’ll tell you more about how the DOM does this
in the next chapter.) We could check every value stored in that array one item
at a time, sure, but that’s a lot of code and a maintenance nightmare. If we use
a loop to check each value, we won’t have to modify our script, regardless of
how many fields are added to or removed from the page. Loops allow us to
act on every item in an array, regardless of that array’s size.

There are several ways to write a loop, but the for method is one of the most
popular. The basic structure of a for loop is as follows:

for(initialize the variable; test the condition; alter the value;) {
 // do something
}

Here’s an example of a for loop in action:

for(var i = 0; i < 2; i++) {
 alert(i); // This loop will trigger three alerts, reading "0",
"1", and "2" respectively.
}

That’s a little dense, so let’s break it down:

for()

First, we’re calling the for() statement, which is built into JavaScript. It
says, “For every time this is true, do this.” Next we need to supply that
statement with some information.

var i = 0;

This creates a new variable, i, with its value set to zero. You can tell it’s a
variable by the single equals sign. More often than not, you’ll see coders
using the letter “i” (short for “index”) as the variable name, but keep in

EXERCISE 21-1. 
English-to-JavaScript
translation

In this quick exercise, you can get
a feel for variables, arrays, and if/
else statements by translating the
statements written in English into lines
of JavaScript code. You can find the
answers in Appendix A.

1.	 Create a variable called friends
and assign it an array with four of
your friends’ names.

2.	 Show the user a dialog that displays
the third name in your list of
friends.

3.	 Create a variable called name and
assign it a string value that is your
first name.

4.	 If the value of name is identical to
Jennifer, show the user a dialog
box that says, “That’s my name too!”

5.	 Create a variable called myVariable
and assign it a number value
between 1 and 10. If myVariable
is greater than five, show the user a
dialog that says “upper.” If not, show
the user a dialog that says “lower.”

Part IV. JavaScript for Behavior

The Anatomy of a Script

606

mind that you could use any variable name in its place. It’s a common
convention, not a rule.

We set that initial value to 0 because we want to stay in the habit of count-
ing from zero up. That’s where JavaScript starts counting, after all.

i <= 2;

With i <= 2;, we’re saying, “for as long as i is less than or equal to 2, keep
on looping.” Since we’re counting from zero, that means the loop will run
three times.

i++

Finally, i++ is shorthand for “every time this loop runs, add one to the
value of i” (++ is one of the mathematical shortcut operators we saw
earlier). Without this step, i would always equal zero, and the loop would
run forever! Fortunately, modern browsers are smart enough not to let
this happen. If one of these three pieces is missing, the loop simply won’t
run at all.

{ script }

Anything inside those curly brackets is executed once for each time the
loop runs, which is three times in this case. That i variable is available for
use in the code the loop executes as well, as we’ll see next.

Let’s go back to the “check each item in an array” example. How would we
write a loop to do that for us?

var items = ["foo", "bar", "baz"]; // First we create an array.
for(var i = 0; i < items.length; i++) {
 alert(items[i]); // This will alert each item in the array.
}

This example differs from our first loop in two key ways:

items.length

Instead of using a number to limit the number of times the loop runs,
we’re using a property built right into JavaScript to determine the “length”
of our array, which is the number of items it contains. .length is just one
of the standard properties and methods of the Array object in JavaScript.
In our example, there are three items in the array, so it will loop three
times.

items[i]

Remember how I mentioned that we can use that i variable inside the
loop? Well, we can use it to reference each index of the array. Good thing
we started counting from zero; if we had set the initial value of i to 1, the
first item in the array would have been skipped. The result of our for loop
example is that each item in the array (the text strings foo, bar, and baz)
gets returned after each loop and fed to an alert.

21. Introduction to JavaScript

The Anatomy of a Script

607

Now no matter how large or small that array should become, the loop will
execute only as many times as there are items in the array, and will always
hold a convenient reference to each item in the array.

There are literally dozens of ways to write a loop in JavaScript, but this is one
of the more common patterns you’re going to encounter out there in the wild.
Developers use loops to perform a number of tasks, such as the following:

•	 Looping through a list of elements on the page and checking the value of
each, applying a style to each, or adding/removing/changing an attribute
on each. For example, we could loop through each element in a form and
ensure that users have entered a valid value for each before they proceed.

•	 Creating a new array of items in an original array that have a certain
value. We check the value of each item in the original array within the
loop, and if the value matches the one we’re looking for, we populate a
new array with only those items. This turns the loop into a filter of sorts.

Functions
I’ve introduced you to a few functions already in a sneaky way. Here’s an
example of a function that you might recognize:

alert("I've been a function all along!");

A function is a bit of code for performing a task that doesn’t run until it is
referenced or called. alert() is a function built into our browser. It’s a block
of code that runs only when we explicitly tell it to. In a way, we can think of
a function as a variable that contains logic, in that referencing that variable
will run all the code stored inside it. Functions allow code to be reused any
time it is referenced so you don’t need to write it over and over.

All functions share a common pattern (FIGURE 21-6). The function name
is always immediately followed by a set of parentheses (no space), then a
pair of curly brackets that contains their associated code. The parentheses
sometimes contain additional information used by the function called argu-
ments. Arguments are data that can influence how the function behaves. For
example, the alert() function we know so well accepts a string of text as an
argument, and uses that information to populate the resulting dialog.

addNumbers(a, b) {
 return a + b;
}

Function name Arguments

Code to
execute

Multiple arguments are separated by commas

addNumbers() {
 return 2 + 2;
}

Not all functions take arguments

FIGURE 21-6.   The structure of a function.

The structure of a
function:

 function() {
 }

Part IV. JavaScript for Behavior

The Anatomy of a Script

608

There are two types of functions: those that come “out of the box” (native
JavaScript functions) and those that you make up yourself (custom func-
tions). Let’s look at each.

Native functions
Hundreds of predefined functions are built into JavaScript, including these:

alert(), confirm(), and prompt()

These functions trigger browser-level dialog boxes.

Date()

Returns the current date and time.

parseInt("123")

This function will, among other things, take a string data type containing
numbers and turn it into a number data type. The string is passed to the
function as an argument.

setTimeout(functionName, 5000)

Executes a function after a delay. The function is specified in the first
argument, and the delay is specified in milliseconds in the second argu-
ment (in the example, 5,000 milliseconds, which equals 5 seconds).

There are scores more beyond this as well. Note that names of functions are
case-sensitive, so be sure to write setTimeout instead of SetTimeout.

Custom functions
To create a custom function, we type the function keyword followed by a
name for the function, followed by opening and closing parentheses, followed
by opening and closing curly brackets:

function name() {
 // Our function code goes here.
}

Just as with variables and arrays, the function’s name can be anything you
want, but all the same naming syntax rules apply.

If we were to create a function that just alerts some text (which is a little
redundant, I know), it would look like this:

function foo() {
 alert("Our function just ran!");
 // This code won't run until we call the function 'foo()'
}

We can then call that function and execute the code inside it anywhere in our
script by writing the following:

foo(); // Alerts "Our function just ran!"

We can call this function any number of times throughout our code. It saves
a lot of time and redundant coding.

21. Introduction to JavaScript

The Anatomy of a Script

609

Arguments
Having a function that executes the exact same code throughout your script
isn’t likely to be all that useful. We can “pass arguments” (provide data) to
native and custom functions in order to apply a function’s logic to different
sets of data at different times. To hold a place for the arguments, create a vari-
able name (or a series of comma-separated names) in the parentheses after
the name of the function at the time the function is defined.

