
II
HTML FOR STRUCTURE

IN THIS CHAPTER

An introduction to elements
and attributes

Marking up a simple web page

The elements that provide
document structure

Troubleshooting broken
web pages

Part I provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start creat-
ing a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step-by-step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

•	 Get a feel for how markup works, including an understanding of elements
and attributes.

•	 See how browsers interpret HTML documents.

•	 Learn how HTML documents are structured.

•	 Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules
at this point; we’ll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A WEB PAGE, STEP-BY-STEP

You got a look at an HTML document in Chapter 2, How the Web Works, but
now you’ll get to create one yourself and play around with it in the browser.
The demonstration in this chapter has five steps that cover the basics of page
production:

CREATING A
SIMPLE PAGE
(HTML OVERVIEW)

4
CHAPTER

49

Step 1: Start with content. As a starting point, we’ll write up raw text content
and see what browsers do with it.

Step 2: Give the document structure. You’ll learn about HTML element syn-
tax and the elements that set up areas for content and metadata.

Step 3: Identify text elements. You’ll describe the content using the appropri-
ate text elements and learn about the proper way to use HTML.

Step 4: Add an image. By adding an image to the page, you’ll learn about
attributes and empty elements.

Step 5: Change how the text looks with a style sheet. This exercise gives you
a taste of formatting content with Cascading Style Sheets.

By the time we’re finished, you’ll have written the document for the page
shown in FIGURE 4-1. It’s not very fancy, but you have to start somewhere.

FIGURE 4-1.   In this chapter, we’ll write the HTML document for this page in five steps.

We’ll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it’s helpful to see the cause and effect of each small
change to the source file along the way.

LAUNCH A TEXT EDITOR

In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain-text files with the .html exten-
sion. If you have a visual web-authoring tool such as Dreamweaver, set it
aside for now. I want you to get a feel for marking up a document manually
(see the sidebar “HTML the Hard Way”).

HTML the Hard Way
I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, and
then opening your page in a browser.
It doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use
a visual or drag-and-drop web-
authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you’re seeing. It
is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually for better control
over the code and the ability to
make deliberate decisions about
what elements to use.

Part II. HTML for Structure

Launch a Text Editor

50

This section shows how to open new documents in Notepad and TextEdit.
Even if you’ve used these programs before, skim through for some special set-
tings that will make the exercises go more smoothly. We’ll start with Notepad;
Mac users can jump ahead.

Creating a New Document in Notepad (Windows)
These are the steps to creating a new document in Notepad on Windows 10
(FIGURE 4-2):

1.	 Search for “Notepad” to access it quickly. Click on Notepad to open a new
document window, and you’re ready to start typing. 1

2.	 Next, make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Open the File Explorer, select the View tab, and then select the Options
button on the right. In the Folder Options panel, select the View tab
again. 2

3.	 Find “Hide extensions for known file types” and uncheck that option. 3

4.	 Click OK to save the preference 4, and the file extensions will now be
visible.

1 Click on Notepad to open a new
document.

4 Click OK to save the preference, and
the file extensions will now be visible.

3 Uncheck “Hide extensions for known
file types.”

2 Open the File Explorer, select the View
tab, and then select the Options
button on the right (not shown).
Select the View tab.

FIGURE 4-2.   Creating a new document in Notepad.

4. Creating a Simple Page

Launch a Text Editor

51

Creating a New Document in TextEdit
(macOS)
By default, TextEdit creates rich-text documents—that
is, documents that have hidden style-formatting instruc-
tions for making text bold, setting font size, and so on.
You can tell that TextEdit is in rich-text mode when it has
a formatting toolbar at the top of the window (plain-text
mode does not). HTML documents need to be plain-text
documents, so we’ll need to change the format, as shown
in this example (FIGURE 4-3):

1.	 Use the Finder to look in the Applications folder for
TextEdit. When you’ve found it, double-click the
name or icon to launch the application.

2.	 In the initial TextEdit dialog box, click the New
Document button in the bottom-left corner. If you
see the text formatting menu and tab ruler at the top
of the Untitled document, you are in rich-text mode
1. If you don’t, you are in plain-text mode 2. Either
way, there are some preferences you need to set.

3.	 Close that document, and open the Preferences dia-
log box from the TextEdit menu.

4.	 Change these preferences:

On the New Document tab, select Plain text 3.
Under Options, deselect all of the automatic format-
ting options 4.

On the Open and Save tab, select Display HTML files
as HTML Code 5 and deselect “Add ‘.txt’ extensions
to plain text files” 6. The rest of the defaults should
be fine.

5.	 When you are done, click the red button in the top-
left corner.

6.	 Now create a new document by selecting File → New.
The formatting menu will no longer be there, and
you can save your text as an HTML document. You
can always convert a document back to rich text by
selecting Format → Make Rich Text when you are not
using TextEdit for HTML.

Formatting menu indicates rich text. Plain text documents have no menu.1 2

3

4

5

6

FIGURE 4-3.   Launching TextEdit and choosing “Plain text” settings in the Preferences.

Part II. HTML for Structure

Launch a Text Editor

52

STEP 1: START WITH CONTENT

Now that we have our new document, it’s time to get typing. A web page is
all about content, so that’s where we begin our demonstration. EXERCISE 4-1
walks you through entering the raw text content and saving the document
in a new folder.

EXERCISE 4-1.  Entering content

7.	 Type the home page content below into the new document in your text
editor. Copy it exactly as you see it here, keeping the line breaks the
same for the sake of playing along. The raw text for this exercise is also
available online at learningwebdesign.com/5e/materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner
fare in a relaxed atmosphere. The menu changes regularly
to highlight the freshest local ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to
elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and Saturday,
11am to midnight

8.	 Select “Save” or “Save as” from the File menu to get the Save As dialog
box (FIGURE 4-4). The first thing you need to do is create a new folder
(click the New Folder button on both Windows and Mac) that will contain
all of the files for the site. The technical name for the folder that contains
everything is the local root directory.

Windows 10 MacOS 10

FIGURE 4-4.   Saving index.html in a new folder called bistro.

Name the new folder bistro, and save the text file as index.html in it. The
filename needs to end in .html to be recognized by the browser as a web
document. See the sidebar “Naming Conventions” for more tips on
naming files.

9.	 Just for kicks, let’s take a look at index.html in a browser.

Windows users: Double-click the filename in the File Explorer to launch
your default browser, or right-click the file for the option to open it in the
browser of your choice.

Mac users: Launch your favorite browser (I’m using Google Chrome) and
choose Open or Open File from the File menu. Navigate to index.html,
and then select the document to open it in the browser.

10.	You should see something like the page shown in FIGURE 4-5. We’ll
talk about the results in the following section.

FIGURE 4-5.   A first look at the content in a browser.

EXERCISE 4-1.  Entering content

1.	 Type the home page content below into the new document in your text editor. Copy it
exactly as you see it here, keeping the line breaks the same for the sake of playing along.
The raw text for this exercise is also available online at learningwebdesign.com/5e/
materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in a relaxed
atmosphere. The menu changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose Catering can handle
events from snacks for a meetup to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and Saturday, 11am to
midnight

2.	 Select “Save” or “Save as” from the File menu to get the Save As dialog box (FIGURE 4-4).
The first thing you need to do is create a new folder (click the New Folder button on both
Windows and Mac) that will contain all of the files for the site. The technical name for the
folder that contains everything is the local root directory.

Windows 10 MacOS 10

FIGURE 4-4.   Saving index.html in a new folder called bistro.

→

4. Creating a Simple Page

Step 1: Start with Content

53

FIGURE 4-5.   A first look at the content in a browser.

Name the new folder bistro, and save the text file as index.html in it. The filename needs
to end in .html to be recognized by the browser as a web document. See the sidebar
“Naming Conventions” for more tips on naming files.

3.	 Just for kicks, let’s take a look at index.html in a browser.

Windows users: Double-click the filename in the File Explorer to launch your default
browser, or right-click the file for the option to open it in the browser of your choice.

Mac users: Launch your favorite browser (I’m using Google Chrome) and choose Open or
Open File from the File menu. Navigate to index.html, and then select the document to
open it in the browser.

4.	 You should see something like the page shown in FIGURE 4-5. We’ll talk about the
results in the following section.

Naming Conventions
It is important that you follow these rules and conventions when
naming your files:

Use proper suffixes for your files. HTML files must end with
.html or .htm. Web graphics must be labeled according to
their file format: .gif, .png, .jpg (.jpeg is also acceptable,
although less common), or .svg.

Never use character spaces within filenames. It is common
to use an underline character or hyphen to visually separate
words within filenames, such as robbins_bio.html or robbins-
bio.html.

Avoid special characters such as ?, %, #, /, :, ;, •, etc. Limit
filenames to letters, numbers, underscores, hyphens, and
periods. It is also best to avoid international characters, such
as the Swedish å.

Filenames may be case-sensitive, depending on your server
configuration. Consistently using all lowercase letters in
filenames, although not required, is one way to make your
filenames easier to manage.

Keep filenames short. Long names are more likely to be
misspelled, and short names shave a few extra bytes off the
file size. If you really must give the file a long, multiword
name, you can separate words with hyphens, such as
a-long-document-title.html, to improve readability.

Self-imposed conventions.  It is helpful to develop a
consistent naming scheme for huge sites—for instance,
always using lowercase with hyphens between words. This
takes some of the guesswork out of remembering what
you named a file when you go to link to it later.

Part II. HTML for Structure

Step 1: Start with Content

54

Learning from Step 1
Our page isn’t looking so good (FIGURE 4-5). The text is all run together into
one block—that’s not how it looked when we typed it into the original docu-
ment. There are a couple of lessons to be learned here. The first thing that is
apparent is that the browser ignores line breaks in the source document. The
sidebar “What Browsers Ignore” lists other types of information in the source
document that are not displayed in the browser window.

Second, we see that simply typing in some content and naming the document
.html is not enough. While the browser can display the text from the file, we
haven’t indicated the structure of the content. That’s where HTML comes in.
We’ll use markup to add structure: first to the HTML document itself (com-
ing up in Step 2), then to the page’s content (Step 3). Once the browser knows
the structure of the content, it can display the page in a more meaningful way.

STEP 2: GIVE THE HTML DOCUMENT
STRUCTURE

We have our content saved in an HTML document—now we’re ready to start
marking it up.

The Anatomy of an HTML Element
Back in Chapter 2 you saw examples of elements with an opening tag (<p> for
a paragraph, for example) and a closing tag (</p>). Before we start adding tags
to our document, let’s look at the anatomy of an HTML element (its syntax)
and firm up some important terminology. A generic container element is
labeled in FIGURE 4-6.

What Browsers Ignore
The following information in the
source document will be ignored
when it is viewed in a browser:

Multiple-character (white) spaces
When a browser encounters
more than one consecutive blank
character space, it displays a single
space. So if the document contains

long, long ago

the browser displays:

long, long ago

Line breaks (carriage returns).
Browsers convert carriage returns
to white spaces, so following the
earlier “ignore multiple white
spaces” rule, line breaks have no
effect on formatting the page.

Tabs
Tabs are also converted to
character spaces, so guess what?
They’re useless for indenting
text on the web page (although
they may make your code more
readable).

Unrecognized markup
Browsers are instructed to ignore
any tag they don’t understand
or that was specified incorrectly.
Depending on the element and
the browser, this can have varied
results. The browser may display
nothing at all, or it may display the
contents of the tag as though it
were normal text.

Text in comments
Browsers do not display text
between the special <!-- and -->
tags used to denote a comment.
See the upcoming “Adding
Hidden Comments” sidebar.

Opening tag

Element

<elementname> Content here </elementname>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

<h1> Black Goose Bistro </h1>Example:

FIGURE 4-6.   The parts of an HTML container element.

4. Creating a Simple Page

Step 2: Give the HTML Document Structure

55

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is hid-
den and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use the
similar backslash character in end tags (see the tip “Slash Versus Backslash”).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We’ll
talk about empty elements a little later in this chapter.

One last thing: capitalization. In HTML, the capitalization of element names
is not important (it is not case-sensitive). So , , and are all
the same as far as the browser is concerned. However, most developers prefer
the consistency of writing element names in all lowercase (see Note), as I will
be doing throughout this book.

Basic Document Structure
FIGURE 4-8 shows the recommended minimal skeleton of an HTML docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to explic-
itly organize documents into metadata (head) and content (body) areas. Let’s
take a look at what’s going on in this minimal markup example.

<!DOCTYPE html>

<html>

 <head>
 <meta charset="utf-8">
 <title>Title here</title>
 </head>

 <body>
 Page content goes here.
 </body>

</html>

1

2

3
4

5

6

FIGURE 4-8.   The minimal structure of an HTML document includes head and body
contained within the html root element.

NOTE

There is a stricter version of HTML called
XHTML that requires all element and
attribute names to appear in lowercase.
HTML5 has made XHTML all but obsolete
except for certain use cases when it is
combined with other XML languages, but
the preference for all lowercase element
names has persisted.

M AR KU P T I P

Slash Versus Backslash
HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the English QWERTY keyboard (key
placement on keyboards in other
countries may vary).

It is easy to confuse the slash with
the backslash character (\), which
is found under the bar character (|);
see FIGURE 4-7. The backslash key
will not work in tags or URLs, so be
careful not to use it.

FIGURE 4-7.   Slash versus
backslash keys.

Part II. HTML for Structure

Step 2: Give the HTML Document Structure

56

1.	I don’t want to confuse things, but the first line in the example isn’t an
element at all. It is a document type declaration (also called DOCTYPE
declaration) that lets modern browsers know which HTML specification
to use to interpret the document. This DOCTYPE identifies the docu-
ment as written in HTML5.

2.	The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element.

3.	Within the html element, the document is divided into a head and a
body. The head element contains elements that pertain to the document
that are not rendered as part of the content, such as its title, style sheets,
scripts, and metadata.

4.	meta elements provide document metadata, information about the docu-
ment. In this case, it specifies the character encoding (a standardized
collection of letters, numbers, and symbols) used in the document as
Unicode version UTF-8 (see the sidebar “Introducing Unicode”). I don’t
want to go into too much detail on this right now, but know that there
are many good reasons for specifying the charset in every document, so I
have included it as part of the minimal document markup. Other types of
metadata provided by the meta element are the author, keywords, publish-
ing status, and a description that can be used by search engines.

5.	Also in the head is the mandatory title element. According to the HTML
specification, every document must contain a descriptive title.

6.	Finally, the body element contains everything that we want to show up in
the browser window.

Are you ready to start marking up the Black Goose Bistro home page? Open
the index.html document in your text editor and move on to EXERCISE 4-2.

Introducing Unicode
All the characters that make up languages are stored in
computers as numbers. A standardized collection of characters
with their reference numbers (code points) is called a coded
character set, and the way in which those characters are
converted to bytes for use by computers is the character
encoding. In the early days of computing, computers used
limited character sets such as ASCII that contained 128
characters (letters from Latin languages, numbers, and common
symbols). The early web used the Latin-1 (ISO 8859-1) character
encoding that included 256 Latin characters from most Western
languages. But given the web was “worldwide,” it was clearly not
sufficient.

Enter Unicode. Unicode (also called the Universal Character
Set) is a super-character set that contains over 136,000

characters (letters, numbers, symbols, ideograms, logograms,
etc.) from all active modern languages. You can read all about it
at unicode.org. Unicode has three standard encodings—UTF-8,
UTF-16, and UTF-32—that differ in the number of bytes used to
represent the characters (1, 2, or 3, respectively).

HTML5 uses the UTF-8 encoding by default, which allows wide-
ranging languages to be mixed within a single document. It
is always a good idea to declare the character encoding for a
document with the meta element, as shown in the previous
example. Your server also needs to be configured to identify
HTML documents as UTF-8 in the HTTP header (information
about the document that the server sends to the user agent).
You can ask your server administrator to confirm the encoding
of the HTML documents.

4. Creating a Simple Page

Step 2: Give the HTML Document Structure

57

FIGURE 4-9.   The page in a browser after the document structure elements have
been defined.

EXERCISE 4-2. Adding minimal structure

1.	 Open the new index.html document if it isn’t open already and
add the DOCTYPE declaration:

<!DOCTYPE html>

2.	 Put the entire document in an HTML root element by adding an
<html> start tag after the DOCTYPE and an </html> end tag at
the very end of the text.

3.	 Next, create the document head that contains the title for the
page. Insert <head> and </head> tags before the content.
Within the head element, add information about the character
encoding <meta charset="utf-8">, and the title, “Black
Goose Bistro”, surrounded by opening and closing <title> tags.

4.	 Finally, define the body of the document by wrapping the text
content in <body> and </body> tags. When you are done, the
source document should look like this (the markup is shown in
color to make it stand out):

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and
dinner fare in a relaxed atmosphere. The menu
changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black
Goose Catering can handle events from snacks for a
meetup to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and
Saturday, 11am to midnight
</body>
</html>

5.	 Save the document in the bistro directory, so that it overwrites
the old version. Open the file in the browser or hit Refresh or
Reload if it is open already. FIGURE 4-9 shows how it should
look now.

Part II. HTML for Structure

Step 2: Give the HTML Document Structure

58

Not much has changed in the bistro page after setting up the document,
except that the browser now displays the title of the document in the top bar
or tab (FIGURE 4-9). If someone were to bookmark this page, that title would
be added to their Bookmarks or Favorites list as well (see the sidebar “Don’t
Forget a Good Title”). But the content still runs together because we haven’t
given the browser any indication of how it should be structured. We’ll take
care of that next.

STEP 3: IDENTIFY TEXT ELEMENTS

With a little markup experience under your belt, it should be a no-brainer to
add the markup for headings and subheads (h1 and h2), paragraphs (p), and
emphasized text (em) to our content, as we’ll do in EXERCISE 4-3. However,
before we begin, I want to take a moment to talk about what we’re doing and
not doing when marking up content with HTML.

Mark It Up Semantically
The purpose of HTML is to add meaning and structure to the content. It is
not intended to describe how the content should look (its presentation).

Your job when marking up content is to choose the HTML element that pro-
vides the most meaningful description of the content at hand. In the biz, we
call this semantic markup. For example, the most important heading at the
beginning of the document should be marked up as an h1 because it is the
most important heading on the page. Don’t worry about what it looks like…
you can easily change that with a style sheet. The important thing is that you
choose elements based on what makes the most sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another cre-
ates relationships between them. You can think of this structure as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy gives browsers cues on how to handle the content.
It is also the foundation upon which we add presentation instructions with
style sheets and behaviors with JavaScript.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.
In this book, however, I’ll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in EXERCISE 4-3.

Don’t Forget a Good Title
A title element is not only required
for every document, but it is also
quite useful. The title is what is
displayed in a user’s Bookmarks or
Favorites list and on tabs in desktop
browsers. Descriptive titles are also
a key tool for improving accessibility,
as they are the first things a person
hears when using a screen reader
(an assistive device that reads the
content of a page aloud for users with
impaired sight). Search engines rely
heavily on document titles as well.

For these reasons, it’s important to
provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want
to keep the length of your titles in
check so they are able to display in
the browser’s title area. Knowing that
users typically have a number of tabs
open or a long list of Bookmarks,
put your most uniquely identifying
information in the first 20 or so
characters.

The purpose of HTML
is to add meaning and
structure to the content.

4. Creating a Simple Page

Step 3: Identify Text Elements

59

EXERCISE 4-3. Defining text elements

1.	 Open the document index.html in your text editor, if it isn’t open already.

2.	 The first line of text, “Black Goose Bistro,” is the main heading for the page, so we’ll mark
it up as a Heading Level 1 (h1) element. Put the opening tag, <h1>, at the beginning of
the line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

3.	 Our page also has three subheads. Mark them up as Heading Level 2 (h2) elements in a
similar manner. I’ll do the first one here; you do the same for “Catering” and “Location
and Hours.”