For example, let’s say we wanted to create a very simple function that alerts
the number of items contained in an array. We’ve already learned that we can
use .length to get the number of items in an array, so we just need a way to
pass the array to be measured into our function. We do that by supplying the
array to be measured as an argument. In the code, I’ve defined a new func-
tion named alertArraySize() and created the variable arr that holds a place
for the argument. That variable will then be available inside the function and
will contain whatever argument we pass when we call the function.

function alertArraySize(arr) {
 alert(arr.length);
}

When we call that function, anything we include between the parentheses
after the function name (in this case, test) will be passed to the argument
with the arr placeholder as the function executes. Here we’ve defined the vari-
able test as an array of five items. We’ve passed that variable to the function,
and now that array gets plugged in and the length is returned.

var test = [1,2,3,4,5];
alertArraySize(test); // Alerts "5"

Returning a value
This part is particularly wild and incredibly useful.

It’s pretty common to use a function to calculate something and then give you
back a value that you can use elsewhere in your script. We could accomplish
this using what we know now, through clever application of variables, but
there’s a much easier way.

The return keyword inside a function effectively turns that function into a
variable with a dynamic value! This one is a little easier to show than it is to
tell, so bear with me while we consider this example:

function addNumbers(a,b) {
 return a + b;
}

We now have a function that accepts two arguments and adds them together.
That wouldn’t be much use if the result always lived inside that function,
because we wouldn’t be able to use the result anywhere else in our script.
Here we use the return keyword to pass the result out of the function. Now

An argument is a value or
data that a function uses
when it runs.

Part IV. JavaScript for Behavior

The Anatomy of a Script

610

any reference you make to that function gives you the result of the function—
just like a variable would:

alert(addNumbers(2,5)); // Alerts "7"

In a way, the addNumbers() function is now a variable that contains a dynamic
value: the value of our calculation. If we didn’t return a value inside our func-
tion, the preceding script would alert undefined, just like a variable that we
haven’t given a value.

The return keyword has one catch. As soon as JavaScript sees that it’s time to
return a value, the function ends. Consider the following:

function bar() {
 return 3;
 alert("We'll never see this alert.");
}

When you call this function by using bar(), the alert on the second line never
runs. The function ends as soon as it sees it’s time to return a value.

Variable Scope and the var Keyword
There are times when you’ll want a variable that you’ve defined within a
function to be available anywhere throughout your script. Other times, you
may want to restrict it and make it available only to the function it lives in.
This notion of the availability of the variable is known as its scope. A variable
that can be used by any of the scripts on your page is globally scoped, and
a variable that’s available only within its parent function is locally scoped.

JavaScript variables use functions to manage their scope. If a variable is
defined outside a function, it will be globally scoped and available to all
scripts. When you define a variable within a function and you want it to be
used only by that function, you can flag it as locally scoped by preceding the
variable name with the var keyword:

var foo = "value";

To expose a variable within a function to the global scope, we omit the var
keyword and simply define the variable:

foo = "value";

You need to be careful about how you define variables within functions, or
you could end up with unexpected results. Take the following JavaScript snip-
pet, for example:

function double(num){
 total = num + num;
 return total;
}
var total = 10;
var number = double(20);
alert(total); // Alerts 40.

21. Introduction to JavaScript

The Anatomy of a Script

611

You may expect that because you specifically assigned a value of 10 to the
variable total, the alert(total) function at the end of the script would
return 10. But because we didn’t scope the total variable in the function with
the var keyword, it bleeds into the global scope. Therefore, although the vari-
able total is set to 10, the following statement runs the function and grabs
the value for total defined there. Without the var, the variable “leaked out.”

As you can see, the trouble with global variables is that they’ll be shared
throughout all the scripting on a page. The more variables that bleed into
the global scope, the better the chances you’ll run into a “collision” in which
a variable named elsewhere (in another script altogether, even) matches one
of yours. This can lead to variables being inadvertently redefined with unex-
pected values, which can lead to errors in your script.

Remember that we can’t always control all the code in play on our page. It’s
very common for pages to include code written by third parties, for example:

•	 Scripts to render advertisements

•	 User-tracking and analytics scripts

•	 Social media “share” buttons

It’s best not to take any chances on variable collisions, so when you start writ-
ing scripts on your own, locally scope your variables whenever you can (see
the sidebar “Keeping Variables Out of the Global Scope”).

This concludes our little (OK, not so little) introductory tour of JavaScript
syntax. There’s a lot more to it, but this should give you a decent foundation
for learning more on your own and being able to interpret scripts when you
see them. We have just a few more JavaScript-related features to tackle before
we look at a few examples.

THE BROWSER OBJECT

In addition to being able to control elements on a web page, JavaScript also
gives you access to and the ability to manipulate the parts of the browser

Keeping Variables Out of
the Global Scope
If you want to be sure that all of your
variables stay out of the global scope,
you can put all of your JavaScript in
the following wrapper:

<script>

(function() {

 //All your code here!

}());

<script>

This little quarantining solution
is called an IIFE (Immediately
Invoked Functional Expression),
and we owe this method and the
associated catchy term to Ben Alman
(benalman.com/news/2010/11/
immediately-invoked-function-
expression/).

S CO P E C H E AT S H E E T

Variable Location Scope

var identifier value Outside a function Global

var identifier value Inside a function Local

identifier value Inside a function Global

Part IV. JavaScript for Behavior

The Browser Object

612

window itself. For example, you might want to get or replace the URL that is
in the browser’s address bar, or open or close a browser window.

In JavaScript, the browser is known as the window object. The window object
has a number of properties and methods that we can use to interact with it.
In fact, our old friend alert() is actually one of the standard browser object
methods. TABLE 21-1 lists just a few of the properties and methods that can
be used with window to give you an idea of what’s possible. For a complete
list, see the Window API reference at MDN Web Docs (developer.mozilla.org/
en-US/docs/Web/API/Window).

TABLE 21-1.   Browser properties and methods.

Property/method Description

event Represents the state of an event

history Contains the URLs the user has visited within a browser window

location Gives read/write access to the URI in the address bar

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an OK
button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an OK and
a Cancel button

focus() Sets focus on the current window

EVENTS

JavaScript can access objects in the page and the browser window, but did you
know it’s also “listening” for certain events to happen? An event is an action
that can be detected with JavaScript, such as when the document loads or
when the user clicks an element or just moves her mouse over it. HTML 4.0
made it possible for a script to be tied to events on the page, whether initi-
ated by the user, the browser itself, or other scripts. This is known as event
binding.

In scripts, an event is identified by an event handler. For example, the onload
event handler triggers a script when the document loads, and the onclick and
onmouseover handlers trigger a script when the user clicks or mouses over an
element, respectively. TABLE 21-2 lists some of the most common event han-
dlers. Keep in mind that these are also case-sensitive.

Event handlers “listen”
for certain document,
browser, or user actions
and bind scripts to those
actions.

21. Introduction to JavaScript

Events

613

TABLE 21-2.   Common events.

Event handler Event description

onblur An element loses focus.

onchange The content of a form field changes.

onclick The mouse clicks an object.

onerror An error occurs when the document or an image loads.

onfocus An element gets focus.

onkeydown A key on the keyboard is pressed.

onkeypress A key on the keyboard is pressed or held down.

onkeyup A key on the keyboard is released.

onload A page or an image is finished loading.

onmousedown A mouse button is pressed.

onmousemove The mouse is moved.

onmouseout The mouse is moved off an element.

onmouseover The mouse is moved over an element.

onmouseup A mouse button is released.

onsubmit The submit button is clicked in a form.