<h2>The Restaurant</h2>

4.	 Each h2 element is followed by a brief paragraph of text, so let’s mark those up as
paragraph (p) elements in a similar manner. Here’s the first one; you do the rest:

<p>The Black Goose Bistro offers casual lunch and dinner fare in
a relaxed atmosphere. The menu changes regularly to highlight the
freshest local ingredients.</p>

5.	 Finally, in the Catering section, I want to emphasize that visitors should just leave
the cooking to us. To make text emphasized, mark it up in an emphasis element (em)
element, as shown here:

<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to elegant
corporate fundraisers.</p>

6.	 Now that we’ve marked up the document, let’s save it as we did before, and open (or
reload) the page in the browser. You should see a page that looks much like the one in
FIGURE 4-10. If it doesn’t, check your markup to be sure that you aren’t missing any
angle brackets or a slash in a closing tag.

FIGURE 4-10.   The home page after the content has been marked up with HTML
elements.

Part II. HTML for Structure

Step 3: Identify Text Elements

60

Now we’re getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in FIGURE 4-10.

Block and Inline Elements
Although it may seem like stating the obvious, it’s worth pointing out that the
heading and paragraph elements start on new lines and do not run together
as they did before. That is because by default, headings and paragraphs dis-
play as block elements. Browsers treat block elements as though they are in
little rectangular boxes, stacked up in the page. Each block element begins
on a new line, and some space is also usually added above and below the
entire element by default. In FIGURE 4-11, the edges of the block elements are
outlined in red.

FIGURE 4-11.   The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em, outlined in
blue in FIGURE 4-11). It does not start a new line, but rather stays in the flow
of the paragraph. That is because the em element is an inline element (also
called a text-level semantic element or phrasing element). Inline elements do
not start new lines; they just go with the flow.

Default Styles
The other thing that you will notice about the marked-up page in FIGURES

4-10 and 4-11 is that the browser makes an attempt to give the page some

Adding Hidden
Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<!-- -->) will not display in
the browser and will not have any
effect on the rest of the source:

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared
by a team of developers. In this
example, comments are used to
point out the section of the source
that contains the navigation:

<!-- start global nav -->

 …

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone.

4. Creating a Simple Page

Step 3: Identify Text Elements

61

visual hierarchy by making the first-level heading the biggest and boldest
thing on the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (the blockquote element
for long quotes may or may not be indented).

If you think the h1 is too big and clunky as the browser renders it, just change
it with your own style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better—for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. You should always choose elements
based on how accurately they describe the content, and don’t worry about
the browser’s default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

STEP 4: ADD AN IMAGE

What fun is a web page with no images? In EXERCISE 4-4, we’ll add an image
to the page with the img element. Images will be discussed in more detail in
Chapter 7, Adding Images, but for now, they give us an opportunity to intro-
duce two more basic markup concepts: empty elements and attributes.

Empty Elements
So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in FIGURE 4-6: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have content because they are used
to provide a simple directive. These elements are said to be empty. The image
element (img) is an example of an empty element. It tells the browser to get
an image file from the server and insert it at that spot in the flow of the text.
Other empty elements include the line break (br), thematic breaks (hr, a.k.a.
“horizontal rules”), and elements that provide information about a document
but don’t affect its displayed content, such as the meta element that we used
earlier.

FIGURE 4-12 shows the very simple syntax of an empty element (compare it
to FIGURE 4-6).

Part II. HTML for Structure

Step 4: Add an Image

62

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Example: The br element inserts a line break.

<element-name>

FIGURE 4-12.   Empty element structure.

Attributes
Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—it doesn’t indicate which image to use.
That’s where attributes come in. Attributes are instructions that clarify or
modify an element. For the img element, the src (short for “source”) attribute
is required, and specifies the location (URL) of the image file.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty ele-
ments, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces:

<element attribute1="value" attribute2="value">

FIGURE 4-13 shows an img element with its required attributes labeled.

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

FIGURE 4-13.   An img element with two attributes.

What Is That Extra Slash?
If you poke around in source
documents for existing web pages,
you may see empty elements
with extra slashes at the end, like
so: ,
, <meta />,
and <hr />. That indicates the
document was written according
to the stricter rules of XHTML. In
XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
You terminate empty elements by
adding a trailing slash before the
closing bracket. The preceding
character space is not required but
was used for backward compatibility
with browsers that did not have
XHTML parsers, so ,
,
and so on are valid.

Attributes are
instructions that clarify
or modify an element.

4. Creating a Simple Page

Step 4: Add an Image

63

Here’s what you need to know about attributes:

•	 Attributes go after the element name in the opening tag only, never in the
closing tag.

•	 There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

•	 Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values are single descriptive words. For example, the
checked attribute, which makes a form checkbox checked when the form
loads, is equivalent to checked="checked". You may hear this type of
attribute called a Boolean attribute because it describes a feature that is
either on or off.

•	 A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You’ll see examples of
all of these throughout this book.

•	 Wrapping attribute values in double quotation marks is a strong conven-
tion, but note that quotation marks are not required and may be omitted.
In addition, either single or double quotation marks are acceptable as
long as the opening and closing marks match. Note that quotation marks
in HTML files need to be straight ("), not curly (”).

•	 The attribute names and values available for each element are defined in
the HTML specifications; in other words, you can’t make up an attribute
for an element.

•	 Some attributes are required, such as the src and alt attributes in the
img element. The HTML specification also defines which attributes are
required in order for the document to be valid.

Now you should be more than ready to try your hand at adding the img ele-
ment with its attributes to the Black Goose Bistro page in EXERCISE 4-4. We’ll
throw a few line breaks in there as well.

EXERCISE 4-4. Adding an image

1.	 If you’re working along, the first thing you’ll need to do is get a copy of the image file on
your hard drive so you can see it in place when you open the file locally. The image file
is provided in the materials for this chapter (learningwebdesign.com/5e/materials).
You can also get the image file by saving it right from the sample web page online at
learningwebdesign.com/5e/materials/ch04/bistro. Right-click (or Control-click on a
Mac) the goose image and select “Save to disk” (or similar) from the pop-up menu, as
shown in FIGURE 4-14. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

2.	 Once you have the image, insert it at the beginning of the first-level heading by typing in
the img element and its attributes as shown here:

<h1>Black Goose Bistro</h1>

Part II. HTML for Structure

Step 4: Add an Image

64

Windows: Right-click
on the image to access
the pop-up menu.

Mac: Control-click on
the image to access the
pop-up menu. The
options may vary by
browser.

FIGURE 4-14.   Saving an image file from a page on the web.

FIGURE 4-15.  The Black Goose Bistro page with the logo image.

The src attribute provides the name of the image file that should be inserted, and the
alt attribute provides text that should be displayed if the image is not available. Both of
these attributes are required in every img element.

3.	 I’d like the image to appear above the title, so add a line break (br) after the img
element to start the headline text on a new line.

<h1>
Black Goose Bistro</h1>

4.	 Let’s break up the last paragraph into three lines for better clarity. Drop a
 tag at the
spots you’d like the line breaks to occur. Try to match the screenshot in FIGURE 4-15.

5.	 Now save index.html and open or refresh it in the browser window. The page should
look like the one shown in FIGURE 4-15. If it doesn’t, check to make sure that the
image file, blackgoose.png, is in the same directory as index.html. If it is, then check to
make sure that you aren’t missing any characters, such as a closing quote or bracket, in
the img element markup.

4. Creating a Simple Page

Step 4: Add an Image

65

STEP 5: CHANGE THE LOOK WITH A
STYLE SHEET

Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think I’d like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I’d like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In EXERCISE 4-5, we’ll change the appearance of the text elements and the
page background by using some simple style sheet rules. Don’t worry about
understanding them all right now. We’ll get into CSS in more detail in Part
III. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

EXERCISE 4-5.  Adding a style sheet

1.	 Open index.html if it isn’t open already. We’re going to use the
style element to apply a very simple embedded style sheet to
the page. This is just one of the ways to add a style sheet; the
others are covered in Chapter 11, Introducing Cascading
Style Sheets.

2.	 The style element is placed inside the document head. Start
by adding the style element to the document as shown here:

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

3.	 Next, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know exactly
what’s going on (although it’s fairly intuitive). You’ll learn all
about style rules in Part III.

<style>
body {
 background-color: #faf2e4;
 margin: 0 10%;
 font-family: sans-serif;
 }
h1 {
 text-align: center;
 font-family: serif;
 font-weight: normal;
 text-transform: uppercase;
 border-bottom: 1px solid #57b1dc;
 margin-top: 30px;
}

h2 {
 color: #d1633c;
 font-size: 1em;
}
</style>

4.	 Now it’s time to save the file and take a look at it in the browser.
It should look like the page in FIGURE 4-16. If it doesn’t, go
over the style sheet to make sure you didn’t miss a semicolon or
a curly bracket. Look at the way the page looks with our styles
compared to the browser’s default styles (FIGURE 4-15).

FIGURE 4-16.  The Black Goose Bistro page after CSS style
rules have been applied.

Part II. HTML for Structure

Step 5: Change the Look with a Style Sheet

66

We’re finished with the Black Goose Bistro page. Not only have you written
your first web page, complete with a style sheet, but you’ve also learned about
elements, attributes, empty elements, block and inline elements, the basic
structure of an HTML document, and the correct use of markup along the
way. Not bad for one chapter!

WHEN GOOD PAGES GO BAD

The previous demonstration went smoothly, but it’s easy for small things to
go wrong when you’re typing out HTML markup by hand. Unfortunately,
one missed character can break a whole page. I’m going to break my page on
purpose so we can see what happens.

What if I had neglected to type the slash in the closing emphasis tag ()?
With just one character out of place (FIGURE 4-17), the remainder of the
document displays in emphasized (italic) text. That’s because without that
slash, there’s nothing telling the browser to turn “off” the emphasized format-
ting, so it just keeps going (see Note).

<h2>Catering</h2>
<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to elegant
corporate fundraisers.</p>

g.

FIGURE 4-17.   When a slash is omitted, the browser doesn’t know when the element
ends, as is the case in this example.

I’ve fixed the slash, but this time, let’s see what would have happened if I had
accidentally omitted a bracket from the end of the first <h2> tag (FIGURE 4-18).

See how the headline is missing? That’s because without the closing tag
bracket, the browser assumes that all the following text—all the way up to
the next closing bracket (>) it finds—is part of the <h2> opening tag. Browsers
don’t display any text within a tag, so my heading disappeared. The browser
just ignored the foreign-looking element name and moved on to the next
element.

NOTE

Omitting the slash in the closing tag
(or even omitting the closing tag itself)
for block elements, such as headings or
paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

4. Creating a Simple Page

When Good Pages Go Bad

67

Making mistakes in your first HTML documents and fixing them is a great
way to learn. If you write your first pages perfectly, I’d recommend fiddling with
the code to see how the browser reacts to various changes. This can be extreme-
ly useful in troubleshooting pages later. I’ve listed some common problems in
the sidebar “Having Problems?” Note that these problems are not specific to
beginners. Little stuff like this goes wrong all the time, even for the pros.

VALIDATING YOUR DOCUMENTS

One way that professional web developers catch errors in their markup is to
validate their documents. What does that mean? To validate a document is
to check your markup to make sure that you have abided by all the rules of
whatever version of HTML you are using. Documents that are error-free are
said to be valid. It is strongly recommended that you validate your documents,
especially for professional sites. Valid documents are more consistent on a variety
of browsers, they display more quickly, and they are more accessible.

Right now, browsers don’t require documents to be valid (in other words,
they’ll do their best to display them, errors and all), but anytime you stray
from the standard, you introduce unpredictability in the way the page is
handled by browsers or alternative devices.

So how do you make sure your document is valid? You could check it yourself
or ask a friend, but humans make mistakes, and you aren’t expected to memo-
rize every minute rule in the specifications. Instead, use a validator, software
that checks your source against the HTML version you specify. These are
some of the things validators check for:

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a relaxed atmosphere. The menu changes regularly to highlight
the freshest local ingredients.</p>

<h2The
Missing subhead

Without the bracket, all the
following characters are

interpreted as part of the tag,
and “The Restaurant”

disappears from the page.

FIGURE 4-18.  A missing end bracket makes the browser think the following
characters are part of the tag, and therefore the headline text doesn’t display.

Having Problems?
The following are some typical
problems that crop up when you are
creating web pages and viewing them
in a browser:

I’ve changed my document, but when
I reload the page in my browser, it
looks exactly the same.

It could be you didn’t save your
document before reloading, or you
may have saved it in a different
directory.

Half my page disappeared.
This could happen if you are
missing a closing bracket (>) or a
quotation mark within a tag. This
is a common error when you’re
writing HTML by hand.

I put in a graphic by using the img
element, but all that shows up is a
broken image icon.

The broken graphic could mean
a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure that
the URL to the image file is correct.
(We’ll discuss URLs further in
Chapter 6, Adding LInks.) Make
sure that the image file is actually
in the directory you’ve specified.
If the file is there, make sure it is
in one of the formats that web
browsers can display (PNG, JPEG,
GIF, or SVG) and that it is named
with the proper suffix (.png, .jpeg
or .jpg, .gif, or .svg, respectively).

Part II. HTML for Structure

Validating Your Documents

68

•	 The inclusion of a DOCTYPE declaration. Without it the validator
doesn’t know which version of HTML to validate against:

•	 An indication of the character encoding for the document.

•	 The inclusion of required rules and attributes.

•	 Non-standard elements.

•	 Mismatched tags.

•	 Nesting errors (incorrectly putting elements inside other elements).

•	 Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting errors
in HTML documents. The best web-based validator is at html5.validator.nu.
There you can upload a file or provide a link to a page that is already online.
FIGURE 4-19 shows the report the validator generates when I upload the ver-
sion of the Bistro index.html file that doesn’t have any markup. For this docu-
ment, there are a number of missing elements that keep this document from
being valid. It also shows the problem source code and provides an explana-
tion of how the code should appear. Pretty darned handy!

Built-in browser developer tools for Safari and Chrome also have validators
so you can check your work on the fly. Some code editors have validators
built in as well.

FIGURE 4-19.  The (X)HTML5 Validator (Living Validator) for checking errors in HTML
documents (html5.validator.nu).

4. Creating a Simple Page

Validating Your Documents

69

TEST YOURSELF

Now is a good time to make sure you understand the basics of markup.
Use what you’ve learned in this chapter to answer the following questions.
Answers are in Appendix A.

1.	 What is the difference between a tag and an element?

2.	 Write out the recommended minimal markup for an HTML5 document.

3.	 Indicate whether each of these filenames is an acceptable name for a web
document by circling “Yes” or “No.” If it is not acceptable, provide the
reason:

a. Sunflower.html Yes No

b. index.doc Yes No

c. cooking home page.html Yes No

d. Song_Lyrics.html Yes No

e. games/rubix.html Yes No

f. %whatever.html Yes No

4.	 All of the following markup examples are incorrect. Describe what is
wrong with each one, and then write it correctly.

a.	

b.	 Congratulations!

c.	 linked text</a href="file.html">

d.	 <p>This is a new paragraph<\p>

5.	 How would you mark up this comment in an HTML document so that it
doesn’t display in the browser window?

 product list begins here

ELEMENT
REVIEW: HTML
DOCUMENT
SETUP

This chapter introduced the ele-
ments that establish metada-
ta and content portions of an
HTML document. The remain-
ing elements introduced in the
exercises will be treated in more
depth in the following chapters.

Element Description
body Identifies the body of the

document that holds the
content

head Identifies the head of the
document that contains
information about the
document itself

html Is the root element that
contains all the other
elements

meta Provides information
about the document

title Gives the page a title

Part II. HTML for Structure

Test Yourself

70

IN THIS CHAPTER

Choosing the best element for
your content

Paragraphs and headings

Three types of lists

Organizing content into
sections

Text-level (inline) elements

Generic elements, div and span

Special characters

Once your content is ready to go (you’ve proofread it, right?) and you’ve
added the markup to structure the document (<!DOCTYPE>, html, head, title,
meta charset, and body), you are ready to identify the elements in the content.
This chapter introduces the elements you have to choose from for marking
up text. There probably aren’t as many of them as you might think, and really
just a handful that you’ll use with regularity. That said, this chapter is a big
one and covers a lot of ground.

As we begin our tour of elements, I want to reiterate how important it is
to choose elements semantically—that is, in a way that most accurately
describes the content’s meaning. If you don’t like how it looks, change it with
a style sheet. A semantically marked-up document ensures your content is
available and accessible in the widest range of browsing environments, from
desktop computers and mobile devices to assistive screen readers. It also
allows non-human readers, such as search engine indexing programs, to cor-
rectly parse your content and make decisions about the relative importance
of elements on the page.

With these principles in mind, it is time to meet the HTML text elements,
starting with the most basic element of them all, the humble paragraph.

PARAGRAPHS
<p>…</p>
Paragraph element

Paragraphs are the most rudimentary elements of a text document. Indicate
a paragraph with the p element by inserting an opening <p> tag at the begin-
ning of the paragraph and a closing </p> tag after it, as shown in this example:

<p>Serif typefaces have small slabs at the ends of letter strokes. In
general, serif fonts can make large amounts of text easier to
read.</p>

MARKING UP TEXT 5
CHAPTER

NOTE

I will be teaching markup according to
the HTML5 standard maintained by the
W3C (www.w3.org/TR/html5/). As of this
writing, the latest version is the HTML
5.2 Proposed Recommendation (www.
w3.org/TR/html52/).

71

http://www.w3.org/TR/html5/

<p>Sans-serif fonts do not have serif slabs; their strokes are square
on the end. Helvetica and Arial are examples of sans-serif fonts.
In general, sans-serif fonts appear sleeker and more modern.</p>

Visual browsers nearly always display paragraphs on new lines with a bit of
space between them by default (to use a term from CSS, they are displayed
as a block). Paragraphs may contain text, images, and other inline elements
(called phrasing content), but they may not contain headings, lists, sectioning
elements, or any elements that typically display as blocks by default.

Technically, it is OK to omit the closing </p> tag because it is not required in
order for the document to be valid. A browser just assumes it is closed when
it encounters the next block element. Many web developers, including myself,
prefer to close paragraphs and all elements for the sake of consistency and
clarity. I recommend folks who are just learning markup do the same.

HEADINGS

In the last chapter, we used the h1 and h2 elements to indicate headings for
the Black Goose Bistro page. There are actually six levels of headings, from
h1 to h6. When you add headings to content, the browser uses them to cre-
ate a document outline for the page. Assistive reading devices such as screen
readers use the document outline to help users quickly scan and navigate
through a page. In addition, search engines look at heading levels as part of
their algorithms (information in higher heading levels may be given more
weight). For these reasons, it is a best practice to start with the Level 1 head-
ing (h1) and work down in numerical order, creating a logical document
structure and outline.

This example shows the markup for four heading levels. Additional heading
levels would be marked up in a similar manner.

<h1>Type Design</h1>

<h2>Serif Typefaces</h2>
<p>Serif typefaces have small slabs at the ends of letter strokes.
In general, serif fonts can make large amounts of text easier to
read.</p>

<h3>Baskerville</h3>

<h4>Description</h4>
<p>Description of the Baskerville typeface.</p>

<h4>History</h4>
<p>The history of the Baskerville typeface.</p>

<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

<h2>Sans-serif Typefaces</h2>
<p>Sans-serif typefaces do not have slabs at the ends of strokes.</p>

<h1>…</h1>
<h2>…</h2>
<h3>…</h3>
<h4>…</h4>
<h5>…</h5>
<h6>…</h6>

Heading elements

No Naked Text!
You must assign an element to all
the text in a document. In other
words, all text must be enclosed in
some sort of element. Text that is not
contained within tags is called naked
or anonymous text, and it will cause a
document to be invalid.

Part II. HTML for Structure

Headings

72

The markup in this example would create the following document outline:

1. Type Design

	 1.	 Serif Typefaces
		 + text paragraph

		 1.	 Baskerville

			 1.	 Description
				 + text paragraph

			 2.	 History
				 + text paragraph

		 2.	 Georgia
			 + text paragraph	

	 2.	 Sans-serif Typefaces
		 + text paragraph

By default, the headings in our example display in bold text, starting in very
large type for h1s, with each consecutive level in smaller text, as shown in
FIGURE 5-1. You can use a style sheet to change their appearance.

h1

h2

h3

h4

h4

h3

h2

FIGURE 5-1.   The default rendering of four heading levels.

5. Marking Up Text

Headings

73

THEMATIC BREAKS (HORIZONTAL RULE)

If you want to indicate that one topic has completed and another one is
beginning, you can insert what the spec calls a “paragraph-level thematic
break” with the hr element. The hr element adds a logical divider between
sections of a page or paragraphs without introducing a new heading level.

In older HTML versions, hr was defined as a “horizontal rule” because it
inserts a horizontal line on the page. Browsers still render hr as a 3-D shaded
rule and put it on a line by itself with some space above and below by default;
but in the HTML5 spec, it has a new semantic name and definition. If a deco-
rative line is all you’re after, it is better to create a rule by specifying a colored
border before or after an element with CSS.

hr is an empty element—you just drop it into place where you want the the-
matic break to occur, as shown in this example and FIGURE 5-2:

<h3>Times</h3>
<p>Description and history of the Times typeface.</p>
<hr>
<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

FIGURE 5-2.  The default rendering of a thematic break (horizontal rule).

LISTS

Humans are natural list makers, and HTML provides elements for marking
up three types of lists:

Unordered lists

Collections of items that appear in no particular order

Ordered lists

Lists in which the sequence of the items is important

Description lists

Lists that consist of name and value pairs, including but not limited to
terms and definitions

<hr>
A horizontal rule

Part II. HTML for Structure

Thematic Breaks (Horizontal Rule)

74

All list elements—the lists themselves and the items that go in them—are
displayed as block elements by default, which means that they start on a new
line and have some space above and below, but that may be altered with CSS.
In this section, we’ll look at each list type in detail.

Unordered Lists
Just about any list of examples, names, components, thoughts, or options
qualifies as an unordered list. In fact, most lists fall into this category. By
default, unordered lists display with a bullet before each list item, but you
can change that with a style sheet, as you’ll see in a moment.

To identify an unordered list, mark it up as a ul element. The opening
tag goes before the first list item, and the closing tag goes after the last
item. Then, to mark up each item in the list as a list item (li), enclose it in
opening and closing li tags, as shown in this example. Notice that there are
no bullets in the source document. The browser adds them automatically
(FIGURE 5-3).

The only thing that is permitted within an unordered list (that is, between the
start and end ul tags) is one or more list items. You can’t put other elements
in there, and there may not be any untagged text. However, you can put any
type of content element within a list item (li):

 Serif
 Sans-serif
 Script
 Display
 Dingbats

FIGURE 5-3.   The default rendering of the sample unordered list. The browser adds
the bullets automatically.

But here’s the cool part. We can take that same unordered list markup and
radically change its appearance by applying different style sheets, as shown in
FIGURE 5-4. In the figure, I’ve turned off the bullets, added bullets of my own,
made the items line up horizontally, and even made them look like graphical
buttons. The markup stays exactly the same.

…
Unordered list

…
List item within an unordered list

5. Marking Up Text

Lists

75

FIGURE 5-4.  With style sheets, you can give the same unordered list many looks.

Ordered Lists
Ordered lists are for items that occur in a particular order, such as step-by-
step instructions or driving directions. They work just like the unordered
lists described earlier, but they are defined with the ol element (for “ordered
list,” of course). Instead of bullets, the browser automatically inserts numbers
before ordered list items (see Note), so you don’t need to number them in the
source document. This makes it easy to rearrange list items without renum-
bering them.

Ordered list elements must contain one or more list item elements, as shown
in this example and in FIGURE 5-5:

 Gutenberg develops moveable type (1450s)
 Linotype is introduced (1890s)
 Photocomposition catches on (1950s)
 Type goes digital (1980s)

FIGURE 5-5.   The default rendering of an ordered list. The browser adds the numbers
automatically.

…
Ordered list

…
List item within an ordered list

NOTE

If something is logically an ordered list,
but you don’t want numbers to display,
remember that you can always remove
the numbering with style sheets. So go
ahead and mark up the list semantically
as an ol and adjust how it displays with
a style rule.

Part II. HTML for Structure

Lists

76

If you want a numbered list to start at a number other than 1, you can use
the start attribute in the ol element to specify another starting number, as
shown here:

<ol start="17">
 Highlight the text with the text tool.
 Select the Character tab.
 Choose a typeface from the pop-up menu.

The resulting list items would be numbered 17, 18, and 19, consecutively.

Description Lists

<dl>…</dl>
A description list

<dt>…</dt>
A name, such as a term or label

<dd>…</dd>
A value, such as a description or definition

Description lists are used for any type of name/value pairs, such as terms and
their definitions, questions and answers, or other types of terms and their
associated information. Their structure is a bit different from the other two
lists that we just discussed. The whole description list is marked up as a dl
element. The content of a dl is some number of dt elements indicating the
names, and dd elements for their respective values. I find it helpful to think of
them as “terms” (to remember the “t” in dt) and “definitions” (for the “d” in
dd), even though that is only one use of description lists.

Here is an example of a list that associates forms of typesetting with their
descriptions (FIGURE 5-6):

<dl>
 <dt>Linotype</dt>
 <dd>Line-casting allowed type to be selected, used, then recirculated
into the machine automatically. This advance increased the speed of
typesetting and printing dramatically.</dd>

 <dt>Photocomposition</dt>
 <dd>Typefaces are stored on film then projected onto photo-sensitive
paper. Lenses adjust the size of the type.</dd>

 <dt>Digital type</dt>
 <dd><p>Digital typefaces store the outline of the font shape in a
format such as Postscript. The outline may be scaled to any size for
output.</p>
	 <p>Postscript emerged as a standard due to its support of
graphics and its early support on the Macintosh computer and Apple
laser printer.</p>
 </dd>
</dl>

Nesting Lists
Any list can be nested within another
list; it just has to be placed within
a list item. This example shows the
structure of an unordered list nested
in the second item of an ordered list:

When you nest an unordered list
within another unordered list, the
browser automatically changes the
bullet style for the second-level list.
Unfortunately, the numbering style
is not changed by default when you
nest ordered lists. You need to set
the numbering styles yourself with
CSS rules.

Changing Bullets and
Numbering
You can use the list-style-type
style sheet property to change the
bullets and numbers for lists. For
example, for unordered lists, you can
change the shape from the default
dot to a square or an open circle,
substitute your own image, or remove
the bullet altogether. For ordered
lists, you can change the numbers
to Roman numerals (I, II, III, or i, ii,
iii), letters (A, B, C, or a, b, c), and
several other numbering schemes.
In fact, as long as the list is marked
up semantically, it doesn’t need to
display with bullets or numbering
at all. Changing the style of lists
with CSS is covered in Chapter 12,
Formatting Text.

5. Marking Up Text

Lists

77

FIGURE 5-6.   The default rendering of a definition list. Definitions are set off from the
terms by an indent.

The dl element is allowed to contain only dt and dd elements. You cannot
put headings or content-grouping elements (like paragraphs) in names (dt),
but the value (dd) can contain any type of flow content. For example, the last
dd element in the previous example contains two paragraph elements (the
awkward default spacing could be cleaned up with a style sheet).

It is permitted to have multiple definitions with one term and vice versa. Here,
each term-description group has one term and multiple definitions:

<dl>
 <dt>Serif examples</dt>
 <dd>Baskerville</dd>
 <dd>Goudy</dd>

 <dt>Sans-serif examples</dt>
 <dd>Helvetica</dd>
 <dd>Futura</dd>
 <dd>Avenir</dd>
</dl>

MORE CONTENT ELEMENTS

We’ve covered paragraphs, headings, and lists, but there are a few more
special text elements to add to your HTML toolbox that don’t fit into a neat
category: long quotations (blockquote), preformatted text (pre), and figures
(figure and figcaption). One thing these elements do have in common is
that they are considered “grouping content” in the HTML5 spec (along with
p, hr, the list elements, main, and the generic div, covered later in this chapter).
The other thing they share is that browsers typically display them as block
elements by default. The one exception is the newer main element, which is
not recognized by any version of Internet Explorer (although it is supported
in the Edge browser); see the sidebar “HTML5 Support in Internet Explorer,”
later in this chapter, for a workaround.

Part II. HTML for Structure

More Content Elements

78

Long Quotations
If you have a long quotation, a testimonial, or a section of copy from another
source, mark it up as a blockquote element. It is recommended that content
within blockquote elements be contained in other elements, such as para-
graphs, headings, or lists, as shown in this example:

<p>Renowned type designer, Matthew Carter, has this to say about his
profession:</p>

<blockquote>
 <p>Our alphabet hasn't changed in eons; there isn't much latitude in
what a designer can do with the individual letters.</p>

 <p>Much like a piece of classical music, the score is written
down. It's not something that is tampered with, and yet, each
conductor interprets that score differently. There is tension in
the interpretation.</p>
</blockquote>

FIGURE 5-7 shows the default rendering of the blockquote example. This can
be altered with CSS.

FIGURE 5-7.   The default rendering of a blockquote element.

Preformatted Text
In the previous chapter, you learned that browsers ignore whitespace such as
line returns and character spaces in the source document. But in some types
of information, such as code examples or certain poems, the whitespace is
important for conveying meaning. For content in which whitespace is seman-
tically significant, use the preformatted text (pre) element. It is a unique ele-
ment in that it is displayed exactly as it is typed—including all the carriage
returns and multiple character spaces. By default, preformatted text is also
displayed in a constant-width font (one in which all the characters are the
same width, also called monospace), such as Courier; however, you can easily
change the font with a style sheet rule.

<blockquote>…</blockquote>
A lengthy, block-level quotation

<pre>…</pre>
Preformatted text

NOTE

There is also the inline element q for
short quotations in the flow of text. We’ll
talk about it later in this chapter.

NOTE

The white-space:pre CSS property can
also be used to preserve spaces and
returns in the source.

5. Marking Up Text

More Content Elements

79

The pre element in this example displays as shown in FIGURE 5-8. The sec-
ond part of the figure shows the same content marked up as a paragraph (p)
element for comparison.

<pre>
This is an example of
 text with a lot of
 curious
 whitespace.
</pre>

<p>
This is an example of
 text with a lot of
 curious
 whitespace.
</p>

FIGURE 5-8.   Preformatted text is unique in that the browser displays the whitespace
exactly as it is typed into the source document. Compare it to the paragraph element, in
which multiple line returns and character spaces are reduced to a single space.

Figures

The figure element identifies content that illustrates or supports some point
in the text. A figure may contain an image, a video, a code snippet, text, or
even a table—pretty much anything that can go in the flow of web content.
Content in a figure element should be treated and referenced as a self-
contained unit. That means if a figure is removed from its original placement
in the main flow (to a sidebar or appendix, for example), both the figure and
the main flow should continue to make sense.

Although you can simply add an image to a page, wrapping it in figure tags
makes its purpose explicitly clear semantically. It also works as a hook for
applying special styles to figures but not to other images on the page:

<figure>

</figure>

If you want to provide a text caption for the figure, use the figcaption ele-
ment above or below the content inside the figure element. It is a more
semantically rich way to mark up the caption than using a simple p element.

<figure>…</figure>
Related image or resource

<figcaption>…</figcaption>
Text description of a figure

Part II. HTML for Structure

More Content Elements

80

<figure>
 <pre>
 <code>
	 body {
	 background-color: #000;
	 color: red;
	 }
 </code>
 </pre>
 <figcaption>Sample CSS rule.</figcaption>
</figure>

In EXERCISE 5-1, you’ll get a chance to mark up a document yourself and try
out the basic text elements we’ve covered so far.

BROWSER SUPPORT NOTE

The figure and figcaption elements are
not supported in Internet Explorer versions
8 and earlier (see the sidebar “HTML5
Support in Internet Explorer,” later in
this chapter, for a workaround).

EXERCISE 5-1.  Marking up a recipe

The owners of the Black Goose Bistro have decided to share recipes and news on their
site. In the exercises in this chapter, we’ll assist them with content markup.

In this exercise, you will find the raw text of a recipe. It’s up to you to decide which
element is the best semantic match for each chunk of content. You’ll use paragraphs,
headings, lists, and at least one special content element.

You can write the tags right on this page. Or, if you want to use a text editor and see the
results in a browser, this text file, as well as the final version with markup, is available at
learningwebdesign.com/5e/materials.

Tapenade (Olive Spread)

This is a really simple dish to prepare and it’s always a big hit at
parties. My father recommends:

"Make this the night before so that the flavors have time to blend. Just
bring it up to room temperature before you serve it. In the winter, try
serving it warm."

Ingredients

1 8oz. jar sundried tomatoes
2 large garlic cloves
2/3 c. kalamata olives
1 t. capers

Instructions

Combine tomatoes and garlic in a food processor. Blend until as smooth
as possible.

Add capers and olives. Pulse the motor a few times until they are
incorporated, but still retain some
texture.

Serve on thin toast rounds with goat cheese and fresh basil garnish
(optional).

5. Marking Up Text

More Content Elements

81

ORGANIZING PAGE CONTENT

So far, the elements we’ve covered handle very specific tidbits of content: a
paragraph, a heading, a figure, and so on. Prior to HTML5, there was no way
to group these bits into larger parts other than wrapping them in a generic
division (div) element (I’ll cover div in more detail later). HTML5 introduced
new elements that give semantic meaning to sections of a typical web page or
application (see Note), including main content (main), headers (header), foot-
ers (footer), sections (section), articles (article), navigation (nav), and tan-
gentially related or complementary content (aside). Curiously, the spec lists
the old address element as a section as well, so we’ll look at that one here too.

HTML5 Support in Internet Explorer
Nearly all browsers today support the HTML5 semantic elements, and for those that
don’t, creating a style sheet rule that tells browsers to format each one as a block-
level element is all you need to make them behave correctly:

section, article, nav, aside, header, footer, main {
 display: block;
}

Unfortunately, that fix won’t work for the small fraction of users who are still using
Internet Explorer versions 8 and earlier (less than 1.5% of browser traffic as of 2017).
IE8 has been hanging around well past its prime because it is tied to the popular
Windows Vista operating system. If you work on a large site for which 1% of users
represents thousands of people, you may want to be familiar with workarounds and
fallbacks for IE8. Most likely, you won’t need to support it. Still, at the risk of looking
outdated, I will provide notes about IE8 support throughout this book.

For example, the following is a workaround that applies only to IE8 and earlier. Not
only do those browsers not recognize the HTML5 elements, but they also ignore any
styles applied to them. The solution is to use JavaScript to create each element
so IE knows it exists and will allow nesting and styling. Here’s what a JavaScript
command creating the section element looks like:

documencreateElement("section");

Fortunately, Remy Sharp wrote a script that creates all of the HTML5 elements for IE8
and earlier in one fell swoop. It is called “HTML5 Shiv” (or Shim) and it is available on
a server that you can point to in your documents. Just copy this code in the head of
your document and use a style sheet to style the new elements as blocks:

<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/
html5shiv.min.js">
</script >
<![endif]-->

The HTML5 Shiv is also part of the Modernizr polyfill script that adds HTML5 and CSS3
functionality to older non-supporting browsers. Read more about Modernizr online at
modernizr.com. It is also covered in Chapter 20, Modern Web Development Tools.

NOTE

The new element names are based on
a Google study that looked at the top
20 names that developers assigned to
generic division elements (code.google.
com/webstats/2005-12/classes.html).

→

Part II. HTML for Structure

Organizing Page Content

82

http://code.google.com/webstats/2005-12/classes.html
http://code.google.com/webstats/2005-12/classes.html

Main Content
Web pages these days are loaded with different types of content: mastheads,
sidebars, ads, footers, more ads, even more ads, and so on. It is helpful to cut
to the chase and explicitly point out the main content on the page. Use the
main element to identify the primary content of a page or application. It helps
screen readers and other assistive technologies know where the main content
of the page begins and replaces the “Skip to main content” links that have
been utilized in the past. The content of a main element should be unique to
that page. In other words, headers, sidebars, and other elements that appear
across multiple pages in a site should not be included in the main section:

<body>
<header>…</header>
<main>
 <h1>Humanist Sans Serif</h1>
 <!-- code continues -->
</main>
</body>

The W3C HTML5 specification states that pages should have only one main
section and that it should not be nested within an article, aside, header,
footer, or nav. Doing so will cause the document to be invalid.

The main element is the most recent addition to the roster of HTML5 group-
ing elements. You can use it and style it in most browsers, but for Internet
Explorer (including version 11, the most current as of this writing), you’ll need
to create the element with JavaScript and set its display to block with a style
sheet, as discussed in the “HTML5 Support in Internet Explorer” sidebar. Note
that main is supported in MS Edge.

Headers and Footers
Because web authors have been labeling header and footer sections in their
documents for years, it was kind of a no-brainer that full-fledged header and
footer elements would come in handy. Let’s start with headers.

Headers
The header element is used for introductory material that typically appears
at the beginning of a web page or at the top of a section or article (we’ll get
to those elements next). There is no specified list of what a header must or
should contain; anything that makes sense as the introduction to a page or
section is acceptable. In the following example, the document header includes
a logo image, the site title, and navigation:

<body>
<header>

 <h1>Nuts about Web Fonts</h1>

<header>…</header>
Introductory material for page, section,
or article

<footer>…</footer>
Footer for page, section, or article

<main>…</main>
Primary content area of page or app

5. Marking Up Text

Organizing Page Content

83

 <nav>

 Home
 Blog
 Shop

 </nav>
</header>
<!--page content-->
</body>

When used in an individual article, the header might include the article title,
author, and the publication date, as shown here:

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="2017-11-11">November 11,
2017</time></p>
 </header>
 <!-- article content here -->
</article>

NOTE

Neither header nor footer elements are permitted to contain nested header or footer
elements.

Footers
The footer element is used to indicate the type of information that typi-
cally comes at the end of a page or an article, such as its author, copyright
information, related documents, or navigation. The footer element may
apply to the entire document, or it could be associated with a particular
section or article. If the footer is contained directly within the body element,
either before or after all the other body content, then it applies to the entire
page or application. If it is contained in a sectioning element (section,
article, nav, or aside), it is parsed as the footer for just that section. Note
that although it is called “footer,” there is no requirement that it appear last
in the document or sectioning element. It could also appear at or near the
beginning if that makes sense.

In this simple example, we see the typical information listed at the bottom of
an article marked up as a footer:

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="2017-11-11">November 11,
2017</time></p>
 </header>
 <!-- article content here -->
 <footer>
 <p><small>Copyright ©2017 Jennifer Robbins.</small></p>

NOTE

The code in the
examples is the markup for adding links
to other web pages. We’ll take on links
in Chapter 6, Adding Links. Normally
the value would be the URL to the page,
but I’ve used a simple slash as a space-
saving measure.

NOTE

The time element will be discussed in
the section “Dates and times” later in
this chapter.

Part II. HTML for Structure

Organizing Page Content

84

 <nav>

 Previous
 Next

 </nav>
 </footer>
</article>

Sections and Articles
Long documents are easier to use when they are divided into smaller parts.
For example, books are divided into chapters, and newspapers have sections
for local news, sports, comics, and so on. To divide long web documents into
thematic sections, use the aptly named section element. Sections typically
include a heading (inside the section element) plus content that has a mean-
ingful reason to be grouped together.

The section element has a broad range of uses, from dividing a whole page
into major sections or identifying thematic sections within a single article.
In the following example, a document with information about typography
resources has been divided into two sections based on resource type:

<section>
 <h2>Typography Books</h2>

 …

</section>

<section>
 <h2>Online Tutorials</h2>
 <p>These are the best tutorials on the web.</p>

 …

</section>

Use the article element for self-contained works that could stand alone or
be reused in a different context (such as syndication). It is useful for maga-
zine or newspaper articles, blog posts, comments, or other items that could
be extracted for external use. You can think of it as a specialized section ele-
ment that answers “yes” to the question “Could this appear on another site
and make sense?”

A long article could be broken into a number of sections, as shown here:

<article>
 <h1>Get to Know Helvetica</h1>
 <section>
 <h2>History of Helvetica</h2>
 <p>…</p>
 </section>

<section>…</section>
Thematic group of content

<article>…</article>
Self-contained, reusable composition

NOTE

The HTML5 spec recommends that if the
purpose for grouping the elements is
simply to provide a hook for styling, use
the generic div element instead.