There are three common methods for applying event handlers to items within
our pages:

•	 As an HTML attribute

•	 As a method attached to the element

•	 Using addEventListener()

In the upcoming examples of the latter two approaches, we’ll use the window
object. Any events we attach to window apply to the entire document. We’ll be
using the onclick event in all of these as well.

As an HTML Attribute
You can specify the function to be run in an attribute in the markup, as
shown in the following example:

<body onclick="myFunction();"> /* myFunction will now run when the user
clicks anything within 'body' */

Although still functional, this is an antiquated way of attaching events to
elements within the page. It should be avoided for the same reason we avoid
using style attributes in our markup to apply styles to individual elements.
In this case, it blurs the line between the semantic layer and behavioral layers
of our pages, and can quickly lead to a maintenance nightmare.

Part IV. JavaScript for Behavior

Events

614

As a Method
This is another somewhat dated approach to attaching events, though it does
keep things strictly within our scripts. We can attach functions by using help-
ers already built into JavaScript:

window.onclick = myFunction; /* myFunction will run when the user
clicks anything within the browser window */

We can also use an anonymous function rather than a predefined one:

window.onclick = function() {
	 /* Any code placed here will run when the user clicks anything
within the browser window */
};

This approach has the benefit of both simplicity and ease of maintenance,
but does have a fairly major drawback: we can bind only one event at a time
with this method.

window.onclick = myFunction;

window.onclick = myOtherFunction;

In the example just shown, the second binding overwrites the first, so when
the user clicks inside the browser window, only myOtherFunction will run.
The reference to myFunction is thrown away.

addEventListener
Although a little more complex at first glance, this approach allows us to
keep our logic within our scripts and allows us to perform multiple bindings
on a single object. The syntax is a bit more verbose. We start by calling the
addEventListener() method of the target object, and then specify the event
in question and the function to be executed as two arguments:

window.addEventListener("click", myFunction);

Notice that we omit the preceding “on” from the event handler with this
syntax.

Like the previous method, addEventListener() can be used with an anony-
mous function as well:

window.addEventListener("click", function(e) {

});

This was just a brief introduction, so I recommend getting more information
on addEventListener() at the “eventTarget.addEventListener” page on the
MDN Web Docs (developer.mozilla.org/en/DOM/element.addEventListener).

21. Introduction to JavaScript

Events

615

PUTTING IT ALL TOGETHER

Now you have been introduced to many of the important building blocks of
JavaScript. You’ve seen variables, data types, and arrays. You’ve met if/else
statements, loops, and functions. You know your browser objects from your
event handlers. That’s a lot of bits and pieces. Let’s walk through a couple of
simple script examples to see how they get put together.

Example 1: A Tale of Two Arguments
Here’s a simple function that accepts two arguments and returns the greater
of the two values:

greatestOfTwo(first, second) {
 if(first > second) {
 return first;
 } else {
 return second;
 }
}

We start by naming our function greatestOfTwo. We set it up to accept two
arguments, which we’ll just call “first” and “second” for want of more descrip-
tive words. The function contains an if/else statement that returns first if
the first argument is greater than the second, and returns second if it isn’t.

Example 2: The Longest Word
Here’s a function that accepts an array of strings as a single argument and
returns the longest string in the array. It returns the first occurrence of one of
the longest strings (in case they are of the same length).

longestWord(strings) {
 var longest = strings[0];

 for(i = 1; i < strings.length; i++) {
 if (strings[i].length > longest.length) {
 longest = strings[i];
 }
 }
 return longest;
}

First, we name the function and allow it to accept a single argument. Then,
we set the longest variable to an initial value of the first item in the array:
strings[0]. We start our loop at 1 instead of 0 since we already have the
first value in the array captured. Each time we iterate through the loop, we
compare the length of the current item in the array to the length of the value
saved in the longest variable. If the current item in the array contains more
characters than the current value of the longest variable, we change the value
of longest to that item. If not, we do nothing. After the loop is complete we
return the value of longest, which now contains the longest string in the array.

Part IV. JavaScript for Behavior

Putting It All Together

616

LEARNING MORE ABOUT JAVASCRIPT

Now that you’ve seen the basic building blocks and a few simple examples,
does it whet your appetite for more? Here are a few resources to take you to
the next step:

JavaScript Resources at MDN Web Docs
(developer.mozilla.org/en-US/docs/Web/JavaScript)

The folks at MDN Web Docs have assembled excellent tutorials as well as
thorough documentation on all the components of JavaScript. It’s a great
site to visit when you’re just starting out, and it is likely to be a go-to refer-
ence even after you have years of experience.

JavaScript for Web Designers by Mat Marquis (A Book Apart)

I can say a lot more in a book than in a chapter, so if you’re looking for
a little more depth in a beginner-level manual, I wrote this book for you.

Learning JavaScript by Ethan Brown (O’Reilly)

For a deeper dive into JavaScript, this book will take you to the next level.

Why not see how you’re doing with JavaScript so far with EXERCISE 21-2 and
a quick quiz? In the next chapter, you’ll see how we use these tools in the
context of web design.

EXERCISE 21-2.  You try it

In this exercise, you will write a script that updates the page’s
title in the browser window with a “new messages” count. You
may have encountered this sort of script in the wild from time to
time. We’re going to assume for the sake of the exercise that this
is going to become part of a larger web app someday, and we’re
tasked only with updating the page title with the current “unread
messages” count.

I’ve created a document for you already (title.html), which
is available in the materials folder for this chapter on
learningwebdesign.com. The resulting script is in Appendix A.

1.	 Start by opening title.html in a browser. You’ll see a blank page,
with the title element already filled out. If you look up at the top
of your browser window, you’ll notice it reads “Million Dollar
WebApp”.

2.	 Now open the document in a text editor. You’ll find a script
element containing a comment just before the closing
</body> tag. Feel free to delete the comment.

3.	 If we’re going to be changing the page’s title, we should save
the original first. Create a variable named originalTitle. For
its value, we’ll have the browser get the title of the document
using the DOM method document.title. Now we have a
saved reference to the page title at the time the page is loaded.
This variable should be global, so we’ll declare it outside any
functions.

var originalTitle = document.title;

4.	 Next, we’ll define a function so we can reuse the script whenever
it’s needed. Let’s call the function something easy to remember,
so we know at a glance what it does when we encounter it in
our code later. showUnreadCount() works for me, but you can
name it whatever you’d like.

var originalTitle = document.title;

function showUnreadCount() {
} →

21. Introduction to JavaScript

Learning More About JavaScript

617

https://developer.mozilla.org/en-US/docs/Web/JavaScript

EXERCISE 21-2. Continued

5.	 We need to think about what the function needs to make it useful. This function does
something with the unread message count, so its argument is a single number referred
to as unread in this example.

var originalTitle = document.title;

function showUnreadCount(unread) {
}

6.	 Now let’s add the code that runs for this function. We want the document title for the
page to display the title of the document plus the count of unread messages. Sounds
like a job for concatenation (+)! Here we set the document.title to be (=) whatever
string was saved for originalTitle plus the number in showUnreadCount. As we
learned earlier, JavaScript combines a string and a number as though they are both
strings.