5. Marking Up Text

Organizing Page Content

85

 <section>
 <h2>Helvetica Today</h2>
 <p>…</p>
 </section>
</article>

Conversely, a section in a web document might be composed of a number
of articles:

<section id="essays">
 <article>
 <h1>A Fresh Look at Futura</h1>
 <p>…</p>
 </article>

 <article>
 <h1>Getting Personal with Humanist</h1>
 <p>…</p>
 </article>
</section>

The section and article elements are easily confused, particularly because
it is possible to nest one in the other and vice versa. Keep in mind that if the
content is self-contained and could appear outside the current context, it is
best marked up as an article.

Aside (Sidebars)
The aside element identifies content that is separate from, but tangentially
related to, the surrounding content. In print, its equivalent is a sidebar, but
it couldn’t be called “sidebar” because putting something on the “side” is a
presentational description, not semantic. Nonetheless, a sidebar is a good
mental model for using the aside element. aside can be used for pull quotes,
background information, lists of links, callouts, or anything else that might
be associated with (but not critical to) a document.

In this example, an aside element is used for a list of links related to the main
article:

<h1>Web Typography</h1>
<p>Back in 1997, there were competing font formats and tools for
making them…</p>
<p>We now have a number of methods for using beautiful fonts on web
pages…</p>
<aside>
 <h2>Web Font Resources</h2>

 Typekit
 Google Fonts

</aside>

The aside element has no default rendering, so you will need to make it a
block element and adjust its appearance and layout with style sheet rules.

<aside>…</aside>
Tangentially related material

Part II. HTML for Structure

Organizing Page Content

86

Navigation
The nav element gives developers a semantic way to identify navigation for a
site. Earlier in this chapter, we saw an unordered list that might be used as the
top-level navigation for a font catalog site. Wrapping that list in a nav element
makes its purpose explicitly clear:

<nav>

 Serif
 Sans-serif
 Script
 Display
 Dingbats

</nav>

Not all lists of links should be wrapped in nav tags, however. The spec makes
it clear that nav should be used for links that provide primary navigation
around a site or a lengthy section or article. The nav element may be espe-
cially helpful from an accessibility perspective.

Addresses
Last, and well, least, is the address element that is used to create an area for
contact information for the author or maintainer of the document. It is gener-
ally placed at the end of the document or in a section or article within a docu-
ment. An address would be right at home in a footer element. It is important
to note that the address element should not be used for any old address on a
page, such as mailing addresses. It is intended specifically for author contact
information (although that could potentially be a mailing address). Following
is an example of its intended use:

<address>
Contributed by Jennifer Robbins,
O'Reilly Media
</address>

<nav>…</nav>
Primary navigation links

<address>…</address>
Contact information

Document Outlines
Behind the scenes, browsers look at the markup in a document
and generate a hierarchical outline based on the headings in
the content. A new section gets added to the outline whenever
the browser encounters a new heading level.

In past versions of HTML, that was the only way the outline
was created. HTML5 introduced a new outline algorithm that
enables authors to explicitly add a new section to the outline
by inserting a sectioning element: article, section, aside,
and nav. In addition to the four sectioning elements, the spec
defines some elements (blockquote, fieldset, figure,

dialog, details, and td) as sectioning roots, which means
headings in those elements do not become part of the overall
document outline.

It’s a nice idea because it allows content to be repurposed and
merged without breaking the outline, but unfortunately, no
browsers to date have implemented it and they are unlikely
to do so. The W3C has kept the sectioning elements and their
intended behavior in the spec (which is why I mention this at
all), but now precede it with a banner recommending sticking
with the old hierarchical heading method.

5. Marking Up Text

Organizing Page Content

87

THE INLINE ELEMENT ROUNDUP

Now that we’ve identified the larger chunks of content, we can provide
semantic meaning to phrases within the chunks by using what the HTML5
specification calls text-level semantic elements. On the street, you are likely to
hear them called inline elements because they display in the flow of text by
default and do not cause any line breaks. That’s also how they were referred
to in HTML versions prior to HTML5.

Text-Level (Inline) Elements
Despite all the types of information you could add to a document, there are
only a couple dozen text-level semantic elements. TABLE 5-1 lists all of them.

Although it may be handy seeing all of the text-level elements listed together
in a table, they certainly deserve more detailed explanations.

Emphasized text
Use the em element to indicate which part of a sentence should be stressed or
emphasized. The placement of em elements affects how a sentence’s meaning
is interpreted. Consider the following sentences that are identical, except for
which words are stressed:

<p>Arlo is very smart.</p>
<p>Arlo is very smart.</p>

The first sentence indicates who is very smart. The second example is about
how smart he is. Notice that the em element has an effect on the meaning of
the sentence.

Emphasized text (em) elements nearly always display in italics by default
(FIGURE 5-9), but of course you can make them display any way you like
with a style sheet. Screen readers may use a different tone of voice to convey
stressed content, which is why you should use an em element only when it
makes sense semantically, not just to achieve italic text.

Important text
The strong element indicates that a word or phrase is important, serious,
or urgent. In the following example, the strong element identifies the por-
tion of instructions that requires extra attention. The strong element does
not change the meaning of the sentence; it merely draws attention to the
important parts:

<p>When returning the car, drop the keys in the red box by the
front desk.</p>

Visual browsers typically display strong text elements in bold text by default.
Screen readers may use a distinct tone of voice for important content, so

…
Stressed emphasis

…
Strong importance

Part II. HTML for Structure

The Inline Element Roundup

88

TABLE 5-1.   Text-level semantic elements

Element Description

a An anchor or hypertext link (see Chapter 6 for details)

abbr Abbreviation

b Added visual attention, such as keywords (bold)

bdi Indicates text that may have directional requirements

bdo Bidirectional override; explicitly indicates text direction (left to
right, ltr, or right to left, rtl)

br Line break

cite Citation; a reference to the title of a work, such as a book title

code Computer code sample

data Machine-readable equivalent dates, time, weights, and other
measurable values

del Deleted text; indicates an edit made to a document

dfn The defining instance or first occurrence of a term

em Emphasized text

i Alternative voice (italic) or alternate language

ins Inserted text; indicates an insertion in a document

kbd Keyboard; text entered by a user (for technical documents)

mark Contextually relevant text

q Short, inline quotation

ruby, rt, rp Provides annotations or pronunciation guides under East Asian
typography and ideographs

s Incorrect text (strike-through)

samp Sample output from programs

small Small print, such as a copyright or legal notice (displayed in a
smaller type size)

span Generic phrase content

strong Content of strong importance

sub Subscript

sup Superscript

time Machine-readable time data

u Indicates a formal name, misspelled word, or text that would
be underlined

var A variable or program argument (for technical documents)

wbr Word break

The Inline Elements
Backstory
Many of the inline elements that have
been around since the dawn of the
web were introduced to change the
visual formatting of text selections
because of the lack of a style sheet
system. If you wanted bolded text,
you marked it as b. Italics? Use the
i element. In fact, there was once a
font element used solely to change
the font, color, and size of text (the
horror!). Not surprisingly, HTML5
kicked the purely presentational font
element to the curb. However, many
of the old-school presentational
inline elements (for example, u for
underline and s for strike-through)
have been kept in HTML5 and given
new semantic definitions (b is now for
“keywords,” s for “inaccurate text”).

Many inline elements have the
expected style rendering (bold for the
b element, for example). Other inline
elements are purely semantic (such
as abbr or time) and don’t have
default renderings. For any inline
elements, you can use CSS rules if
you want to change the way they
display.

Obsolete HTML 4.01
Text Elements
Here are some old text elements
that were made obsolete in HTML5:
acronym, applet, basefont, big,
center, dir (directory), font,
isindex (search box), menu, strike,
tt (teletype). I mention them here in
case you run across them in an old
document when viewing its source
or if you are using an older web
authoring tool. There is no reason to
use them today.

5. Marking Up Text

The Inline Element Roundup

89

mark text as strong only when it makes sense semantically, not just to make
text bold.

The following is a brief example of our em and strong text examples. FIGURE

5-9 should hold no surprises.

FIGURE 5-9.   The default rendering of emphasized and strong text.

Elements originally named for their presentational properties
As long as we’re talking about bold and italic text, let’s see what the old b
and i elements are up to now. The elements b, i, u, s, and small were intro-
duced in the old days of the web as a way to provide typesetting instructions
(bold, italic, underline, strike-through, and smaller text, respectively). Despite
their original presentational purposes, these elements have been included
in HTML5 and given updated, semantic definitions based on patterns of
how they’ve been used. Browsers still render them by default as you’d expect
(FIGURE 5-10). However, if a type style change is all you’re after, using a style
sheet rule is the appropriate solution. Save these for when they are semanti-
cally appropriate.

Let’s look at these elements and their correct usage, as well as the style sheet
alternatives.

b

Keywords, product names, and other phrases that need to stand out from
the surrounding text without conveying added importance or emphasis (see
Note). [Old definition: Bold]

CSS Property: For bold text, use font-weight. Example: font-weight: bold;

Example: <p>The slabs at the ends of letter strokes are called
serifs.</p>

i

Indicates text that is in a different voice or mood than the surrounding text,
such as a phrase from another language, a technical term, or a thought. [Old
definition: Italic]

CSS Property: For italic text, use font-style. Example: font-style: italic;

…
Keywords or visually

emphasized text (bold)

<i>…</i>
Alternative voice (italic)

<s>…</s>
Incorrect text (strike-through)

<u>…</u>
Annotated text (underline)

<small>…</small>
Legal text; small print (smaller type size)

NOTE

It helps me to think about how a screen
reader would read the text. If I don’t want
the word read in a loud, emphatic tone of
voice, but it really should be bold, then b
may be more appropriate than strong.

Part II. HTML for Structure

The Inline Element Roundup

90

Example: <p>Simply change the font and <i>Voila!</i>, a new
personality!</p>

s

Indicates text that is incorrect. [Old definition: Strike-through text]

CSS Property: To draw a line through a selection of text, use text-decoration.
Example: text-decoration: line-through

Example: <p>Scala Sans was designed by <s>Eric Gill</s> Martin
Majoor.</p>

u

There are a few instances when underlining has semantic significance,
such as underlining a formal name in Chinese or indicating a misspelled
word after a spell check, such as the misspelled “Helvitica” in the following
example. Note that underlined text is easily confused with a link and should
generally be avoided except for a few niche cases. [Old definition: Underline]

CSS Property: For underlined text, use text-decoration. Example: text-
decoration: underline

Example: <p>New York subway signage is set in <u>Helviteca</u>.</p>

small

Indicates an addendum or side note to the main text, such as the legal “small
print” at the bottom of a document. [Old definition: Renders in font smaller
than the surrounding text]

CSS Property: To make text smaller, use font-size. Example: font-size: 80%

Example: <p><small>(This font is free for personal and commercial
use.)</small></p>

b

i

s

u

small

FIGURE 5-10.   The default rendering of b, i, s, u, and small elements.

5. Marking Up Text

The Inline Element Roundup

91

Short quotations
Use the quotation (q) element to mark up short quotations, such as “To be or
not to be,” in the flow of text, as shown in this example (FIGURE 5-11):

Matthew Carter says, <q>Our alphabet hasn't changed in eons.</q>

According to the HTML spec, browsers should add quotation marks around
q elements automatically, so you don’t need to include them in the source
document. Some browsers, like Firefox, render curly quotes, which is prefer-
able. Others (Safari and Chrome, which I used for my examples) render them
as straight quotes as shown in the figure.

FIGURE 5-11.   Browsers add quotation marks automatically around q elements.

Abbreviations and acronyms
Marking up acronyms and abbreviations with the abbr element provides
useful information for search engines, screen readers, and other devices.
Abbreviations are shortened versions of a word ending in a period (“Conn.”
for “Connecticut,” for example). Acronyms are abbreviations formed by the
first letters of the words in a phrase (such as NASA or USA). The title
attribute provides the long version of the shortened term, as shown in this
example:

<abbr title="Points">pts.</abbr>
<abbr title="American Type Founders">ATF</abbr>

<q>…</q>
Short inline quotation

<abbr>…</abbr>
Abbreviation or acronym

Nesting Elements
You can apply two elements to a string of text (for example, a phrase that is both a
quote and in another language), but be sure they are nested properly. That means
the inner element, including its closing tag, must be completely contained within
the outer element, and not overlap:

<q><i>Je ne sais pas.</i></q>

Here is an example of elements that are nested incorrectly. Notice that the inner i
element is not closed within the containing q element:

<q><i>Je ne sais pas.</q></i>

It is easy to spot the nesting error in an example that is this short, but when you’re
nesting long passages or nesting multiple levels deep, it is easy to end up with
overlaps. One advantage to using an HTML code editor is that it can automatically
close elements for you correctly or point out when you’ve made a mistake.

NOTE

In HTML 4.01, there was an acronym ele-
ment especially for acronyms, but HTML5
has made it obsolete in favor of using the
abbr for both.

Part II. HTML for Structure

The Inline Element Roundup

92

Citations
The cite element is used to identify a reference to another document, such
as a book, magazine, article title, and so on. Citations are typically rendered
in italic text by default. Here’s an example:

<p>Passages of this article were inspired by <cite>The Complete Manual
of Typography</cite> by James Felici.</p>

Defining terms
It is common to point out the first and defining instance of a word in a docu-
ment in some fashion. In this book, defining terms are set in blue text. In
HTML, you can identify them with the dfn element and format them visually
using style sheets.

<p><dfn>Script typefaces</dfn> are based on handwriting.</p>

Program code elements
A number of inline elements are used for describing the parts of technical
documents, such as code (code), variables (var), program samples (samp), and
user-entered keyboard strokes (kbd). For me, it’s a quaint reminder of HTML’s
origins in the scientific world (Tim Berners-Lee developed HTML to share
documents at the CERN particle physics lab in 1989).

Code, sample, and keyboard elements typically render in a constant-width
(also called monospace) font such as Courier by default. Variables usually
render in italics.

Subscript and superscript
The subscript (sub) and superscript (sup) elements cause the selected text to
display in a smaller size, positioned slightly below (sub) or above (sup) the
baseline. These elements may be helpful for indicating chemical formulas or
mathematical equations.

FIGURE 5-12 shows how these examples of subscript and superscript typi-
cally render in a browser.

 <p>H₂0</p>

 <p>E=MC²</p>

FIGURE 5-12.   Subscript and superscript

<cite>…</cite>
Citation

<dfn>…</dfn>
Defining term

<code>…</code>
Code

<var>…</var>
Variable

<samp>…</samp>
Program sample

<kbd>…</kbd>
User-entered keyboard strokes

_…
Subscript

[…]
Superscript

5. Marking Up Text

The Inline Element Roundup

93

Highlighted text
The mark element indicates a word that may be considered especially relevant
to the reader. One might use it to dynamically highlight a search term in a
page of results, to manually call attention to a passage of text, or to indicate
the current page in a series. Some designers (and browsers) give marked text
a light colored background as though it were marked with a highlighter
marker, as shown in FIGURE 5-13.

<p> ... PART I. ADMINISTRATION OF THE GOVERNMENT. TITLE IX.
TAXATION. CHAPTER 65C. MASS. <mark>ESTATE TAX</mark>. Chapter 65C:
Sect. 2. Computation of <mark>estate tax</mark>.</p>

FIGURE 5-13.   In this example, search terms are identified with mark elements and
given a yellow background with a style sheet so they are easier for the reader to find.

Dates and times
When we look at the phrase “noon on November 4,” we know that it is a
date and a time. But the context might not be so obvious to a computer pro-
gram. The time element allows us to mark up dates and times in a way that
is comfortable for a human to read, but also encoded in a standardized way
that computers can use. The content of the element presents the information
to people, and the datetime attribute presents the same information in a
machine-readable way.

The time element indicates dates, times, or date-time combos. It might be
used to pass the date and time information to an application, such as saving
an event to a personal calendar. It might be used by search engines to find the
most recently published articles. Or it could be used to restyle time informa-
tion into an alternate format (e.g., changing 18:00 to 6 p.m.).

The datetime attribute specifies the date and/or time information in a stan-
dardized time format illustrated in FIGURE 5-14. The full time format begins
with the date (year–month–day). The time section begins with a letter “T”
and lists hours (on the 24-hour clock), minutes, seconds (optional), and mil-
liseconds (also optional). Finally, the time zone is indicated by the number of
hours behind (-) or ahead (+) of Greenwich Mean Time (GMT). For example,
“-05:00” indicates the Eastern Standard time zone, which is five hours behind
GMT. When identifying dates and times alone, you can omit the other sections.

<mark>…</mark>
Contextually relevant text

<time>…</time>
Time data

NOTE

The time element is not intended for
marking up times for which a precise
time or date cannot be established, such
as “the end of last year” or “the turn of
the century.”

F U RT H E R R E A D I N G

For more information on the intricate
ins and outs of specifying dates and
times, with examples, check out the
time element entry in the HTML5
specification: www.w3.org/TR/2014/
REC-html5-20141028/text-level-
semantics.html#the-time-element.

Part II. HTML for Structure

The Inline Element Roundup

94

Year Month Day Hour Minute Hour MinuteSecond
(optional)

Fraction of second
(optional)

A “T” always precedes
time information

+ or – hours ahead or behind
Greenwich Mean Time

YYYY-MM-DDThh:mm:ss.ddd±hh:mm
TIMEDATE TIME ZONE

Example:
3pm PST on December 25, 2016 2016-12-25T15:00-8:00

FIGURE 5-14.   Standardized date and time syntax.

Here are a few examples of valid values for datetime:

•	 Time only: 9:30 p.m.

<time datetime="21:30">9:30p.m.</time>

•	 Date only: June 19, 2016

<time datetime="2016-06-19">June 19, 2016</time>

•	 Date and time: Sept. 5, 1970, 1:11a.m.

<time datetime="1970-09-05T01:11:00">Sept. 5, 1970, 1:11a.m.</time>

•	 Date and time, with time zone information: 8:00am on July 19, 2015, in
Providence, RI	

<time datetime="2015-07-19T08:00:00-05:00">July 19, 2015, 8am,
Providence RI</time>

Machine-readable information
The data element is another tool for helping computers make sense of con-
tent. It can be used for all sorts of data, including dates, times, measurements,
weights, microdata, and so on. The required value attribute provides the
machine-readable information. Here are a couple of examples:

<data value="12">Twelve</data>
<data value="978-1-449-39319-9">CSS: The Definitive Guide</data>

I’m not going to go into more detail on the data element, because as a begin-
ner, you are unlikely to be dealing with machine-readable data quite yet. But
it is interesting to see how markup can be used to provide usable information
to computer programs and scripts as well as to your fellow humans.

<data>…</data>
Machine-readable data

NOTE

You can also use the time element with-
out the datetime attribute, but its con-
tent must be a valid date/time string:

<time>2016-06-19</time>

5. Marking Up Text

The Inline Element Roundup

95

Inserted and deleted text
The ins and del elements are used to mark up edits indicating parts of a doc-
ument that have been inserted or deleted (respectively). These elements rely
on style rules for presentation (i.e., there is no dependable browser default).
Both the ins and del elements can contain either inline or block elements,
depending on what type of content they contain:

Chief Executive Officer: <del title="retired">Peter Pan<ins>Pippi
Longstocking</ins>

Adding Breaks

Line breaks
Occasionally, you may need to add a line break within the flow of text. We’ve
seen how browsers ignore line breaks in the source document, so we need a
specific directive to tell the browser to “add a line break here.”

The inline line break element (br) does exactly that. The br element could be
used to break up lines of addresses or poetry. It is an empty element, which
means it does not have content. Just add the br element in the flow of text
where you want a break to occur, as shown here and in FIGURE 5-15:

<p>So much depends
upon

a red wheel
barrow</p>

FIGURE 5-15.   Line breaks are inserted at each br element. (Example extracted from
“The Red Wheelbarrow” by William Carlos Williams.)