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + unread;
}

7.	 Let’s try out our script before we go too much further. Below where you defined the
function and the originalTitle variable, enter showUnreadCount(3);. Now save
the page and reload it in your browser (FIGURE 21-7).

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + unread;
}
showUnreadCount(3);

FIGURE 21-7.   Our title tag has changed! It’s not quite right yet, though.

8.	 Our script is working, but it’s not very easy to read. Fortunately, there’s no limit on the
number of strings we can combine at once. Here we’re adding new strings that wrap the
count value and the words “new messages” in parentheses (FIGURE 21-8).

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + "(" + unread + " new messages!)";
}
showUnreadCount(3);

FIGURE 21-8.   Much better!

Part IV. JavaScript for Behavior

Learning More About JavaScript

618

TEST YOURSELF

We covered a lot of new material in this chapter. Here’s a chance to test what
sunk in. You will find the answers in Appendix A.

1.	 Name one good thing and one bad thing about linking to external .js files.

2.	 Given the following array

var myArray = [1, "two", 3, "4"]

write what the alert message will say for each of these examples:

a.	 alert(myArray[0]);

b.	 alert(myArray[0] + myArray[1]);

c.	 alert(myArray[2] + myArray[3]);

d.	 alert(myArray[2] – myArray[0]);

3.	 What will each of these alert messages say?

a.	 var foo = 5;
foo += 5;
alert(foo);

b.	 i = 5;
i++;
alert(i);

c.	 var foo = 2;
alert(foo + " " + "remaining");

d.	 var foo = "Mat";
var bar = "Jennifer";
if(foo.length > bar.length) {
 alert(foo + " is longer.");
} else {
 alert(bar + " is longer.");
}

e.	 alert(10 === "10");

4.	 Describe what this does:

for(var i = 0; i < items.length; i++) { }

5.	 What is the potential problem with globally scoped variables?

21. Introduction to JavaScript

Test Yourself

619

6.	 Match each event handler with its trigger.

a. onload 1. The user finishes a form and hits the submit button.

b. onchange 2. The page finishes loading.

c. onfocus 3. The pointer hovers over a link.

d. onmouseover 4. A text-entry field is selected and ready for typing.

e. onsubmit 5. A user changes her name in a form field.

Part IV. JavaScript for Behavior

Test Yourself

620

IN THIS CHAPTER

Using the DOM to access and
change elements, attributes,

and contents

Using polyfills to make browser
versions work consistently

Using JavaScript libraries

A brief introduction to Ajax

by Mat Marquis

Now that you have a sense for the language of JavaScript, let’s look at some of
the ways we can put it to use in modern web design. First, we’ll explore DOM
scripting, which allows us to manipulate the elements, attributes, and text on
a page. I’ll introduce you to some ready-made JavaScript and DOM scripting
resources, so you don’t have to go it alone. You’ll learn about polyfills, which
provide older browsers with modern features and normalize functionality. I’ll
also introduce you to JavaScript libraries that make developers’ lives easier
with collections of polyfills and shortcuts for common tasks.

MEET THE DOM

You’ve seen references to the Document Object Model (DOM for short) sev-
eral times throughout this book, but now is the time to give it the attention it
deserves. The DOM gives us a way to access and manipulate the contents of
a document. We commonly use it for HTML, but the DOM can be used with
any XML language as well. And although we’re focusing on its relationship
with JavaScript, it’s worth noting that the DOM can be accessed by other lan-
guages too, such as PHP, Ruby, C++, and more. Although DOM Level 1 was
released by the W3C in 1998, it was nearly five years later that DOM scripting
began to gain steam.

The DOM is a programming interface (an API) for HTML and XML pages.
It provides a structured map of the document, as well as a set of methods
to interface with the elements contained therein. Effectively, it translates our
markup into a format that JavaScript (and other languages) can understand.
It sounds pretty dry, I know, but the basic gist is that the DOM serves as a
map to all the elements on a page and lets us do things with them. We can
use it to find elements by their names or attributes, and then add, modify, or
delete elements and their content.

USING JAVASCRIPT
AND THE DOCUMENT OBJECT MODEL

22
CHAPTER

The DOM gives us a way to
access and manipulate the
contents of a document.

621

Without the DOM, JavaScript wouldn’t have any sense of a document’s
contents—and by that, I mean the entirety of the document’s contents.
Everything from the page’s doctype to each individual letter in the text can be
accessed via the DOM and manipulated with JavaScript.

The Node Tree
A simple way to think of the DOM is in terms of the document tree as dia-
grammed in FIGURE 22-1. You saw documents diagrammed in this way when
you were learning about CSS selectors.

<!DOCTYPE html>
<html>
<head>
 <title>Document title</title>
 <meta charset="utf-8">
</head>
<body>
 <div>
 <h1>Heading</h1>
 <p>Paragraph text with a link here.</p>
 </div>
 <div>
 <p>More text here.</p>
 </div>
</body>
</html>

html

bodyhead

title meta div div

h1 p

a

p

FIGURE 22-1.   A simple document.

Each element within the page is referred to as a node. If you think of the
DOM as a tree, each node is an individual branch that can contain further
branches. But the DOM allows deeper access to the content than CSS because
it treats the actual content as a node as well. FIGURE 22-2 shows the struc-
ture of the first p element. The element, its attributes, and its contents are all
nodes in the DOM’s node tree.

Part IV. JavaScript for Behavior

Meet the DOM

622

p

aParagraph text with a here.

href="foo.html" link

<p>Paragraph text with a link here.</p>

FIGURE 22-2.   The nodes within the first p element in our sample document.

The DOM also provides a standardized set of methods and functions
through which JavaScript can interact with the elements on our page. Most
DOM scripting involves reading from and writing to the document.

There are several ways to use the DOM to find what you want in a document.
Let’s go over some of the specific methods we can use for accessing objects
defined by the DOM (we JS folks call this “crawling the DOM” or “traversing
the DOM”), as well as some of the methods for manipulating those elements.

Accessing DOM Nodes
The document object in the DOM identifies the page itself, and more often
than not will serve as the starting point for our DOM crawling. The docu-
ment object comes with a number of standard properties and methods for
accessing collections of elements. This is reminiscent of the length property
we learned about in Chapter 21, Introduction to JavaScript. Just as length is
a standard property of all arrays, the document object comes with a number
of built-in properties containing information about the document. We then
wind our way to the element we’re after by chaining those properties and
methods together, separated by periods, to form a sort of route through the
document.

To give you a general idea of what I mean, the statement in this example says
to look on the page (document), find the element that has the id value “begin-
ner”, find the HTML content within that element (innerHTML), and save those
contents to a variable (foo):

var foo = document.getElementById("beginner").innerHTML;

Because the chains tend to get long, it is also common to see each property
or method broken onto its own line to make it easier to read at a glance.

AT A G L A N C E

The DOM is a collection of nodes:

•	 Element nodes

•	 Attribute nodes

•	 Text nodes

22. Using JavaScript

Meet the DOM

623

Remember, whitespace in JavaScript is ignored, so this has no effect on how
the statement is parsed.

var foo = document
 .getElementById("beginner")
 .innerHTML;

There are several methods for accessing nodes in the document.

By element name

getElementsByTagName()

We can access individual elements by the tags themselves, using document.
getElementsByTagName(). This method retrieves any element or elements you
specify as an argument.

For example, document.getElementsByTagName("p") returns every paragraph
on the page, wrapped in something called a collection or nodeList, in the
order they appear in the document from top to bottom. nodeLists behave
much like arrays. To access specific paragraphs in the nodeList, we reference
them by their index, just like an array.

var paragraphs = document.getElementsByTagName("p");

Based on this variable statement, paragraphs[0] is a reference to the first
paragraph in the document, paragraphs[1] refers to the second, and so on. If
we had to access each element in the nodeList separately, one at a time…well,
it’s a good thing we learned about looping through arrays earlier. Loops work
the exact same way with a nodeList.

var paragraphs = document.getElementsByTagName("p");
for(var i = 0; i < paragraphs.length; i++) {
 // do something
}

Now we can access each paragraph on the page individually by referencing
paragraphs[i] inside the loop, just as with an array, but with elements on the
page instead of values.

By id attribute value

getElementById()

This method returns a single element based on that element’s ID (the value
of its id attribute), which we provide to the method as an argument. For
example, to access this particular image

we include the id value as an argument for the getElementById() method:

var photo = document.getElementById("lead-photo");

NOTE

nodeLists are living collections. If you
manipulate the document in a nodeList
loop—for example, looping through all
paragraphs and appending new ones
along the way—you can end up in an
infinite loop. Good times!

Part IV. JavaScript for Behavior

Meet the DOM

624

By class attribute value

getElementsByClassName()

Just as it says on the tin, this allows you to access nodes in the document
based on the value of a class attribute. This statement assigns any element
with a class value of “column-a” to the variable firstColumn so it can be
accessed easily from within a script:

var firstColumn = document.getElementsByClassName("column-a");

Like getElementsByTagName(), this returns a nodeList that we can reference
by index or loop through one at a time.

By selector

querySelectorAll()

querySelectorAll() allows you to access nodes of the DOM based on a CSS-
style selector. The syntax of the arguments in the following examples should
look familiar to you. It can be as simple as accessing the child elements of a
specific element:

var sidebarPara = document.querySelectorAll(".sidebar p");

or as complex as selecting an element based on an attribute:

var textInput = document.querySelectorAll("input[type='text']");

querySelectorAll() returns a nodeList, like getElementsByTagName() and
getElementsByClassName(), even if the selector matches only a single element.

Accessing an attribute value

getAttribute()

As I mentioned earlier, elements aren’t the only thing you can access with the
DOM. To get the value of an attribute attached to an element node, we call
getAttribute() with a single argument: the attribute name. Let’s assume we
have an image, stratocaster.jpg, marked up like this:

In the following example, we access that specific image (getElementbyId())
and save a reference to it in a variable (“bigImage”). At that point, we could
access any of the element’s attributes (alt, src, or id) by specifying it as an
argument in the getAttribute() method. In the example, we get the value of
the src attribute and use it as the content in an alert message. (I’m not sure
why we would ever do that, but it does demonstrate the method.)

var bigImage = document.getElementById("lead-image");

alert(bigImage.getAttribute("src")); // Alerts "stratocaster.jpg".

WARNING

This is a relatively new method for access-
ing DOM nodes. Although getElements-
ByClassName() is available in the cur-
rent versions of modern browsers, it will
not work in IE8 or below.

WARNING

querySelectorAll() isn’t supported in
IE7 or below.

22. Using JavaScript

Meet the DOM

625

Manipulating Nodes
Once we’ve accessed a node by using one of the methods discussed previ-
ously, the DOM gives us several built-in methods for manipulating those
elements, their attributes, and their contents.

setAttribute()

To continue with the previous example, we saw how we get the attribute
value, but what if we wanted to set the value of that src attribute to a new
pathname altogether? Use setAttribute()! This method requires two argu-
ments: the attribute to be changed and the new value for that attribute.

In this example, we use a bit of JavaScript to swap out the image by changing
the value of the src attribute:

var bigImage = document.getElementById("lead-image");

bigImage.setAttribute("src", "lespaul.jpg");

Just think of all the things you could do with a document by changing the
values of attributes. Here we swapped out an image, but we could use this
same method to make a number of changes throughout our document:

•	 Update the checked attributes of checkboxes and radio buttons based on
user interaction elsewhere on the page.

•	 Find the link element for our .css file and point the href value to a differ-
ent style sheet, changing all the page’s styles.

•	 Update a title attribute with information on an element’s state (“this
element is currently selected,” for example).

innerHTML

innerHTML gives us a simple method for accessing and changing the text and
markup inside an element. It behaves differently from the methods we’ve
covered so far. Let’s say we need a quick way of adding a paragraph of text to
the first element on our page with a class of intro:

var introDiv = document.getElementsByClassName("intro");

introDiv[0].innerHTML = "<p>This is our intro text</p>";

The second statement here adds the content of the string to introDiv (an
element with the class value “intro”) as a real live element because innerHTML
tells JavaScript to parse the strings “<p>” and “</p>” as markup.

style

The DOM also allows you to add, modify, or remove a CSS style from an
element by using the style property. It works similarly to applying a style
with the inline style attribute. The individual CSS properties are available
as properties of the style property. I bet you can figure out what these state-
ments are doing by using your new CSS and DOM know-how:

Part IV. JavaScript for Behavior

Meet the DOM

626

document.getElementById("intro").style.color = "#fff";

document.getElementById("intro").style.backgroundColor = "#f58220";
	 //orange

In JavaScript and the DOM, property names that are hyphenated in CSS
(such as background-color and border-top-width) become camel case (back-
groundColor and borderTopWidth, respectively) so the “–” character isn’t mis-
taken for an operator.

In the examples you’ve just seen, the style property is used to set the styles
for the node. It can also be used to get a style value for use elsewhere in the
script. This statement gets the background color of the #intro element and
assigns it to the brandColor variable:

var brandColor = document.getElementById("intro").style.backgroundColor;

Adding and Removing Elements
So far, we’ve seen examples of getting and setting nodes in the existing docu-
ment. The DOM also allows developers to change the document structure
itself by adding and removing nodes on the fly. We’ll start out by creating
new nodes, which is fairly straightforward, and then we’ll see how we add
the nodes we’ve created to the page. The methods shown here are more surgi-
cal and precise than adding content with innerHTML. While we’re at it, we’ll
remove nodes, too.

createElement()

To create a new element, use the aptly named createElement() method. This
function accepts a single argument: the element to be created. Using this
method is a little counterintuitive at first because the new element doesn’t
appear on the page right away. Once we create an element in this way, that
new element remains floating in the JavaScript ether until we add it to the
document. Think of it as creating a reference to a new element that lives
purely in memory—something that we can manipulate in JavaScript as we
see fit, and then add to the page once we’re ready:

var newDiv = document.createElement("div");

createTextNode()

If we want to enter text into either an element we’ve created or an existing
element on the page, we can call the createTextNode() method. To use it, pro-
vide a string of text as an argument, and the method creates a DOM-friendly
version of that text, ready for inclusion on the page. Like createElement(),
this creates a reference to the new text node that we can store in a variable
and add to the page when the time comes:

var ourText = document.createTextNode("This is our text.");

22. Using JavaScript

Meet the DOM

627

appendChild()

So we’ve created a new element and a new string of text, but how do we make
them part of the document? Enter the appendChild() method. This method
takes a single argument: the node you want to add to the DOM. You call it on
the existing element that will be its parent in the document structure. Time
for an example.