Unfortunately, the br element is easily abused. Be careful that you aren’t using
br elements to force breaks into text that really ought to be a list. For example,
don’t do this:

<p>Times

Georgia

Garamond
</p>

If it’s a list, use the semantically correct unordered list element instead, and
turn off the bullets with style sheets:

 Times
 Georgia
 Garamond

<ins>…</ins>
Inserted text

…
Deleted text

Line break

Part II. HTML for Structure

The Inline Element Roundup

96

Word breaks
The word break (wbr) element lets you mark the place where a word should
break (a “line break opportunity” according to the spec) should there not be
enough room for the whole word (FIGURE 5-16). It takes some of the guess-
work away from the browser and allows authors to control the best spot for
the word to be split over two lines. If there is enough room, the word stays in
one piece. Without word breaks, the word stays together, and if there is not
enough room, the whole word wraps to the next line. Note that the browser
does not add a hyphen when the word breaks over two lines. The wbr behaves
as though it were a character space in the middle of the word:

<p>The biggest word you've ever heard and this is how it goes:
supercali<wbr>fragilistic<wbr>expialidocious!</p>

FIGURE 5-16.   When there is not enough room for a word to fit on a line, it will break
at the location of the wbr element.

You’ve been introduced to 32 new elements since your last exercise. I’d say it’s
time to give some of the inline elements a try in EXERCISE 5-2.

<wbr>
Word break

BROWSER SUPPORT NOTE

The wbr element is not supported by any
version of Internet Explorer as of this writ-
ing. It is supported in MS Edge.

Accommodating Non-Western Languages
If the web is to reach a truly worldwide audience, it needs
to be able to support the display of all the languages of the
world, with all their unique alphabets, symbols, directionality,
and specialized punctuation. The W3C’s efforts for
internationalization (often referred to as “i18n” —an i, then 18
letters, then an n) ensure that the formats and protocols defined
in web technologies are usable worldwide.

Internationalization efforts include the following:

•	 Using the Unicode character encoding that contains the
characters, glyph, symbols, ideographs, and the like from all
active, modern languages. Unicode is discussed in Chapter
4, Creating a Simple Page.

•	 Declaring the primary language of a document by using a two-
letter language code from the ISO 639-1 standard (available
at www.loc.gov/standards/iso639-2/php/code_list.php). For
example, English is “EN,” Czech is “CS, “and German is “DE.”
Use the lang attribute in the html element to declare the
language for the whole document, or in individual elements
that require clarification.

•	 Accommodating the various writing directions of languages.
In HTML, the dir attribute explicitly sets the direction for the

document or an element to ltr (left-to-right) or rtl (right-to-
left). On phrase-level elements, it also creates a bidirectional
isolation, preventing text within the element from influencing
the ordering of text outside it. (This can be an important
consideration when you are embedding user-generated text.)

For example, to include a passage of Hebrew in an English
document, use the dir attribute to indicate that the phrase
should be displayed right-to-left:

<p>This is how you write Shalom:
םולש</p>

•	 Providing a system that allows for ruby annotation, notes
that typically appear above ideographs from East Asian
languages to give pronunciation clues or translations (ruby,
rt, and rp elements). See the spec for details if this is
something you need to do.

The W3C Internationalization Activity site provides a
thorough collection of HTML and CSS authoring techniques
and resources to help with your internationalization efforts:
www.w3.org/International/techniques/authoring-html.

5. Marking Up Text

The Inline Element Roundup

97

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.w3.org/International/techniques/authoring-html

GENERIC ELEMENTS (DIV AND SPAN)

What if none of the elements we’ve talked about so far accurately describes
your content? After all, there are endless types of information in the world,
but as you’ve seen, not all that many semantic elements. Fortunately, HTML
provides two generic elements that can be customized to describe your
content perfectly. The div element indicates a division of content, and span
indicates a word or phrase for which no text-level element currently exists.
The generic elements are given meaning and context with the id and class
attributes, which we’ll discuss in a moment.

The div and span elements have no inherent presentation qualities of their
own, but you can use style sheets to format them however you like. In fact,
generic elements are a primary tool in standards-based web design because
they enable authors to accurately describe content and offer plenty of
“hooks” for adding style rules. They also allow elements on the page to be
accessed and manipulated by JavaScript.

We’re going to spend a little time on div and span elements, as well as the
id and class attributes, to learn how authors use them to structure content.

<div>…</div>
Generic block-level element

…
Generic inline element

EXERCISE 5-2. Identifying inline elements

This little post for the Black Goose Bistro News page will give
you an opportunity to identify and mark up a variety of inline
elements. See if you can find phrases to mark up accurately with
the following elements:

b br cite dfn em

i q small time

Because markup is always somewhat subjective, your resulting
markup may not look exactly like my final markup, but there
is an opportunity to use all of the preceding elements in the
article. For extra credit, there is a phrase that could have two
elements applied to it. (Hint: look for a term in another language.)
Remember to nest them properly by closing the inner element
before you close the outer one. Also, be sure that all text-level
elements are contained within block elements.

You can write the tags right on this page. Or, if you want to use a
text editor and see the results in a browser, this text file is available
online at learningwebdesign.com/5e/materials along with the
resulting code.

<article>

<header>
<p>posted by BGB, November 15, 2016</p>
</header>

<h2>Low and Slow</h2>
<p>This week I am extremely excited about a new
cooking technique called sous vide. In sous vide
cooking, you submerge the food (usually vacuum-sealed
in plastic) into a water bath that is precisely
set to the target temperature you want the food
to be cooked to. In his book, Cooking for Geeks,
Jeff Potter describes it as ultra-low-temperature
poaching.</p>
<p>Next month, we will be serving Sous Vide Salmon
with Dill Hollandaise. To reserve a seat at the chef
table, contact us before November 30.</p>

<p>blackgoose@example.com
555-336-1800</p>

<p>Warning: Sous vide cooked salmon is not
pasteurized. Avoid it if you are pregnant or have
immunity issues.</p>
</article>

Part II. HTML for Structure

Generic Elements (div and span)

98

mailto:blackgoose@example.com

Divide It Up with a div
Use the div element to create a logical grouping of content or elements on the
page. It indicates that they belong together in a conceptual unit or should be
treated as a unit by CSS or JavaScript. By marking related content as a div and
giving it a unique id or indicating that it is part of a class, you give context
to the elements in the grouping. Let’s look at a few examples of div elements.

In this example, a div element is used as a container to group an image and
two paragraphs into a product “listing”:

<div class="listing">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type
design.</p>
</div>

By putting those elements in a div, I’ve made it clear that they are conceptu-
ally related. It also allows me to style p elements within listings differently
than other p elements in the document.

Here is another common use of a div used to break a page into sections
for layout purposes. In this example, a heading and several paragraphs are
enclosed in a div and identified as the “news” division:

<div id="news">
 <h1>New This Week</h1>
 <p>We've been working on...</p>
 <p>And last but not least,... </p>
</div>

Now I have a custom element that I’ve given the name “news.” You might be
thinking, “Hey Jen, couldn’t you use a section element for that?” You could!
In fact, authors may turn to generic divs less often now that we have better
semantic sectioning elements in HTML5.

Define a Phrase with span
A span offers the same benefits as the div element, except it is used for phrase
elements and does not introduce line breaks. Because spans are inline ele-
ments, they may contain only text and other inline elements (in other words,
you cannot put headings, lists, content-grouping elements, and so on, in a
span). Let’s get right to some examples.

There is no telephone element, but we can use a span to give meaning to
telephone numbers. In this example, each telephone number is marked up as
a span and classified as “tel”:

 John: 999.8282
 Paul: 888.4889
 George: 888.1628
 Ringo: 999.3220

M AR KU P T I P

It is possible to nest div elements
within other div elements, but don’t
go overboard. You should always
strive to keep your markup as simple
as possible, so add a div element
only if it is necessary for logical
structure, styling, or scripting.

5. Marking Up Text

Generic Elements (div and span)

99

You can see how the classified spans add meaning to what otherwise might
be a random string of digits. As a bonus, the span element enables us to apply
the same style to phone numbers throughout the site (for example, ensuring
line breaks never happen within them, using a CSS white-space: nowrap dec-
laration). It makes the information recognizable not only to humans but also
to computer programs that know that “tel” is telephone number information.
In fact, some values—including “tel”—have been standardized in a markup
system known as Microformats that makes web content more useful to soft-
ware (see the upcoming sidebar “Structured Data in a Nutshell”).

id and class Attributes
In the previous examples, we saw the id and class attributes used to provide
context to generic div and span elements. id and class have different pur-
poses, however, and it’s important to know the difference.

Identification with id
The id attribute is used to assign a unique identifier to an element in the
document. In other words, the value of id must be used only once in the
document. This makes it useful for assigning a name to a particular element,
as though it were a piece of data. See the sidebar “id and class Values” for
information on providing values for the id attribute.

This example uses the books’ ISBNs (International Standard Book Numbers)
to uniquely identify each listing. No two book listings may share the same id.

<div id="ISBN0321127307">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type.
 </p>
</div>

<div id="ISBN0881792063">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p>This lovely, well-written book is concerned foremost with creating
beautiful typography.</p>
</div>

Web authors also use id when identifying the various sections of a page. In
the following example, there may not be more than one element with the id
of “links” or “news” in the document:

<section id="news">
 <!-- news items here -->
</section>

<aside id="links">
 <!-- list of links here -->
</aside>

id and class Values
In HTML5, the values for id and
class attributes must contain one
character (that is, they may not be
empty) and may not contain any
character spaces. You can use pretty
much any character in the value.

Earlier versions of HTML had
restrictions on id values (for example,
they needed to start with a letter),
but those restrictions were removed
in HTML5.

Part II. HTML for Structure

Generic Elements (div and span)

100

Classification with class
The class attribute classifies elements into conceptual groups; therefore,
unlike the id attribute, a class name may be shared by multiple elements.
By making elements part of the same class, you can apply styles to all of the
labeled elements at once with a single style rule or manipulate them all with a
script. Let’s start by classifying some elements in the earlier book example. In
this first example, I’ve added class attributes to classify each div as a “listing”
and to classify paragraphs as “descriptions”:

<div id="ISBN0321127307" class="listing">
 <header>

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 </header>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing">
 <header>

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 </header>
 <p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

Notice how the same element may have both a class and an id. It is also
possible for elements to belong to multiple classes. When there is a list of
class values, simply separate them with character spaces. In this example, I’ve
classified each div as a “book” to set them apart from possible “cd” or “dvd”
listings elsewhere in the document:

<div id="ISBN0321127307" class="listing book">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing book">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p class="description">This lovely, well-written book is concerned
 foremost with creating beautiful typography.</p>
</div>

Identify and Classify All Elements
The id and class attributes are not limited to just div and span—they are
two of the global attributes (see the “Global Attributes” sidebar) in HTML,

M AR KU P T I P

Use the id attribute to identify.

Use the class attribute to classify.

Global Attributes
HTML5 defines a set of attributes
that can be used with every HTML
element. They are called the global
attributes:

accesskey

class

contenteditable

dir

draggable

hidden

id

lang

spellcheck

style

tabindex

title

translate

Appendix B lists all of the global
attributes, their values, and
definitions.

5. Marking Up Text

Generic Elements (div and span)

101

which means you may use them with all HTML elements. For example, you
could identify an ordered list as “directions” instead of wrapping it in a div:

<ol id="directions">
 ...
 ...
 ...

This should have given you a good introduction to how to use the class and
id attributes to add meaning and organization to documents. We’ll work with
them even more in the style sheet chapters in Part III. The sidebar “Structured
Data in a Nutshell” discusses more advanced ways of adding meaning and
machine-readable data to documents.

IMPROVING ACCESSIBILITY WITH ARIA

As web designers, we must always consider the experience of users with assis-
tive technologies for navigating pages and interacting with web applications.
Your users may be listening to the content on the page read aloud by a screen
reader and using keyboards, joysticks, voice commands, or other non-mouse
input devices to navigate through the page.

Many HTML elements are plainly understood when you look at (or read)
only the HTML source. Elements like the title, headings, lists, images, and
tables have implicit meanings in the context of a page, but generic elements
like div and span lack the semantics necessary to be interpreted by an assis-
tive device. In rich web applications, especially those that rely heavily on
JavaScript and AJAX (see Note), the markup alone does not provide enough
clues as to how elements are being used or whether a form control is cur-
rently selected, required, or in some other state.

Fortunately, we have ARIA (Accessible Rich Internet Applications), a stan-
dardized set of attributes for making pages easier to navigate and interactive
features easier to use. The specification was created and is maintained by a
Working Group of the Web Accessibility Initiative (WAI), which is why you
also hear it referred to as WAI-ARIA. ARIA defines roles, states, and proper-
ties that developers can add to markup and scripts to provide richer semantic
information.

Roles
Roles describe an element’s function or purpose in the context of the docu-
ment. Some roles include alert, button, dialog, slider, and menubar, to name
only a few. For example, as we saw earlier, you can turn an unordered list into
a tabbed menu of options using style sheets, but what if you can’t see that it
is styled that way? Adding role="toolbar" to the list makes its purpose clear:

NOTE

AJAX (Asynchronous JavaScript and XML)
is explained in a sidebar in Chapter 22,
Using JavaScript.

Part II. HTML for Structure

Improving Accessibility with ARIA

102

Structured Data in a Nutshell
It is pretty easy for us humans to tell the difference between
a recipe and a movie review. For search engines and other
computer programs, however, it’s not so obvious. When we
use HTML alone, all browsers see is paragraphs, headings,
and other semantic elements of a document. Enter structured
data! Structured data allows content to be machine-readable
as well, which helps search engines provide smarter, user-
friendly results and can provide a better user experience—for
example, by extracting event information from a page and
adding it to the user’s calendar app.

There are several standards for structured data, but they share
a similar approach. First, they identify and name the “thing”
being presented. Then they point out the properties of that
thing. The “thing” might be a person, an event, a product,
a movie…pretty much anything you can imagine seeing
on a web page. Properties consist of name/value pairs. For
example, “actor,” “director,” and “duration” are properties of a
movie. The values of those properties appear as the content
of an HTML element. A collection of the standardized terms
assigned to “things,” as well as their respective properties,
form what is called a vocabulary.

The most popular standards for adding structured data are
Microformats, Microdata, RDFa (and RDFa Lite), and JSON-LD.
They differ in the syntax they use to add information about
objects and their properties.

Microformats
microformats.org
This early effort to make web content more useful created
standardized values for the existing id, class, and rel
HTML attributes. It is not a documented standard, but
it is a convention that is in widespread use because it
is very simple to implement. There are about a dozen
stable Microformat vocabularies for defining people,
organizations, events, products, and more. Here is a short
example of how a person might be marked up using
Microformats:

<div class="h-card">
 <p class="p-name">Cindy Sherman</p>
 <p class="p-tel">555.999-2456</p>
</div>

Microdata
html.spec.whatwg.org/multipage/microdata.html
Microdata is a WHATWG (Web Hypertext Application
Technology Working Group) HTML standard that uses
microdata-specific attributes (itemscope, itemtype,
itemprop, itemid, and itemref) to define objects and
their properties. Here is an example of a person defined
using Microdata.

<div itemscope itemtype="http://schema.org/Person">
 <p itemprop="name">Cindy Sherman</p>
 <p itemprop="telephone">555.999-2456</p>
</div>

For more information on the WHATWG, see Appendix D,
From HTML+ to HTML5.

RDFa and RDFa Lite
www.w3.org/TR/xhtml-rdfa-primer/
The W3C dropped Microdata from the HTML5 spec in
2013, putting all of its structured data efforts behind RDFa
(Resource Description Framework in Attributes) and its
simplified subset, RDFa Lite. It uses specified attributes
(vocab, typeof, property, resource, and prefix) to
enhance HTML content. Here is that same person marked
up with RDFa:

<div vocab="http://schema.org" typeof="Person">
 <p property="name">Cindy Sherman</p>
 <p property="telephone">555.999-2456</p>
</div>

JSON-LD
json-ld.org
JSON-LD (JavaScript Object Notation to serialize Linked
Data) is a different animal in that it puts the object types
and their properties in a script removed from the HTML
markup. Here is the JSON-LD version of the same person:

<script type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@type": "Person",
 "name": "Cindy Sherman"
 "telephone": "555.999-2456"
}
</script>

It is possible to make up your own vocabulary for use on
your sites, but it is more powerful to use a standardized
vocabulary. The big search engines have created Schema.org,
a mega-vocabulary that includes standardized properties for
hundreds of “things” like blog posts, movies, books, products,
reviews, people, organizations, and so on. Schema.org
vocabularies may be used with Microdata, RDFa, and JSON-LD
(Microformats maintain their own separate vocabularies). You
can see pointers to the Schema.org “Person” vocabulary in the
preceding examples. For more information, the Schema.org
“Getting Started” page provides an easy-to-read introduction:
schema.org/docs/gs.html.
There is a lot more to say about structured data than I can fit
in this book, but once you get the basic semantics of HTML
down, it is definitely a topic worthy of further exploration.

5. Marking Up Text

Improving Accessibility with ARIA

103

http://schema.org/Person

<ul id="tabs" role="toolbar">
 A-G
 H-O
 P-T
 U-Z

Here’s another example that reveals that the “status” div is used as an alert
message:

<div id="status" role="alert">You are no longer connected to the
server.</div>

Some roles describe “landmarks” that help readers find their way through
the document, such as navigation, banner, contentinfo, complementary, and
main. You may notice that some of these sound similar to the page-structuring
elements that were added in HTML5, and that’s no coincidence. One of the
benefits of having improved semantic section elements is that they can be
used as landmarks, replacing <div id="main" role="main"> with main.

Most current browsers already recognize the implicit roles of the new ele-
ments, but some developers explicitly add ARIA roles until all browsers
comply. The sectioning elements pair with the ARIA landmark roles in the
following way:

<nav role="navigation">

<header role="banner"> (see Note)

<main role="main">

<aside role="complementary">

<footer role="contentinfo">

States and Properties
ARIA also defines a long list of states and properties that apply to interactive
elements such as form widgets and dynamic content. States and properties
are indicated with attributes prefixed with aria-, such as aria-disabled,
aria-describedby, and many more.

The difference between a state and property is subtle. For properties, the
value of the attribute is more likely to be stable, such as aria-labelledby,
which associates labels with their respective form controls, or aria-haspopup,
which indicates the element has a related pop-up menu. States have values
that are more likely to be changed as the user interacts with the element, such
as aria-selected.

For Further Reading
Obviously, this is not enough ARIA coaching to allow you to start confi-
dently using it today, but it should give you a good feel for how it works and

NOTE

The banner role is used when the header
applies to only the whole page, not just a
section or article.

Part II. HTML for Structure

Improving Accessibility with ARIA

104

its potential value. When you are ready to dig in and take your skills to a
professional level, here is some recommended reading:

The WAI-ARIA Working Draft (www.w3.org/TR/wai-aria-1.1/)

This is the current Working Draft of the specification as of this writing.

ARIA in HTML (www.w3.org/TR/html-aria/)

This W3C Working Draft helps developers use ARIA attributes with
HTML correctly. It features a great list of every HTML element, whether
it has an implicit role (in which ARIA should not be used), and what roles,
states, and properties apply.

ARIA Resources at MDN Web Docs
(developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA)

This site features lots of links to ARIA-related and up-to-date resources. It
is a good starting point for exploration.

HTML5 Accessibility (www.html5accessibility.com)

This site tests which new HTML5 features are accessibly supported by
major browsers.

CHARACTER ESCAPES

There’s just one more text-related topic before we close out this chapter. The
section title makes it sound like someone left the gate open and all the char-
acters got out. The real meaning is more mundane, albeit useful to know.

You already know that as a browser parses an HTML document, when it
runs into a < symbol, it interprets it as the beginning of a tag. But what if you
just need a less-than symbol in your text? Characters that might be misinter-
preted as code need to be escaped in the source document. Escaping means
that instead of typing in the character itself, you represent it by its numeric
or named character entity reference. When the browser sees the character
reference, it substitutes the proper character in that spot when the page is
displayed.

There are two ways of referring to (escaping) a specific character:

•	 Using a predefined abbreviated name for the character (called a named
entity; see Note).

•	 Using an assigned numeric value that corresponds to its position in a
coded character set (numeric entity). Numeric values may be in decimal
or hexadecimal format.

All character references begin with an & (ampersand) and end with a ; (semi-
colon).

S P EC T I P

The W3C HTML specification now
lists which ARIA roles and properties
apply in the descriptions of every
HTML element (www.w3.org/TR/
html52/).