Here we have a simple div on the page with the id “our-div”:

<div id="our-div"></div>

Let’s say we want to add a paragraph to #our-div that contains the text “Hello,
world!” We start by creating the p element (document.createElement()) as
well as a text node for the content that will go inside it (createTextNode()):

var ourDiv = document.getElementById("our-div");
var newParagraph = document.createElement("p");
var copy = document.createTextNode("Hello, world!");

Now we have our element and some text, and we can use appendChild() to
put the pieces together:

newParagraph.appendChild(copy);
ourDiv.appendChild(newParagraph);

The first statement appends copy (that’s our “Hello, world!” text node) to
the new paragraph we created (newParagraph), so now that element has
some content. The second line appends the newParagraph to the original div
(ourDiv). Now ourDiv isn’t sitting there all empty in the DOM, and it will
display on the page with the content “Hello, world!”

You should be getting the idea of how it works. How about a couple more?

insertBefore()

The insertBefore() method, as you might guess, inserts an element before
another element. It takes two arguments: the first is the node that gets insert-
ed, and the second is the element it gets inserted in front of. You also need to
know the parent to which the element will be added.

So, for example, to insert a new heading before the paragraph in this markup

<div id="our-div">
 <p id="our-paragraph">Our paragraph text</p>
</div>

we start by assigning variable names to the div and the p it contains, and then
create the h1 element and its text node and put them together, just as we saw
in the last example:

var ourDiv = document.getElementById("our-div");
var para = document.getElementById("our-paragraph");

var newHeading = document.createElement("h1");
var headingText = document.createTextNode("A new heading");
newHeading.appendChild(headingText);
// Add our new text node to the new heading

Part IV. JavaScript for Behavior

Meet the DOM

628

Finally, in the last statement shown here, the insertBefore() method places
the newHeading h1 element before the para element inside ourDiv.

ourDiv.insertBefore(newHeading, para);

replaceChild()

The replaceChild() method replaces one node with another and takes two
arguments. The first argument is the new child (i.e., the node you want to
end up with). The second is the node that gets replaced by the first. As with
insertBefore(), you also need to identify the parent element in which the
swap happens. For the sake of simplicity, let’s say we start with the following
markup:

<div id="our-div">
 <div id="swap-me"></div>
</div>

And we want to replace the div with the id “swap-me” with an image. We
start by creating a new img element and setting the src attribute to the path-
name to the image file. In the final statement, we use replaceChild() to put
newImg in place of swapMe.

var ourDiv = document.getElementById("our-div");
var swapMe = document.getElementById("swap-me");
var newImg = document.createElement("img");
// Create a new image element

newImg.setAttribute("src", "path/to/image.jpg");
// Give the new image a "src" attribute
ourDiv.replaceChild(newImg, swapMe);

removeChild()

To paraphrase my mother, “We brought these elements into this world, and
we can take them out again.” You remove a node or an entire branch from
the document tree with the removeChild() method. The method takes one
argument, which is the node you want to remove. Remember that the DOM
thinks in terms of nodes, not just elements, so the child of an element may be
the text (node) it contains, not just other elements.

Like appendChild(), the removeChild() method is always called on the parent
element of the element to be removed (hence, “remove child”). That means
we’ll need a reference to both the parent node and the node we’re looking to
remove. Let’s assume the following markup pattern:

<div id="parent">
 <div id="remove-me">
 <p>Pssh, I never liked it here anyway.</p>
 </div>
</div>

Our script would look something like this:

var parentDiv = document.getElementById("parent");
var removeMe = document.getElementById("remove-me");

22. Using JavaScript

Meet the DOM

629

parentDiv.removeChild(removeMe);
// Removes the div with the id "remove-me" from the page.

For Further Reading
That should give you a good idea of what DOM scripting is all about. Of
course, I’ve just barely scratched the surface of what can be done with the
DOM, but if you’d like to learn more, definitely check out the book DOM
Scripting: Web Design with JavaScript and the Document Object Model, Second
Edition, by Jeremy Keith and Jeffrey Sambells (Friends of Ed).

POLYFILLS

You’ve gotten familiar with a lot of new technologies in this book so far: new
HTML5 elements, new ways of doing things with CSS3, using JavaScript to
manipulate the DOM, and more. In a perfect world, all browsers would be
in lockstep, keeping up with the cutting-edge technologies and getting the
established ones right along the way (see the sidebar “The Browser Wars”).
In that perfect world, browsers that couldn’t keep up (I’m looking at you,
IE8) would just vanish completely. Sadly, that is not the world we live in, and
browser inadequacies remain the thorn in every developer’s side.

I’ll be the first to admit that I enjoy a good wheel reinvention. It’s a great
way to learn, for one thing. For another, it’s the reason our cars aren’t rolling
around on roundish rocks and sections of tree trunk. But when it comes to
dealing with every strange browser quirk out there, we don’t have to start
from scratch. Tons of people smarter than I am have run into these issues
before, and have already found clever ways to work around them and fix the
parts of JavaScript and the DOM where some browsers may fall short. We
can use JavaScript to fix JavaScript.

Polyfill is a term coined by Remy Sharp to describe a JavaScript “shim”
that normalizes differing behavior from browser to browser (remysharp.
com/2010/10/08/what-is-a-polyfill). Or, as Paul Irish put it, a polyfill is

A shim that mimics a future API providing fallback functionality to older
browsers.

There’s a lot of time travel going on in that quote, but basically what he’s say-
ing is that we’re making something new work in browsers that don’t natively
support it—whether that’s brand-new technology like detecting a user’s
physical location or fixing something that one of the browsers just plain got
wrong.

There are tons of polyfills out there targeted to specific tasks, such as making
old browsers recognize new HTML5 elements or CSS3 selectors, and new
ones are popping up all the time as new problems arise. I’m going to fill you
in on the most commonly used polyfills in the modern developer’s toolbox as

The Browser Wars
JavaScript came about during a
dark and lawless time, before the
web standards movement, when
all the major players in the browser
world were—for want of a better
term—winging it. It likely won’t come
as a major surprise to anyone that
Netscape and Microsoft implemented
radically different versions of the
DOM, with the prevailing sentiment
being “may the best browser win.”

I’ll spare you the gory details of the
Battle for JavaScript Hill, but the two
competing implementations were so
different that they were both largely
useless, unless you wanted to either
maintain two separate code bases
or add a “best viewed in Internet
Explorer/Netscape” warning label to
your sites.

Enter the web standards movement!
During this cutthroat time, the W3C
was putting together the foundations
for the modern-day standardized
DOM that we’ve all come to know
and love. Fortunately for us, Netscape
and Microsoft got on board with
the standards movement. The
standardized DOM is supported all
the way back to Internet Explorer
5 and Netscape Navigator 6.
Unfortunately, Internet Explorer’s
advancements in this area stagnated
for quite some time following IE6. As
a result, older versions of IE have a
few significant differences from the
modern-day DOM. Fortunately with
Internet Explorer 9 and later, they’re
catching right back up.

The trouble is, your project likely still
needs to support those users with
older versions of IE. It’s a pain, but
we’re up for it. We have an amazing
set of tools at our disposal, such as
polyfills and JavaScript libraries full
of helper functions, that normalize
the strange little quirks we’re apt to
encounter from browser to browser.

Part IV. JavaScript for Behavior

Polyfills

630

of the release of this book. You may find that new ones are necessary by the
time you hit the web design trenches. You may also find that some of these
techniques aren’t needed for the browsers you need to support.

HTML5 shim (or shiv)
You may remember seeing this one back in Chapter 5, Marking Up Text, but
let’s give it a little more attention now that you have some JavaScript under
your belt.

An HTML5 shim/shiv is used to enable Internet Explorer 8 and earlier to rec-
ognize and style newer HTML5 elements such as article, section, and nav.

There are several variations on the HTML5 shim/shiv, but they all work in
much the same way: crawl the DOM looking for elements that IE doesn’t
recognize, and then immediately replace them with the same element so they
are visible to IE in the DOM. Now any styles we write against those elements
work as expected. Sjoerd Visscher originally discovered this technique, and
many, many variations of these scripts exist now. Remy Sharp’s version is the
one in widest use today.

The shim must be referenced in the head of the document, in order to “tell”
Internet Explorer about these new elements before it finishes rendering the
page. The script is referenced inside an IE-specific conditional comment and
runs only if the browser is less than (lt) IE9—in other words, versions 8 and
earlier:

<!--[if lt IE 9]>
 <script src="html5shim.js"></script>
<![endif]-->

The major caveat here is that older versions of Internet Explorer that have
JavaScript disabled or unavailable will receive unstyled elements. To learn
more about HTML5 shim/shiv, try these resources:

•	 The Wikipedia entry for HTML Shiv (en.wikipedia.org/wiki/HTML5_Shiv)

•	 Remy Sharp’s original post
(remysharp.com/2009/01/07/html5-enabling-script)

Selectivizr
Selectivizr (created by Keith Clark) allows Internet Explorer 6–8 to under-
stand complex CSS3 selectors such as :nth-child and ::first-letter. It uses
JavaScript to fetch and parse the contents of your style sheet and patch holes
where the browser’s native CSS parser falls short.

Selectivizr must be used with a JavaScript library (I talk about them in the
next section). The link to the script goes in an IE conditional comment after
the link to the library .js file, like so:

NOTE

If you don’t need to support IE8 and ear-
lier, you don’t need an HTML5 shim.

NOTE

If you don’t need to support IE8 and ear-
lier, you don’t need Selectivizr.

22. Using JavaScript

Polyfills

631

<script type="text/javascript" src="[JS library]"></script>
<!--[if (gte IE 6)&(lte IE 8)]>
 <script type="text/javascript" src="selectivizr.js"></script>
 <noscript><link rel="stylesheet" href="[fallback css]" /></noscript>
<![endif]-->

Because we’re forgoing the native CSS parser here, we may see a slight perfor-
mance hit in applicable browsers. See the Selectivizr site (selectivizr.com) for
more information.

Picturefill (A Responsive Image Polyfill)
Picturefill enables support for the picture element, srcset and sizes attri-
butes, and features related to delivering images based on viewport size and
resolution (also known as responsive images, as discussed in Chapter 7,
Adding Images). It was created by Scott Jehl of Filament Group and is main-
tained by the Picturefill group.

To use Picturefill, download the script and add it to the head of the document.
The first script creates a picture element for browsers that don’t recognize it.
The second script calls the Picturefill script itself and the async attribute tells
the browser it can load Picturefill asynchronously—that is, without waiting
for the script to finish before loading the rest of the document.

<head>
 <script>
 // Picture element HTML5 shiv
 document.createElement("picture");
 </script>
 <script src="picturefill.js" async></script>
</head>

On the downside, browsers without JavaScript that also do not support the
picture element will see only alt-text for the image. Download Picturefill and
get information about its use at scottjehl.github.io/picturefill/.

JAVASCRIPT LIBRARIES

Continuing on the “you don’t have to write everything from scratch yourself”
theme, it’s time to take on JavaScript libraries. A JavaScript library is a collec-
tion of prewritten functions and methods that you can use in your scripts to
accomplish common tasks or simplify complex ones.

There are many JS libraries out there. Some are large frameworks that include
all of the most common polyfills, shortcuts, and widgets you’d ever need to
build full-blown Ajax web applications (see the sidebar “What Is Ajax?”). Some
are targeted at specific tasks, such as handling forms, animation, charts, or
math functions. For seasoned JavaScript-writing pros, starting with a library
is an awesome time-saver. And for folks like you who are just getting started,
a library can handle tasks that might be beyond the reach of your own skills.

Part IV. JavaScript for Behavior

JavaScript Libraries

632

What Is Ajax?
Ajax (sometimes written AJAX) stands for Asynchronous
JavaScript And XML. The “XML” part isn’t that important—you
don’t have to use XML to use Ajax (more on that in a moment).
The “asynchronous” part is what matters.

Traditionally, when a user interacted with a web page in a way
that required data to be delivered from the server, everything
had to stop and wait for the data, and the whole page needed
to reload when it was available. This made for a not especially
smooth user experience.

But with Ajax, because the page can get data from the server
in the background, you can make updates to the page based
on user interaction smoothly and in real time without the page
needing to be reloaded. This makes web applications feel more
like “real” applications.

You see this on a number of modern websites, although
sometimes it’s subtle. On Twitter, for example, scrolling to the
bottom of a page loads in a set of new tweets. Those aren’t

hardcoded in the page’s markup; they’re loaded dynamically as
needed. Google’s image search uses a similar approach. When
you reach the bottom of the current page, you’re presented with
a button that allows you to load more‚ but you never navigate
away from the current page.

The term “Ajax” was first coined by Jesse James Garrett in an
article “Ajax: A New Approach to Web Applications.” Ajax is not a
single technology, but rather a combination of HTML, CSS, the
DOM, and JavaScript, including the XMLHttpRequest object,
which allows data to be transferred asynchronously. Ajax may
use XML for data, but it has become more common to use JSON
(JavaScript Object Notation), a JavaScript-based and human-
readable format, for data exchange.

Writing web applications with Ajax isn’t the type of thing you
would do right out of the gate, but many of the JavaScript
libraries discussed in this chapter have built-in Ajax helpers and
methods that let you get started with significantly less effort.

The disadvantage of libraries is that because they generally contain all of
their functionality in one big .js file, you may end up forcing your users to
download a lot of code that never gets used. But the library authors are aware
of this and have made many of their libraries modular, and they continue to
make efforts to optimize their code. In some cases, it’s also possible to cus-
tomize the script and use just the parts you need.

jQuery and Other Libraries
As of this writing, the overwhelmingly dominant JavaScript library is jQuery
(jquery.com). Chances are, if you use a library, it will be that one (or at least
that one first). Written in 2005 by John Resig, jQuery has found its way into
over two-thirds of all websites. Furthermore, if a site uses a library at all, there
is a 97% chance that it’s jQuery.

It is free, it’s open source, and it employs a syntax that makes it easy to use if
you are already handy with CSS, JavaScript, and the DOM. You can supple-
ment jQuery with the jQuery UI library, which adds cool interface elements
such as calendar widgets, drag-and-drop functionality, expanding accordion
lists, and simple animation effects. jQuery Mobile is another jQuery-based
library that provides UI elements and polyfills designed to account for the
variety of mobile browsers and their notorious quirks.