NOTE

HTML defines hundreds of named enti-
ties as part of the markup language,
which is to say you can’t make up your
own entity.

5. Marking Up Text

Character Escapes

105

https://www.w3.org/TR/wai-aria-1.1/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
http://www.html5accessibility.com

An example should make this clear. I’d like to use a less-than symbol in my
text, so I must use the named entity (<) or its numeric equivalent (<)
where I want the symbol to appear (FIGURE 5-17):

<p>3 tsp. < 3 Tsp.</p>

or:

<p>3 tsp. < 3 Tsp.</p>

FIGURE 5-17.   The special character is substituted for the character reference when
the document is displayed in the browser.

When to Escape Characters
There are a few instances in which you may need or want to use a character
reference.

HTML syntax characters
The <, >, &, ", and ' characters have special syntax meaning in HTML, and
may be misinterpreted as code. Therefore, the W3C recommends that you
escape <, >, and & characters in content. If attribute values contain single or
double quotes, escaping the quote characters in the values is advised. Quote
marks are fine in the content and do not need to be escaped. (See TABLE 5-2.)

TABLE 5-2.   Syntax characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.

< Less-than symbol < < <

> Greater-than symbol > > >

" Quotation mark " " "

' Apostrophe ' ' '

& Ampersand & & &

M AR KU P T I P

These character entities are
useful when you need to show an
example of HTML markup on a
web page.

Part II. HTML for Structure

Character Escapes

106

Invisible or ambiguous characters
Some characters have no graphic display and are difficult to see in the
markup (TABLE 5-3). These include the non-breaking space (), which
is used to ensure that a line doesn’t break between two words. So, for instance,
if I mark up my name like this:

Jennifer Robbins

I can be sure that my first and last names will always stay together on a line.
Another use for non-breaking spaces is to separate digits in a long number,
such as 32 000 000.

Zero-width space can be placed in languages that do not use spaces between
words to indicate where the line should break. A zero-width joiner is a
non-printing space that causes neighboring characters to display in their
connected forms (common in Arabic and Indic languages). Zero-width non-
joiners prevent neighboring characters from joining to form ligatures or other
connected forms.

TABLE 5-3.   Invisible characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.

(non-printing) Non-breaking space

(non-printing) En space      

(non-printing) Em space      

(non-printing) Zero-width space (none) ​ ​

(non-printing) Zero-width non-joiner ‌ ‌ ‌

(non-printing) Zero-width joiner ‍ ‍ ‍

Input limitations
If your keyboard or editing software does not include the character you need
(or if you simply can’t find it), you can use a character entity to make sure you
get the character you want. The W3C doesn’t endorse this practice, so use the
proper character in your source if you are able. TABLE 5-4 lists some special
characters that may be less straightforward to type into the source.

5. Marking Up Text

Character Escapes

107

TABLE 5-4.   Special characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.

‘ Left curly single quote ‘ ‘ ‘

’ Right curly single quote ’ ’ ’

“ Left curly double quote “ “ “

” Right curly double quote ” ” ”

... Horizontal ellipsis … … …

© Copyright © © ©

® Registered trademark ® ® ®

™ Trademark ™ ™ …

£ Pound £ £ £

¥ Yen ¥ ¥ ¥

€ Euro € € €

– En dash – – –

— Em dash — — —

A complete list of HTML named entities and their Unicode code-points can
be found as part of the HTML5 specification at www.w3.org/TR/html5/syntax.
html#named-character-references. For a more user-friendly listing of named
and numerical entities, I recommend this archived page at the Web Standards
Project: www.webstandards.org/learn/reference/charts/entities.

PUTTING IT ALL TOGETHER

So far, you’ve learned how to mark up elements, and you’ve met all of the
HTML elements for adding structure and meaning to text content. Now
it’s just a matter of practice. EXERCISE 5-3 gives you an opportunity to try
out everything we’ve covered so far: document structure elements, grouping
(block) elements, phrasing (inline) elements, sectioning elements, and char-
acter entities. Have fun!

Part II. HTML for Structure

Putting It All Together

108

EXERCISE 5-3. The Black Goose Bistro News page

Now that you’ve been introduced to all of the text elements, you can put them to work
by marking up the News page for the Black Goose Bistro site. Get the starter text and
finished markup files at learningwebdesign.com/5e/materials. Once you have the text,
follow the instructions listed after it. The resulting page is shown in FIGURE 5-18.

The Black Goose Bistro News

Home
Menu
News
Contact

Summer Menu Items
posted by BGB, June 18, 2017
Our chef has been busy putting together the perfect menu for the summer
months. Stop by to try these appetizers and main courses while the days
are still long.

Appetizers
Black bean purses
Spicy black bean and a blend of Mexican cheeses wrapped in sheets of
phyllo and baked until golden. $3.95

Southwestern napoleons with lump crab -- new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade
flour tortillas. $7.95

Main courses

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then
grilled to perfection. Served with spicy peanut sauce and jasmine rice.
$12.95

Jerk rotisserie chicken with fried plantains -- new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and
fragrant jerk sauce and served with fried plantains and fresh mango.
$12.95

Low and Slow
posted by BGB, November 15, 2016
<p>This week I am extremely excited about a new cooking
technique called <dfn><i>sous vide</i></dfn>. In <i>sous vide</i>
cooking, you submerge the food (usually vacuum-sealed in plastic) into a
water bath that is precisely set to the target temperature you want the
food to be cooked to. In his book, <cite>Cooking for Geeks</cite>, Jeff
Potter describes it as <q>ultra-low-temperature poaching.</q></p>

<p>Next month, we will be serving <i>Sous Vide</i> Salmon with Dill
Hollandaise. To reserve a seat at the chef table, contact us before
<time datetime="20161130">November 30</time>.</p>

Location: Baker’s Corner, Seekonk, MA
Hours: Tuesday to Saturday, 11am to 11pm

All content copyright 2017, Black Goose Bistro and Jennifer Robbins

M AR KU P T I P

Remember that indenting each
hierarchical level in your HTML
source consistently makes the
document easier to scan and
update later.

→

NOTE

The “Low and Slow” paragraph is
already marked up with the inline
elements from EXERCISE 5-2).

5. Marking Up Text

Putting It All Together

109

M AR KU P T I PS

•	 Choose the element that best fits the meaning of the
selected text.

•	 Don’t forget to close elements with closing tags.

•	 Put all attribute values in quotation marks for clarity.

•	 “Copy and paste” is your friend when adding the same
markup to multiple elements. Just be sure what you
copied is correct before you paste it throughout the
document.

FIGURE 5-18.   The finished menu page.

1.	 Start by adding the DOCTYPE declaration to tell browsers this is
an HTML5 document.

2.	 Add all the document structure elements first (html, head,
meta, title, and body). Give the document the title “The Black
Goose Bistro News.”

3.	 The first thing we’ll do is identify the top-level heading and
the list of links as the header for the document by wrapping
them in a header element (don’t forget the closing tag). Within
the header, the headline should be an h1 and the list of links
should be an unordered list (ul). Don’t worry about making the
list items links; we’ll get to linking in the next chapter. Give the
list more meaning by identifying it as the primary navigation for
the site (nav).

4.	 The News page has two posts titled “Summer Menu Items” and
“Low and Slow.” Mark up each one as an article.

5.	 Now we’ll get the first article into shape. Let’s create a header
for this article that contains the heading (h2 this time because
we’ve moved down in the document hierarchy) and the
publication information (p). Identify the publication date for the
article with the time element, just as in EXERCISE 5-2.

6.	 The content after the header is a simple paragraph. However,
the menu has some interesting things going on. It is divided
into two conceptual sections (Appetizers and Main Courses),
so mark those up as section elements. Be careful that the final
closing section tag (</section>) appears before the closing
article tag (</article>) so the elements are nested correctly

and don’t overlap. Finally, let’s identify the sections with id
attributes. Name the first one “appetizers” and the second
“maincourses.”

7.	 With our sections in place, now we can mark up the content.
We’re down to h3 for the headings in each section. Choose
the most appropriate list elements to describe the menu item
names and their descriptions. Mark up the lists and each item
within the lists.

8.	 Now we can add a few fine details. Classify each price as “price”
using span elements.

9.	 Two of the dishes are new items. Change the double hyphens
to an em dash character and mark up “new item!” as “strongly
important.” Classify the title of each new dish as “newitem” (use
the existing dt element; there is no need to add a span this
time). This allows us to target menu titles with the “newitem”
class and style them differently than other menu items.

10.	That takes care of the first article. The second article is
already mostly marked up from the previous exercise, but you
should mark up the header with the appropriate heading and
publication date information.

11.	So far, so good, right? Now make the remaining content that
applies to the whole page a footer. Mark each line of content
within the footer as a paragraph.

12.	Let’s give the location and hours information some context
by putting them in a div named “about.” Make the labels
“Location” and “Hours” appear on a line by themselves by
adding line breaks after them. Mark up the hours with the time
element (you don’t need the date or time zone portions).

13.	Finally, copyright information is typically “small print” on a
document, so mark it up accordingly. As the final touch, add a
copyright symbol after the word “copyright” using the keyboard
or the © character entity.

Save the as bistro_news.html, and check your page in a modern
browser. You can also upload it to validator.nu and make sure it is
valid (it’s a great way to spot mistakes). How did you do?

EXERCISE 5-3. Continued

Part II. HTML for Structure

Putting It All Together

110

http://validator.nu

TEST YOURSELF

Were you paying attention? Here is a rapid-fire set of questions to find out.
Find the answers in Appendix A.

1.	 Add the markup to insert a thematic break between these paragraphs:

	 <p>People who know me know that I love to cook.</p>

	 <p>I've created this site to share some of my favorite recipes.</p>

2.	 What’s the difference between a blockquote and a q element?

3.	 Which element displays whitespace exactly as it is typed into the source
document?

4.	 What is the difference between a ul and an ol element?

5.	 How do you remove the bullets from an unordered list? (Be general, not
specific.)

6.	 What element would you use to mark up “W3C” and provide its full
name (World Wide Web Consortium)? Can you write out the complete
markup?

7.	 What is the difference between dl and dt?

8.	 What is the difference between id and class?

9.	 What is the difference between an article and a section?

Want More Practice?
Try marking up your own résumé.
Start with the raw text and add
document structure elements,
content grouping elements, and
inline elements as we’ve done in
EXERCISE 5-3. If you don’t see
an element that matches your
information just right, try creating
one using a div or a span.

5. Marking Up Text

Test Yourself

111

ELEMENT REVIEW: TEXT ELEMENTS

The global attributes apply to all text elements. Additional attributes are listed under their respective elements.

Page sections

address Author contact information

article Self-contained content

aside Tangential content (sidebar)

footer Related content
header Introductory content
nav Primary navigation

section Conceptually related group of content

Heading content

h1...h6 Headings, levels 1 through 6

Grouping content elements and attributes

blockquote Blockquote

cite The URL of the cited content

div Generic division

figure Related image or resource

figcaption Text description of a figure

hr Paragraph-level thematic break
(horizontal rule)

main Primary content area of page or app

p Paragraph

pre Preformatted text

List elements and attributes

dd Definition

dl Definition list

dt Term

li List item (for ul and ol)

value Provides a number for an li in an ol

ol Ordered list

reversed Numbers the list in reverse order

start Provides the starting number for the
list

ul Unordered list

Breaks

br Line break

wbr Word break

Phrasing elements and attributes
abbr Abbreviation

b Added visual attention (bold)

bdi Bidirectional isolation
bdo Bidirectional override
cite Citation
code Code sample
data Machine-readable equivalent

del Deleted text

cite The URL of cited content.

datetime Specifies the date and time of a change
dfn Defining term
em Stress emphasis
i Alternate voice (italic)

ins Inserted text

cite The URL of cited content

datetime Specifies the date and time of a change
kbd Keyboard input

mark Highlighted text
q Short inline quotation

cite The URL of the cited content

ruby Section containing ruby text

rp Parentheses in ruby text

rt Ruby annotation
s Strike-through; incorrect text
samp Sample output
small Annotation; “small print”
span Generic phrase of text
strong Strong importance
sub Subscript
sup Superscript

time Machine-readable time data

datetime Provides machine readable date/time

pubdate Indicates the time refers to publication
u Added attention (underline)

Part II. HTML for Structure

Element Review: Text Elements

112

IN THIS CHAPTER

Linking to external pages

Linking to documents on
your own server

Linking to a specific point
in a page

Targeting new windows

If you’re creating a page for the web, chances are you’ll want to link to other
web pages and resources, whether on your own site or someone else’s. Linking,
after all, is what the web is all about. In this chapter, we’ll look at the markup
that makes links work—links to other sites, to your own site, and within a
page. There is one element that makes linking possible: the anchor (a).

<a>…
Anchor element (hypertext link)

To make a selection of text a link, simply wrap it in opening and closing
<a>... tags and use the href attribute to provide the URL of the target
page. The content of the anchor element becomes the hypertext link. Here is
an example that creates a link to the O’Reilly Media site:

Go to the O'Reilly Media site

To make an image a link, simply put the img element in the anchor element:

<img src="tarsierlogo.gif"
alt="O'Reilly Media site">

By the way, you can put any HTML content element in an anchor to make it
a link, not just images.

Nearly all graphical browsers display linked text as blue and underlined by
default. Some older browsers put a blue border around linked images, but
most current ones do not. Visited links generally display in purple. Users
can change these colors in their browser preferences, and, of course, you can
change the appearance of links for your sites using style sheets. I’ll show you
how in Chapter 13, Colors and Backgrounds.

When a user clicks or taps the linked text or image, the page you specify in
the anchor element loads in the browser window. The linked image markup
sample shown previously might look like FIGURE 6-1.

ADDING LINKS 6
CHAPTER

USA B I L I T Y T I P

One word of caution: if you choose to
change your link colors, keep them
consistent throughout your site so as
not to confuse your users.

113

THE HREF ATTRIBUTE

You’ll need to tell the browser which document to link to, right? The href
(hypertext reference) attribute provides the address of the page or resource
(its URL) to the browser. The URL must always appear in quotation marks.
Most of the time you’ll point to other HTML documents; however, you can
also point to other web resources, such as images, audio, and video files.

Because there’s not much to slapping anchor tags around some content, the
real trick to linking comes in getting the URL correct. There are two ways to
specify the URL:

Absolute URLs

Absolute URLs provide the full URL for the document, including the
protocol (http:// or https://), the domain name, and the pathname as
necessary. You need to use an absolute URL when pointing to a document
out on the web (i.e., not on your own server):

href="http://www.oreilly.com/"

Sometimes, when the page you’re linking to has a long URL pathname, the
link can end up looking pretty confusing (FIGURE 6-2). Just keep in mind
that the structure is still a simple container element with one attribute.
Don’t let the long pathname intimidate you.

Relative URLs

Relative URLs describe the pathname to a file relative to the current
document. Relative URLs can be used when you are linking to another
document on your own site (i.e., on the same server). It doesn’t require the
protocol or domain name—just the pathname:

href="recipes/index.html"

In this chapter, we’ll add links using absolute and relative URLs to my cook-
ing website, Jen’s Kitchen (see FIGURE 6-3). Absolute URLs are easy, so let’s
get them out of the way first.

AT A G L A N C E

Anchor Structure
The simplified structure of the anchor
element is as follows:

linked content

M AR KU P T I P

URL Wrangling
If you’re linking to a page with a long
URL, it’s helpful to copy the URL from
the location toolbar in your browser
and paste it into your document. That
way, you avoid mistyping a single
character and breaking the whole
link.

FIGURE 6-1.   When a user clicks or taps the linked text or image, the page specified in
the anchor element loads in the browser window.

Part II. HTML for Structure

The href Attribute

114

LINKING TO PAGES ON THE WEB

Many times, you’ll want to create a link to a page that you’ve found on the
web. This is known as an external link because it is going to a page outside of
your own server or site. To make an external link, provide the absolute URL,
beginning with http:// (the protocol). This tells the browser, “Go out on the
web and get the following document.”

I want to add some external links to the Jen’s Kitchen home page (FIGURE 6-3).
First, I’ll link the list item “The Food Network” to the www.foodnetwork.com
site. I marked up the link text in an anchor element by adding opening and
closing anchor tags. Notice that I’ve added the anchor tags inside the list item
(li) element. That’s because only li elements are permitted to be children of
a ul element; placing an a element directly inside the ul element would be
invalid HTML.

<a>The Food Network

Next, I add the href attribute with the complete URL for the site:

The Food Network

And voilà! Now “The Food Network” appears as a link and takes my visitors
to that site when they click or tap it. Give it a try in EXERCISE 6-1.

Linked textURL

Opening anchor tag

Closing anchor tag

<a href="https://www.amazon.com/Bequet-Gourmet-Caramel-24oz
-Celtic/dp/B00GZEU10Y/ref=sr_1_1_a_it?ie=UTF8&qid=1467055107&s
r=8-1&keywords=bequet">Bequet Caramels

FIGURE 6-2.   An example of a long URL. Although it may make the anchor tag look
confusing, the structure is the same.

TR Y I T

Working Along with
Jen’s Kitchen

FIGURE 6-3.  The Jen’s Kitchen
page.

All the files for the Jen’s Kitchen
website are available online at
learningwebdesign.com/5e/
materials. Download the entire
directory, making sure not to change
the way its contents are organized.
The pages aren’t much to look at, but
they will give you a chance to develop
your linking skills.

The resulting markup for all of the
exercises is also provided.

EXERCISE 6-1.  Make an external link

Open the file index.html from the jenskitchen folder. Make the list item “Epicurious” link to
its web page at www.epicurious.com, following my Food Network link example:

 The Food Network
 Epicurious

When you are done, save index.html and open it in a browser. If you have an internet
connection, you can click your new link and go to the Epicurious site. If the link doesn’t
take you there, go back and make sure that you didn’t miss anything in the markup.

6. Adding Links

Linking to Pages on the Web

115

LINKING WITHIN YOUR OWN SITE

A large portion of the linking you do is between pages of your own site: from
the home page to section pages, from section pages to content pages, and so
on. In these cases, you can use a relative URL—one that calls for a page on
your own server.

Without “http://”, the browser looks on the current server for the linked docu-
ment. A pathname, the notation used to point to a particular file or directory,
(see Note) tells the browser where to find the file. Web pathnames follow the
Unix convention of separating directory and filenames with forward slashes
(/). A relative pathname describes how to get to the linked document starting
from the location of the current document.

Relative pathnames can get a bit tricky. In my teaching experience, nothing
stumps beginners like writing relative pathnames, so we’ll take it one step
at a time. I recommend you do EXERCISES 6-2 through 6-8 as we go along.

All of the pathname examples in this section are based on the structure of
the Jen’s Kitchen site shown in FIGURE 6-4. When you diagram the structure
of the directories for a site, it generally ends up looking like an inverted tree
with the root directory at the top of the hierarchy. For the Jen’s Kitchen site,
the root directory is named jenskitchen. For another way to look at it, there
is also a view of the directory and subdirectories as they appear in the Finder
on my Mac.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

/
(jenskitchen)

FIGURE 6-4.   A diagram of the jenskitchen site structure.

NOTE

On PCs and Macs, files are organized into
“folders,” but in the web development
world, it is more common to refer to
the equivalent and more technical term
“directory.” A folder is just a directory with
a cute icon.

Important Pathname
Don’ts
When writing relative pathnames,
follow these rules to avoid common
errors:

•	 Don’t use backslashes (\). Web URL
pathnames use forward slashes (/)
only.	

•	 Don’t start with the drive name
(D:, C:, etc.). Although your pages
will link to each other successfully
while they are on your own
computer, once they are uploaded
to the web server, the drive name
is irrelevant and will break your
links.

•	 Don’t start with file://. This also
indicates that the file is local and
causes the link to break when it is
on the server.

Part II. HTML for Structure

Linking Within Your Own Site

116

Linking Within a Directory

The most straightforward relative URL points to another file within the same
directory. When linking to a file in the same directory, you need to provide
only the name of the file (its filename). When the URL is just a filename, the
server looks in the current directory (that is, the directory that contains the
document with the link) for the file.

In this example, I want to make a link from my home page (index.html) to
a general information page (about.html). Both files are in the same directory
(jenskitchen). So, from my home page, I can make a link to the information
page by simply providing its filename in the URL (FIGURE 6-5):

About the site...