Of course, jQuery isn’t the only library in town. Others include MooTools
(mootools.net), Dojo (dojotoolkit.org), and Prototype (prototypejs.org). As for
smaller JS libraries that handle specialized functions, because they are being
created and made obsolete all the time, I recommend doing a web search for

22. Using JavaScript

JavaScript Libraries

633

http://dojotoolkit.org/

“JavaScript libraries for _____________” and see what is available. Some
library categories include the following:

•	 Forms

•	 Animation

•	 Image carousels

•	 Games

•	 Information graphics

•	 Image and 3-D effects for the canvas element

•	 String and math functions

•	 Database handling

•	 Touch gestures

How to Use jQuery
It’s easy to implement any of the libraries I just listed. All you do is download
the JavaScript (.js) file, put it on your server, point to it in your script tag,
and you’re good to go. It’s the .js file that does all the heavy lifting, providing
prewritten functions and syntax shortcuts. Once you’ve included it, you can
write your own scripts that leverage the features built into the framework.
Of course, what you actually do with it is the interesting part (and largely
beyond the scope of this chapter, unfortunately).

As a member of the jQuery Mobile team, I have a pretty obvious bias here,
so we’re going to stick with jQuery in the upcoming examples. Not only is it
the most popular library anyway, but they said they’d give me a dollar every
time I say “jQuery.”

Download the jQuery .js file
To get started with jQuery (cha-ching), go to jQuery.com and hit the big
Download button to get your own copy of jquery.js. You have a choice
between a production version that has all the extra whitespace removed for
a smaller file size, or a development version that is easier to read but nearly
eight times larger in file size. The production version should be just fine if
you are not going to edit it yourself.

Copy the code, paste it into a new plain-text document, and save it with the
same filename that you see in the address bar in the browser window. As of
this writing, the latest version of jQuery is 3.2.1, and the filename of the pro-
duction version is jquery-3.2.1.min.js (the min stands for “minimized”). Put
the file in the directory with the other files for your site. Some developers keep
their scripts in a js directory for the sake of organization, or they may simply

Part IV. JavaScript for Behavior

JavaScript Libraries

634

keep them in the root directory for the site. Wherever you decide put it, be
sure to note the pathname to the file because you’ll need it in the markup.

Add it to your document
Include the jQuery script the same way you’d include any other script in the
document, with a script element:

<script src="pathtoyourjs/jquery-3.2.1.min.js"></script>

And that’s pretty much it. There is an alternative worth mentioning, however.
If you don’t want to host the file yourself, you can point to one of the publicly
hosted versions and use it that way. One advantage to this method is that it
gets cached by the browser, so there’s a chance some of your users’ browsers
already have a copy of it. The jQuery Download page lists a few options,
including the following link to the code on Google’s server. Simply copy this
code exactly as you see it here, paste it into the head of the document or before
the </body> tag, and you’ve got yourself some jQuery!

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/ →
jquery.min.js"></script>

Get “ready”
You don’t want to go firing scripts before the document and the DOM are
ready for them, do you? Well, jQuery has a statement known as the ready
event that checks the document and waits until it’s ready to be manipulated.
Not all scripts require this (for example, if you were only firing a browser
alert), but if you are doing anything with the DOM, it is a good idea to start
by setting the stage for your scripts by including this function in your custom
script or .js file:

<script src="pathtoyourjs/jquery-3.2.1.min.js"></script>

<script>
$(document).ready(function(){

 // Your code here

});
</script>

Scripting with jQuery
Once you’re set up, you can begin writing your own scripts using jQuery. The
shortcuts jQuery offers break down into two general categories:

•	 A giant set of built-in feature detection scripts and polyfills

•	 A shorter, more intuitive syntax for targeting elements
(jQuery’s selector engine)

22. Using JavaScript

JavaScript Libraries

635

You should have a decent sense of what the polyfills do after making your
way through that last section, so let’s take a look at what the selector engine
does for you.

One of the things that jQuery simplifies is moving around through the DOM
because you can use the selector syntax that you learned for CSS. Here is an
example of getting an element by its id value without a library:

var paragraph = document.getElementById("status");

The statement finds the element with the ID “status” and saves a reference to
the element in a variable (paragraph). That’s a lot of characters for a simple
task. You can probably imagine how things get a little verbose when you’re
accessing lots of elements on the page. Now that we have jQuery in play,
however, we can use this shorthand:

var paragraph = $("#status");

That’s right—that’s the id selector you know and love from writing CSS. And
it doesn’t just stop there. Any selector you’d use in CSS will work within that
special helper function.

You want to find everything with a class of header? Use $(".header");.

By the element’s name? Sure: $("div");.

Every subhead in your sidebar? Easy-peasy: $("#sidebar .sub");.

You can even target elements based on the value of attributes:
$("[href='http://google.com']");.

But it doesn’t stop with selectors. We can use a huge number of helper func-
tions built into jQuery and libraries like it to crawl the DOM like so many,
uh, Spider-men. Spider-persons. Web-slingers.

jQuery also allows us to chain objects together in a way that can target things
even CSS can’t (an element’s parent element, for example). Let’s say we have
a paragraph and we want to add a class to that paragraph’s parent element.
We don’t necessarily know what that parent element will be, so we’re unable
to target the parent element directly. In jQuery we can use the parent() object
to get to it:

$("p.error").parent().addClass("error-dialog");

Another major benefit is that this is highly readable at a glance: “find any
paragraph(s) with the class ‘error’ and add the class ‘error-dialog’ to their
parent(s).”

But What If I Don’t Know How to Write Scripts?
It takes time to learn JavaScript, and it may be a while before you can write
scripts on your own. But not to worry. If you do a web search for what you
need (for example, “jQuery image carousel” or “jQuery accordion list”),

Part IV. JavaScript for Behavior

JavaScript Libraries

636

there’s a very good chance you will find lots of scripts that people have cre-
ated and shared, complete with documentation on how to use them. Because
jQuery uses a selector syntax very similar to CSS, it makes it easier to custom-
ize jQuery scripts for use with your own markup.

BIG FINISH

In all of two chapters, we’ve gone from learning the very basics of variables to
manipulating the DOM to leveraging a JavaScript library. Even with all we’ve
covered here, we’ve just barely begun to cover all the things JavaScript can do.

The next time you’re looking at a website and it does something cool, view
the source in your browser and have a look around for the JavaScript. You
can learn a lot from reading and even taking apart someone else’s code. And
remember, there’s nothing you can break with JavaScript that can’t be undone
with a few strokes of the Delete key.

Better still, JavaScript comes with an entire community of passionate devel-
opers who are eager to learn and just as eager to teach. Seek out like-minded
developers and share the things you’ve learned along the way. If you’re stuck
on a tricky problem, don’t hesitate to seek out help and ask questions. It’s rare
that you’ll encounter a problem that nobody else has, and the open source
developer community is always excited to share the things they’ve learned.
That’s why you’ve had to put up with me for two chapters, as a matter of fact.

TEST YOURSELF

Just a few questions for those of you playing along at home. If you need some
help, peek in Appendix A for the answers.

1.	 Ajax is a combination of what technologies?

2.	 What does this do?

document.getElementById("main")

3.	 What does this do?

document.getElementById("main").getElementsByTagName("section");

22. Using JavaScript

Test Yourself

637

4.	 What does this do?

document.body.style.backgroundColor = "papayawhip"

5.	 What does this do? (This one is a little tricky because it nests functions,
but you should be able to piece it together.)

document
 .getElementById("main")
 .appendChild(
 document.createElement("p")
 .appendChild(
 documentCreateTextNode("Hey, I'm walking here!")
)
);

6.	 What is the benefit of using a JavaScript library such as jQuery?

a.	 Access to a packaged collection of polyfills

b.	 Possibly shorter syntax

c.	 Simplified Ajax support

d.	 All of the above

Part IV. JavaScript for Behavior

Test Yourself

638