EXERCISE 6-2 gives you a chance to mark up a simple link yourself.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

The documents index.html
and about.html are in the
same directory.

From index.html:
About this page...

The server looks in the same directory for the file.

/
(jenskitchen)

FIGURE 6-5.   Writing a relative URL to another document in the same directory.

A link to a filename
indicates the linked file is
in the same directory as
the current document.

EXERCISE 6-2. Link in the same directory

Open the file about.html from the jenskitchen folder. Make the paragraph “Back to the
home page” at the bottom of the page link back to index.html. The anchor element should
be contained in the p element:

<p>Back to the home page</p>

When you are done, save about.html and open it in a browser. You don’t need an internet
connection to test links locally (that is, on your own computer). Clicking the link should
take you back to the home page.

6. Adding Links

Linking Within Your Own Site

117

EXERCISE 6-3. Link to a file in a directory

Open the file index.html from the jenskitchen folder. Make the list item “Tapenade (Olive
Spread)” link to the file tapenade.html in the recipes directory. Remember to nest the
elements correctly:

Tapenade (Olive Spread)

When you are done, save index.html and open it in a browser. You should be able to click
your new link and see the recipe page for tapenade. If not, make sure that your markup is
correct and that the directory structure for jenskitchen matches the examples.

Linking to a Lower Directory

But what if the files aren’t in the same directory? You have to give the browser
directions by including the pathname in the URL. Let’s see how this works.

Getting back to our example, my recipe files are stored in a subdirectory
called recipes. I want to make a link from index.html to a file in the recipes
directory called salmon.html. The pathname in the URL tells the browser to
look in the current directory for a directory called recipes, and then look for
the file salmon.html (FIGURE 6-6):

Garlic Salmon

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

salmon.html is one
directory lower than
index.html.

From index.html:
Garlic Salmon

The server looks in the same directory as the current
document for the recipes directory. There it finds salmon.html.

/
(jenskitchen)

FIGURE 6-6.   Writing a relative URL to a document that is one directory level lower
than the current document.

Have a try at linking to a file in a directory in EXERCISE 6-3.

Part II. HTML for Structure

Linking Within Your Own Site

118

Now let’s link down to the file called couscous.html, which is located in the
pasta subdirectory. All we need to do is provide the directions through two
subdirectories (recipes, then pasta) to couscous.html (FIGURE 6-7):

Couscous...

Directories are separated by forward slashes. The resulting anchor tag tells the
browser, “Look in the current directory for a directory called recipes. There
you’ll find a directory called pasta, and in there is the file couscous.html.”

Now that we’ve done two directory levels, you should get the idea of how
pathnames are assembled. This same method applies for relative pathnames
that drill down through any number of directories. Just start with the name
of the directory that is in the same location as the current file, and follow each
directory name with a slash until you get to the linked filename.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

couscous.html is two directories
lower than index.html.

From index.html:
Couscous

The server looks in the same directory as the current
document for the recipes directory, then looks for the
pasta directory.

/
(jenskitchen)

FIGURE 6-7.   Writing a relative URL to a document that is two directory levels lower
than the current document. You can try it yourself in EXERCISE 6-4.

When you link to a file
in a lower directory,
the pathname contains
the names of each
subdirectory you go
through to get to the file.

EXERCISE 6-4. Link two directories down

Open the file index.html from the jenskitchen folder. Make the list item “Linguine with Clam
Sauce” link to the file linguine.html in the pasta directory:

Linguine with Clam Sauce

When you are done, save index.html and open it in a browser. Click the new link to get the
delicious recipe.

6. Adding Links

Linking Within Your Own Site

119

Linking to a Higher Directory
So far, so good, right? Now it gets more interesting. This time we’re going to
go in the other direction and make a link from the salmon recipe page back
to the home page, which is one directory level up.

In Unix, there is a pathname convention just for this purpose, the “dot-dot-
slash” (../). When you begin a pathname with ../, it’s the same as telling the
browser “back up one directory level” and then follow the path to the speci-
fied file. If you are familiar with browsing files on your desktop, it is helpful to
know that a “../” has the same effect as clicking the Up button in Windows
Explorer or the left-arrow button in the Finder on macOS.

Let’s start by making a link from salmon.html back to the home page (index.
html). Because salmon.html is in the recipes subdirectory, we need to go back
up to the jenskitchen directory to find index.html. This pathname tells the
browser to “back up one level,” then look in that directory for index.html
(FIGURE 6-8):

<p>[Back to home page]</p>

Note that the ../ stands in for the name of the higher directory, and we don’t
need to write out jenskitchen in the pathname.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

index.html is one directory
higher than salmon.html.

From salmon.html:
[Back to the home page]

The ../ tells the server to back up one level (to the jenskitchen
directory) to look for the document index.html.

jenskitchen

recipes

pasta

../

/
(jenskitchen)

FIGURE 6-8.   Writing a relative URL to a document that is one directory level higher
than the current document.

Try adding a dot-dot-slash pathname to a higher directory in EXERCISE 6-5.

But how about linking back to the home page from couscous.html? Can you
guess how you’d back your way out of two directory levels? Simple: just use
the dot-dot-slash twice (FIGURE 6-9).

Each ../ at the beginning
of the pathname tells
the browser to go up one
directory level to look for
the file.

Part II. HTML for Structure

Linking Within Your Own Site

120

EXERCISE 6-6. Link up two directory levels

OK, now it’s your turn to give it a try. Open the file linguine.html and make the last
paragraph link back to the home page by using ../../ as I have done:

<p>[Back to the home page]</p>

When you are done, save the file and open it in a browser. You should be able to link to the
home page.

A link on the couscous.html page back to the home page (index.html) would
look like this:

<p>[Back to home page]</p>

The first ../ backs up to the recipes directory; the second ../ backs up to the
top-level directory (jenskitchen), where index.html can be found. Again, there
is no need to write out the directory names; the ../ does it all.

Now you try (EXERCISE 6-6).

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

salmon.html

about.html

recipes/

pasta/

index.html is two directories
higher than couscous.html.

From couscous.html:
[Back to the home page]

The ../../ tells the server to back up two levels (to recipes
then jenskitchen) to look for the document index.html.

jenskitchen

recipes

pasta

../

../

/
(jenskitchen)

FIGURE 6-9.   Writing a relative URL to a document that is two directory levels higher
than the current document.

NOTE

I confess to still sometimes silently chant-
ing “go-up-a-level, go-up-a-level” for
each ../ when trying to decipher a com-
plicated relative URL. It helps me sort
things out.

EXERCISE 6-5. Link to a higher directory

Open the file tapenade.html from the recipes directory. At the bottom of the page, you’ll
find this paragraph:

<p>[Back to the home page]</p>

Using the notation described in this section, make this text link back to the home page
(index.html), located one directory level up.

6. Adding Links

Linking Within Your Own Site

121

Linking with Site Root Relative Pathnames
All sites have a root directory, the directory that contains all the directories
and files for the site. So far, all of the pathnames we’ve looked at are relative
to the document with the link. Another way to write a relative pathname is to
start at the root directory and list the subdirectory names to the file you want
to link to. This type of pathname is known as site root relative.

In the Unix pathname convention, a forward slash (/) at the start of the
pathname indicates that the path begins at the root directory. The site root
relative pathname in the following link reads, “Go to the very top-level direc-
tory for this site, open the recipes directory, and then find the salmon.html
file” (FIGURE 6-10):

Garlic Salmon

/
(jenskitchen)

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

In pathnames, the root directory
is always identified by a slash (/),
not its directory name.

From any document on the site:
Garlic Salmon

The / at the beginning of the pathname tells the browser
to start at the root directory (jenskitchen).

FIGURE 6-10.   Writing a relative URL starting at the root directory.

Note that you don’t need to (and you shouldn’t) write the name of the root
directory (jenskitchen) in the path—the forward slash (/) at the beginning
represents the top-level directory in the pathname. From there, just specify
the directories the browser should look in.

Because this type of link starts at the root to describe the pathname, it works
from any document on the server, regardless of which subdirectory it may be
located in. Site root relative links are useful for content that might not always
be in the same directory, or for dynamically generated material. They also
make it easy to copy and paste links between documents.

On the downside, however, the links won’t work on your local machine,
because they will be relative to your hard drive. You’ll have to wait until the
site is on the final server to check that links are working.

Site root relative links
are generally preferred
because of their flexibility.

WARNIN G

Site root relative pathnames won’t work
on your local computer unless it is set up
as a server.

Part II. HTML for Structure

Linking Within Your Own Site

122

Writing Pathnames to Images
The src attribute in the img element works the same as the href attribute in
anchors. Because you’ll most likely be using images from your own server, the
src attributes within your image elements will be set to relative URLs.

Let’s look at a few examples from the Jen’s Kitchen site. First, to add an image
to the index.html page, you’d use the following markup:

The URL says, “Look in the current directory (jenskitchen) for the images
directory; in there you will find jenskitchen.gif.”

Now for the pièce de résistance. Let’s add an image to the file couscous.html:

This is a little more complicated than what we’ve seen so far. This pathname
tells the browser to go up two directory levels to the top-level directory and,
once there, look in the images directory for an image called spoon.gif. Whew!

Of course, you could simplify that path by going the site root relative route, in
which case the pathname to spoon.gif (and any other file in the images direc-
tory) could be accessed like this:

The trade-off is that you won’t see the image in place until the site is uploaded
to the server, but it does make maintenance easier once it’s there.

EXERCISE 6-7. Try a few more

Before we move on, you may want to try your hand at writing a few more relative URLs
to make sure you’ve really gotten it. You can write your answers here in the book, or if
you want to test your markup to see whether it works, make changes in the actual files.
Note that the text shown here isn’t included on the exercise pages—you’ll need to add it
before you can create the link (for example, type in “Go to the Tapenade recipe” for the
first question). The final code is in the finished exercise files in the materials folder for this
chapter. I also included them in Appendix A.

1.	 Create a link on salmon.html to tapenade.html:

Go to the Tapenade recipe

2.	 Create a link on couscous.html to salmon.html:

Try this with Garlic Salmon.

3.	 Create a link on tapenade.html to linguine.html:

Try the Linguine with Clam Sauce

4.	 Create a link on linguine.html to about.html:

About Jen's Kitchen

5.	 Create a link on tapenade.html to www.allrecipes.com:

Go to Allrecipes.com

NOTE

Most of the pathnames in EXERCISE

6-7 could be site root relative, but write
them relative to the listed document for
the practice.

6. Adding Links

Linking Within Your Own Site

123

Linking to a Specific Point in a Page
Did you know you can link to a specific point in a web page? This is useful
for providing shortcuts to information at the bottom of a long, scrolling page
or for getting back to the top of a page with just one click or tap. Linking to a
specific point in the page is also known as linking to a document fragment.

Linking to a particular spot within a page is a two-part process. First, identify
the destination, and then make a link to it. In the following example, I create
an alphabetical index at the top of the page that links down to each alpha-
betical section of a glossary page (FIGURE 6-11). When users click the letter H,
they’ll jump to the “H” heading lower on the page.

Step 1: Identifying the destination
I like to think of this step as planting a flag in the document so I can get back
to it easily. To create a destination, use the id attribute to give the target ele-
ment in the document a unique name (that’s “unique” as in the name may
appear only once in the document, not “unique” as in funky and interesting).
In web lingo, this is the fragment identifier.

You may remember the id attribute from Chapter 5, Marking Up Text, where
we used it to name generic div and span elements. Here, we’re going to use it
to name an element so that it can serve as a fragment identifier—that is, the
destination of a link.

Here is a sample of the source for the glossary page. Because I want users to
be able to link directly to the “H” heading, I’ll add the id attribute to it and
give it the value “startH” (FIGURE 6-11 1):

<h2 id="startH">H</h2>

Step 2: Linking to the destination
With the identifier in place, now I can make a link to it.

At the top of the page, I’ll create a link down to the “startH” fragment 2. As for
any link, I use the a element with the href attribute to provide the location of
the link. To indicate that I’m linking to a fragment, I use the octothorpe symbol
(#), also called a hash, pound, or number symbol, before the fragment name:

<p>... F | G | H | I | J ...</p>

And that’s it. Now when someone clicks the H from the listing at the top of
the page, the browser will jump down and display the section starting with
the “H” heading 3.

NOTE

Linking to another spot on the same
page works well for long, scrolling pages,
but the effect may be lost on a short web
page.

Fragment names
are preceded by an
octothorpe symbol (#).

Part II. HTML for Structure

Linking Within Your Own Site

124

Linking to a Fragment in Another Document
You can link to a fragment in another document by adding the fragment
name to the end of the URL (absolute or relative). For example, to make a
link to the “H” heading of the glossary page from another document in that
directory, the URL would look like this:

See the Glossary, letter H

You can even link to specific destinations in pages on other sites by putting
the fragment identifier at the end of an absolute URL, like so:

See the Glossary,
letter H

USA B I L I T Y T I P

To the Top!
It is common practice to add a link
back up to the top of the page when
linking into a long page of text. This
alleviates the need for users to scroll
back after every link.

Identify the destination by using the id attribute.

<h2 id="startH">H</h2>
<dl>
<dt>hexadecimal</dt>
...

Create a link to the destination. The # before the name is necessary to
identify this as a fragment and not a filename.

<p>... | F | G | H | I | J ...</p>

1

2

3

FIGURE 6-11.   Linking to a specific destination (a fragment) within a single web page.

NOTE

Some developers help their brothers and
sisters out by proactively adding ids as
anchors at the beginning of any thematic
section of content (within a reasonable
level, and depending on the site). That
way, other people can link back to any
section in their content.

6. Adding Links

Linking Within Your Own Site

125

Of course, you don’t have any control over the named fragments in other
people’s web pages. The destination points must be inserted by the author of
those documents in order for them to be available to you. The only way to
know whether they are there and where they are is to “View Source” for the
page and look for them in the markup. If the fragments in external documents
move or go away, the page will still load; the browser will just go to the top of
the page as it does for regular links.

EXERCISE 6-8 gives you an opportunity to add links to fragments in the
example glossary page.

TARGETING A NEW BROWSER WINDOW

One problem with putting links on your page is that when people click them,
they may never come back to your content. The traditional solution to this
dilemma has been to make the linked page open in a new browser window.
That way, your visitors can check out the link and still have your content
available where they left it.

Be aware that opening new browser windows can cause hiccups in the user
experience of your site. Opening new windows is problematic for accessibil-
ity, and may be confusing to some users. They might not be able to tell that a
new window has opened or they may never find their way back to the origi-
nal page. At the very least, new windows may be perceived as an annoyance
rather than a convenience. So consider carefully whether you need a new
window and whether the benefits outweigh the potential drawbacks.

The method you use to open a link in a new browser window depends on
whether you want to control its size. If the size of the window doesn’t matter,
you can use HTML markup alone. However, if you want to open the new
window with particular pixel dimensions, then you need to use JavaScript
(see the “Pop-up Windows” sidebar).

Pop-up Windows
It is possible to open a browser window to specific dimensions and with parts of the
browser chrome (toolbars, scrollbars, etc.) turned on or off, but you know what…I’m
not going to go into that here. First of all, it requires JavaScript. Second, in the era
of mobile devices, opening a new browser window at a particular pixel size is an
antiquated technique. People often turn off pop-up windows anyway.

For what it’s worth, the little interstitial panels you see popping up on every web page
asking you to sign up for a mailing list or showing you an ad are done with HTML
elements and JavaScript, not a whole new browser window, so that is an entirely
different beast.

That said, if you have a legitimate reason for opening a browser window to a
specific size, I will refer you to this tutorial by Peter-Paul Koch at Quirksmode:
www.quirksmode.org/js/popup.html.

EXERCISE 6-8.
Linking to a fragment

Want some practice linking to specific
destinations? Open glossary.html in
the materials folder for this chapter.
It looks just like the document in
FIGURE 6-11.

1.	 Identify the h2 “A” as a destination for
a link by naming it “startA” with an id
attribute:

<h2 id="startA">A</h2>

2.	 Make the letter A at the top of the
page a link to the identified fragment.
Don’t forget the #:

A

Repeat Steps 1 and 2 for every letter
across the top of the page until you
really know what you’re doing (or
until you can’t stand it anymore). You
can help users get back to the top of
the page, too.

3.	 Make the heading “Glossary” a
destination named “top”:

<h1 id="top">Glossary</h1>

4.	 Add a paragraph element containing
“TOP” at the end of each lettered
section. Make “TOP” a link to the
identifier that you just made at the
top of the page:

<p>TOP</p>

Copy and paste this code to the end of
every letter section. Now your readers
can get back to the top of the page
easily throughout the document.

Part II. HTML for Structure

Targeting a New Browser Window

126

To open a new window with markup, use the target attribute in the anchor
(a) element to tell the browser the name of the window in which you want
the linked document to open. Set the value of target to _blank or to any name
of your choosing. Remember that with this method, you have no control
over the size of the window, but it will generally open as a new tab or in a
new window the same size as the most recently opened window in the user’s
browser. The new window may or may not be brought to the front depending
on the browser and device used.

Setting target="_blank" always causes the browser to open a fresh window.
For example:

O'Reilly

If you include target="_blank" for every link, every link will launch a new
window, potentially leaving your user with a mess of open windows. There’s
nothing wrong with it, per se, as long as it is not overused.

Another method is to give the target window a specific name, which can then
be used by subsequent links. You can give the window any name you like
(“new,” “sample,” whatever), as long as it doesn’t start with an underscore. The
following link will open a new window called “display”:

O'Reilly

If you target the “display” window from every link on the page, each linked
document will open in the same second window. Unfortunately, if that sec-
ond window stays hidden behind the user’s current window, it may look as
though the link simply didn’t work.

You can decide which method (a new window for every link or reusing
named windows) is most appropriate for your content and interface.

MAIL LINKS

Here’s a nifty little linking trick: the mailto link. By using the mailto protocol
in a link, you can link to an email address. When the user clicks a mailto
link, the browser opens a new mail message preaddressed to that address in
a designated mail program (see the “Spam-Bots” sidebar).

A sample mailto link is shown here:

Contact Al Klecker

As you can see, it’s a standard anchor element with the href attribute. But the
value is set to mailto:name@address.com.

The browser has to be configured to launch a mail program, so the effect
won’t work for 100% of your audience. If you use the email address itself as
the linked text, nobody will be left out if the mailto function does not work
(a nice little example of progressive enhancement).

Spam-Bots
Be aware that putting an email
address in your document source
makes it susceptible to receiving
unsolicited junk email (known as
spam). People who generate spam
lists sometimes use automated
search programs (called bots) to
scour the web for email addresses.

If you want your email address to
display on the page so that humans
can figure it out but robots can’t,
you can deconstruct the address in
a way that is still understandable
to people—for example, “you [-at-]
example [dot] com.”

That trick won’t work in a mailto
link, because the accurate email
address must be provided as an
attribute value. One solution is to
encrypt the email address by using
JavaScript. The Enkoder Form at
Hivelogic (hivelogic.com/enkoder/)
does this for you. Simply enter the
link text and the email address, and
Enkoder generates code that you can
copy and paste into your document.

Otherwise, if you don’t want to risk
getting spammed, keep your email
address out of your HTML document.
Using a contact form is a good
alternative (web forms are coming up
in Chapter 9, Forms).

6. Adding Links

Mail Links

127

TELEPHONE LINKS

Keep in mind that the smartphones people are using to access your site can
also be used to make phone calls! Why not save your visitors a step by letting
them dial a phone number on your site simply by tapping on it on the page?
The syntax uses the tel: protocol and is very simple:

Call us free at (800) 555-1212

When mobile users tap the link, what happens depends on the device:
Android launches the phone app; BlackBerry and IE11 Mobile initiate the
call immediately; and iOS launches a dialog box giving the option to call,
message, or add the number to Contacts. Desktop browsers may launch a
dialog box to switch apps (for example, to FaceTime on Safari) or they may
ignore the link.

If you don’t want any interruption on desktop browsers, you could use a CSS
rule that hides the link for non-mobile devices (unfortunately, that is beyond
the scope of this discussion).

There are a few best practices for using telephone links:

•	 It is recommended that you include the full international dialing number,
including the country code, for the tel: value because there is no way of
knowing where the user will be accessing your site.

•	 Also include the telephone number in the content of the link so that if the
link doesn’t work, the telephone number is still available.

•	 Android and iPhone have a feature that detects phone numbers and
automatically turns them into links. Unfortunately, some 10-digit num-
bers that are not telephone numbers might get turned into links, too. If
your document has strings of numbers that might get confused as phone
numbers, you can turn auto-detection off by including the following meta
element in the head of your document. This will also prevent them from
overriding any styles you’ve applied to telephone links.

<meta name="format-detection" content="telephone=no">

TEST YOURSELF

The most important lesson in this chapter is how to write URLs for links and
images. Here’s another chance to brush up on your pathname skills.

Using the directory hierarchy shown in FIGURE 6-12, write out the markup
for the following links and graphics.

This diagram should provide you with enough information to answer the
questions. If you need hands-on work to figure them out, the directory struc-
ture is available in the test directory in the materials for this chapter. The

Part II. HTML for Structure

Telephone Links

128

documents are just dummy files and contain no content. I filled in the first
one for you as an example. The answers are located in Appendix A.

1.	 In index.html (the site’s home page), write the markup for a link to the
tutorial.html page.

 ...

2.	 In index.html, write the anchor element for a link to instructions.html.

3.	 Create a link to family.html from the page tutorial.html.

4.	 Create a link to boot.html from the family.html page, but this time, start
with the root directory.

5.	 Create a link back to the home page (index.html) from instructions.html.

images/

tutorial.html

arrow.gif bullet.gif

canada.html usa.html

instructions.html intro.html

index.html

examples/

people/ places/ things/

root directory (/)

examplesimages

places

acorn.html boot.html coatrack.html

things

friends.html family.html

people

/
(somesite)

FIGURE 6-12.   The directory structure for the “Test Yourself” questions.

M AR KU P T I P

The ../ (or multiples of them) always
appears at the beginning of the
pathname and never in the middle. If
the pathnames you write have ../ in
the middle, you’ve done something
wrong.

6. Adding Links

Test Yourself

129

6.	 Create a link to the website for this book (learningwebdesign.com) in the
file intro.html.

7.	 Create a link to instructions.html from the page usa.html.

8.	 Create a link back to the home page (index.html) from acorn.html.

We haven’t covered the image (img) element in detail yet, but you should be
able to fill in the relative URLs after the src attribute to specify the location
of the image files for these examples.

9.	 To place the graphic arrow.gif on the page index.html, use this URL:

10.	 To place the graphic arrow.gif on the page intro.html, use this URL:

11.	 To place the graphic bullet.gif on the friends.html page, use this URL:

ELEMENT REVIEW: LINKS

There’s really only one element relevant to creating hypertext links.

Element and attributes Description

a Anchor (hypertext link) element

href="URL" Location of the target file

target="text string" Targets a browser window by name

Part II. HTML for Structure

Element Review: Links

130

http://www.learningwebdesign.com

IN THIS CHAPTER

Adding images with the
img element

Image accessibility

Adding SVG images

Responsive images

The web’s explosion into mass popularity was due in part to the fact that
there were images on the page. Before images, the internet was a text-only tundra.

Images appear on web pages in two ways: embedded in the inline content or
as background images. If the image is part of the editorial content, such as
product shots, gallery images, ads, illustrations, and so on, then it should be
placed in the flow of the HTML document. If the image is purely decorative,
such as a stunning image in the background of the header or a patterned
border around an element, then it should be added through Cascading Style
Sheets. Not only does it make sense to put images that affect presentation
in a style sheet, but it makes the document cleaner and more accessible and
makes the design much easier to update later. I will talk about CSS back-
ground images at length in Chapter 13, Colors and Backgrounds.

This chapter focuses on embedding image content into the flow of the docu-
ment, and it is divided into three parts. First, we’ll look at the tried-and-true
img element for adding basic images to a page the way we’ve been doing it
since 1992. It has worked just fine for over 25 years, and as a beginner, you’ll
find it meets most of your needs as well.

The second part of this chapter introduces some of the methods available
for embedding SVG images (Scalable Vector Graphics) in HTML documents.
SVGs are a special case and demand special attention.

Finally, we’ll look at the way image markup has had to adapt to the wide
variety of mobile devices with an introduction to new responsive image ele-
ments (picture and source) and attributes (srcset and sizes). As the number
of types of devices used to view the web began to skyrocket, we realized that
a single image may not meet the needs of all viewing environments, from
palm-sized screens on slow cellular networks to high-density cinema dis-
plays. We needed a way to make images “responsive”—that is, to serve images

ADDING IMAGES 7
CHAPTER

131

appropriate for their browsing environments. After a few years of back and
forth between the W3C and the development community, responsive image
features were added to the HTML 5.1 specification and are beginning to see
widespread browser support.

I want to point out up front that responsive image markup is not as straight-
forward as the examples we’ve seen so far in this book. It’s based on more
advanced web development concepts, and the syntax may be tricky for
someone just getting started writing HTML (heck, it’s a challenge for sea-
soned professionals!). I’ve included it in this chapter because it is relevant to
adding inline images, but frankly, I wouldn’t blame you if you’d like to skip
the “Responsive Image Markup” section and come back to it after we’ve done
more work with Responsive Web Design and you have more HTML and CSS
experience under your belt.

FIRST, A WORD ON IMAGE FORMATS

We’ll get to the img element and other markup examples in a moment, but
first it’s important to know that you can’t put just any image on a web page;
it needs to be in one of the web-supported formats.

In general, images that are made up of a grid of colored pixels (called bit-
mapped or raster images, as shown in FIGURE 7-1, top) must be saved in the
PNG, JPEG, or GIF file formats in order to be placed inline in the content.
Newer, more optimized WebP and JPEG-XR bitmapped image formats are
slowly gaining in popularity, particularly now that we have markup to make
them available to browsers that support them.

For vector images (FIGURE 7-1, bottom), such as the kind of icons and illus-
trations you create with drawing tools such as Adobe Illustrator, we have the
SVG format. There is so much to say about SVGs and their features that I’ve
given them their own chapter (Chapter 25, SVG), but we’ll look at how to add
them to HTML documents later in this chapter.

If you have a source image that is in another popular format, such as TIFF,
BMP, or EPS, you’ll need to convert it to a web format before you can add it
to the page. If, for some reason, you must keep your graphic file in its original
format (for example, a file for a CAD program), you can make it available as
an external image by making a link directly to the image file, like this:

Get the drawing

You should name your image files with the proper suffixes—.png, .jpg (or
.jpeg), .gif, .webp, and .jxr, respectively. In addition, your server must be con-
figured to recognize and serve these various image types properly. All web
server software today is configured to handle PNG, JPEG, and GIF out of the
box, but if you are using SVG or one of the newer formats, you may need to
deliberately add that media type to the server’s official list.

Part II. HTML for Structure

First, a Word on Image Formats

132

A little background information may be useful here. Image files, and indeed
any media files that may reside on a server, have an official media type (also
called a MIME type) and suffixes. For example, SVG has the MIME type
image/svg+xml and the suffixes .svg and .svgz.

Server packages have different ways of handling MIME information. The
popular Apache server software uses a file in the root directory called htaccess
that contains a list of all the file types and their acceptable suffixes. Be sure to
add (or ask your server administrator to add) the MIME types of new image
formats so they may be served correctly. The server looks up the suffix (.webp,
for example) of requested files in the list and matches it with the Content-
Type (image/webp) that it includes in its HTTP response to the browser. That
tells the browser what kind of data is coming and how to parse it.

Browsers use helper applications to display media they can’t handle alone.
The browser matches the suffix of the file in the link to the appropriate
helper application. The external image may open in a separate application
window or within the browser window if the helper application is a browser
plug-in. The browser may also ask the user to save the file or open an appli-
cation manually. It is also possible that it won’t be able to be opened at all.

Without further ado, let’s take a look at the img element and its required and
recommended attributes.

Bitmapped images
are made up of a grid
of colored pixels.

Vector images
contain paths that
are de�ned
mathematically.

FIGURE 7-1.   A comparison of circles saved in bitmapped and vector formats.

7. Adding Images

First, a Word on Image Formats

133

THE IMG ELEMENT

The img element tells the browser, “Place an image here.” You’ve already got-
ten a glimpse of it used to place banner graphics in the examples in Chapter
4, Creating a Simple Page. You can also place an image element right in the
flow of the text at the point where you want the image to appear, as in the
following example. Images stay in the flow of text, aligned with the baseline
of the text, and do not cause any line breaks (HTML5 calls this a phrasing
element), as shown in FIGURE 7-2:

<p>This summer, try making pizza
 on your grill.</p>

FIGURE 7-2.   By default, images are aligned with the baseline of the surrounding text
and do not cause a line break.

When the browser sees the img element, it makes a request to the server and
retrieves the image file before displaying it on the page. On a fast network
with a fast computer or device, even though a separate request is made for
each image file, the page usually appears to arrive instantaneously. On mobile
devices with slow network connections, we may be well aware of the wait
for images to be fetched one at a time. The same is true for users using dial-
up internet connections or other slow networks, like the expensive WiFi at
luxury hotels.

The src and alt attributes shown in the sample are required. The src
(source) attribute provides the location of the image file (its URL). The alt
attribute provides alternative text that displays if the image is not available.
We’ll talk about src and alt a little more in upcoming sections.

There are a few other things of note about the img element:

•	 It is an empty element, which means it doesn’t have any content. You just
place it in the flow of text where the image should go.

•	 It is an inline element, so it behaves like any other inline element in the
text flow. FIGURE 7-3 demonstrates the inline nature of image elements.
When the browser window is resized, a line of images reflows to fill the
new width.

Adds an inline image

The src and alt attributes
are required in the img
element.

Part II. HTML for Structure

The img Element

134

•	 The img element is what’s known as a replaced element because it is
replaced by an external file when the page is displayed. This makes it dif-
ferent from text elements that have their content right there in the source
(and thus are non-replaced).

•	 By default, the bottom edge of an image aligns with the baseline of text, as
shown in FIGURE 7-2. Using CSS, you can float the image to the right or
left margin and allow text to flow around it, crop it to a shape, control the
space and borders around the image, and change its vertical alignment.
We’ll talk about those styles in Part III.

Providing the Location with src
The value of the src attribute is the URL of the image file. In most cases, the
images you use on your pages will reside on your own server, so you will use
relative URLs to point to them.

If you just read Chapter 6, Adding Links, you should be pretty handy with
writing relative URLs. In short, if the image is in the same directory as the
HTML document, you can refer to the image by name in the src attribute:

Developers usually organize the images for a site into a directory called
images or img (in fact, it helps search engines when you do it that way). There
may even be separate image directories for each section of the site. If an image
is not in the same directory as the document, you need to provide the path-
name to the image file:

Of course, you could place images from other websites by using a full URL,
like this, but it is not recommended (see Warning):

src="URL"
Source (location) of the image

FIGURE 7-3.  Inline images are part of the normal document flow. They reflow when
the browser window is resized.

WARNING

Before you use any image on your web
page, be sure that you own the image,
that you have explicit written permis-
sion by the copyright holder, or that it
is in the public domain. Linking to an
image on another server (called hotlink-
ing) is considered seriously uncool, so
don’t do it unless there is a specific use
case in which you have permission. Even
then, be aware that you cannot control
the image and risk having it moved or
renamed, which would break your link.

7. Adding Images

The img Element

135

Providing Alternative Text with alt

alt="text"
Alternative text

Every img element must also contain an alt attribute that provides a text
alternative to the image for those who are not able to see it. Alternative text
(also called alt text) should serve as a substitute for the image content—con-
veying the same information and function. Alternative text is used by screen
readers, search engines, and graphical browsers when the image doesn’t load
(FIGURE 7-4).

In this example, a PDF icon indicates that the linked text downloads a file in
PDF format. In this case, the image is conveying valuable content that would
be missing if the image cannot be seen. Providing the alt text “PDF file” rep-
licates the purpose of the image:

High school application <img src="images/
pdflogo.png alt="PDF file">

A screen reader might indicate the image by reading its alt value this way:

“High school application. Image: PDF file”

Sometimes images function as links, in which case providing alternative text
is critical because the screen reader needs something to read for the link. In
the next example, an image of a book cover is used as a link to the book’s
website. Its alt text does not describe the cover itself, but rather performs the
same function as the cover image on the page (indicating a link to the site):

<img src="/images/LWD_cover.png"
alt="Learning Web Design site">

If an image does not add anything meaningful to the text content of the page,
it is recommended that you leave the value of the alt attribute empty (null).
In the following example, a decorative floral accent is not contributing to the
content of the page, so its alt value is null. (You may also consider whether it
is more appropriately handled as a background image in CSS, but I digress.)
Note that there is no character space between the quotation marks:

P E R FO R M A N C E T I P

Take Advantage of Caching
When a browser downloads an image, it stores the file in the disk cache (a space for
temporarily storing files on the hard disk). That way, if it needs to redisplay the page,
it can just pull up a local copy of the image without making a new server request.

If you use the same image repeatedly, be sure that the src attribute for each img
element points to the same URL on the server. The image downloads once, then gets
called from cache for subsequent uses. That means less traffic for the server and
faster display for the user.

<p>If you're
and you know it clap your hands.</p>

With image displayed

Chrome (Mac & Windows)

Safari (Mac)

Safari (iOS)

Firefox

MS Edge (Windows)

FIGURE 7-4.  Most browsers display
alternative text in place of the image
if the image is not available. Safari for
macOS is a notable exception. Firefox’s
substitution is the most seamless.

→

Part II. HTML for Structure

The img Element

136

For each inline image on your page, consider what the alternative text would
sound like when read aloud and whether that enhances the experience or
might be obtrusive to a user with assistive technology.

Alternative text may benefit users with graphical browsers as well. If the user
has opted to turn images off in the browser preferences or if the image sim-
ply fails to load, the browser may display the alternative text to give the user
an idea of what is missing. The handling of alternative text is inconsistent
among modern browsers, however, as shown in FIGURE 7-4.

Providing the Dimensions with width and height
The width and height attributes indicate the dimensions of the image in
number of pixels. Browsers use the specified dimensions to hold the right
amount of space in the layout while the images are loading rather than
reconstructing the page each time a new image arrives, resulting in faster
page display. If only one dimension is set, the image will scale proportionally.

These attributes have become less useful in the age of modern web develop-
ment. They should never be used to resize an image (use your image-editing
program or CSS for that), and they should be omitted entirely when you’re
using one of the responsive image techniques introduced later in this chapter.
They may be used with images that will appear at the same fixed size across
all devices, such as a logo or an icon, to give the browser a layout hint.

Be sure that the pixel dimensions you specify are the actual dimensions of
the image. If the pixel values differ from the actual dimensions of your image,
the browser resizes the image to match the specified values (FIGURE 7-5). If
you are using width and height attributes and your image looks distorted or
even slightly blurry, check to make sure that the values are in sync.

width="144" height="72"

width="72" height="72"
(actual size of image)

FIGURE 7-5.   Browsers resize images to match the provided width and height
values, but you should not resize images this way.

Now that you know the basics of the img element, you should be ready to add
a few photos to the Black Goose Bistro Gallery site in EXERCISE 7-1.

width="number"
Image width in pixels

height="number"
Image height in pixels

F U RT H E R R E A D I N G

Image Accessibility
Some types of images, such as data
charts and diagrams, require long
descriptions that aren’t practical
as alt values. These cases require
alternate accessibility strategies,
which you will find in these resources:

•	 “Accessible Images” at WebAIM
(webaim.org/techniques/
images/)

•	 “Alternative Text” at WebAIM
(webaim.org/techniques/alttext/)

•	 The Web Content Accessibility
Guidelines (WCAG 2.0) at the
W3C (www.w3.org/TR/WCAG20-
TECHS/) include techniques for
improving accessibility across all
web content. Warning: this one is
pretty dense.

ACC E SS I B I L I T Y T I P

Avoid using “image of” or “graphic
of” in alt text values. It will be clear
that it is an image. If the medium
of the image, for example painting,
photograph, or illustration, is relevant
to the content, then it is fine to
include the descriptive term.

7. Adding Images

The img Element

137

http://webaim.org/techniques/alttext/
http://www.w3.org/TR/WCAG20-TECHS/
http://www.w3.org/TR/WCAG20-TECHS/

FIGURE 7-6.   Photo gallery pages.

EXERCISE 7-1. Adding and linking images

In this exercise, you’ll add images to pages and use them as links. All of the full-size
photos and thumbnails (small versions of the images) you need have been created for you,
and I’ve given you a head start on the HTML files with basic styles as well. The starter files
and the resulting code are available at learningwebdesign.com/5e/materials. Put a copy
of the gallery folder on your hard drive, making sure to keep it organized as you find it.

This little site is made up of a main page (index.html) and three separate HTML documents
containing each of the larger image views (FIGURE 7-6). First, we’ll add the thumbnails,
and then we’ll add the full-size versions to their respective pages. Finally, we’ll make the
thumbnails link to those pages. Let’s get started.

Open the file index.html, and add the small thumbnail images to this page to accompany
the text. I’ve done the first one for you:

<p><img src="thumbnails/bread-200.jpg" alt="close-up of sliced rustic
bread" width="200" height="200">
We start our day at the…

I’ve put the image at the beginning of the paragraph, just after the opening <p> tag.
Because all of the thumbnail images are located in the thumbnails directory, I provided
the pathname in the URL. I added a description of the image with the alt attribute, and
because I know these thumbnails will appear at exactly 200 pixels wide and high on all
devices, I’ve included the width and height attributes as well to tell the browser how
much space to leave in the layout. Now it’s your turn.

1.	 Add the thumbnail images burgers-200.jpg and fish-200.jpg at the beginning of the
paragraphs in their respective sections, following my example. Be sure to include the
pathnames and thoughtful alternative text descriptions. Finally, add a line break (
)
after the img element.

When you are done, save the file and open it in the browser to be sure that the images
are visible and appear at the right size.

2.	 Next, add the images to the individual HTML documents. I’ve done bread.html for you:

<h1>Gallery: Baked Goods</h1>
<p><img src="photos/bread-800.jpg" alt="close-up of sliced rustic
bread" width="800" height="600"></p>

Notice that the full-size images are in a directory called photos, so that needs to be
reflected in the pathnames. Notice also that because this page is not designed to
be responsive, and the images will be a fixed size across devices, I went ahead and
included the width and height attributes here as well.

Add images to burgers.html and fish.html, following my example. Hint: all of the images
are 800 pixels wide and 600 pixels high.

Save each file, and check your work by opening them in the browser window.

3.	 Back in index.html, link the thumbnails to their respective files. I’ve done the first one:

<p><img src="thumbnails/bread-200.jpg" alt="close-
up of sliced rustic bread" width="200" height="200">
We start
our day at the crack of dawn…

Notice that the URL is relative to the current document (index.html), not to the location
of the image (the thumbnails directory).

Make the remaining thumbnail images link to each of the documents. If all the images
are visible and you are able to link to each page and back to the home page again, then
congratulations, you’re done!

Like more practice?
If you’d like more practice, you’ll find
three additional images (chicken-800.
jpg, fries-800.jpg, and tabouleh-800.
jpg) with their thumbnail versions
(chicken-200.jpg, fries-200.jpg, and
tabouleh-200.jpg) in their appropriate
directories. This time, you’ll need to
add your own descriptions to the
home page and create the HTML
documents for the full-size images
from scratch.

Part II. HTML for Structure

The img Element

138

http://www.learningwebdesign.com/

That takes care of the basics of adding images to a page. Next we’ll take on
adding SVG images, which are a special case, both in terms of the underlying
format and the ways they can be added to HTML.

ADDING SVG IMAGES

No lesson on adding images to web pages would be complete without an
introduction to adding SVGs (Scalable Vector Graphics). After all, the popu-
larity of SVG images has been gaining momentum thanks to nearly ubiqui-
tous browser support and the need for images that can resize without loss of
quality. For illustration-style images, they are a responsive dream come true.
I’m saving my deep-dive into all things SVG for Chapter 25, but for now I’ll
give you a quick peek at what they’re made of so that the embedding markup
makes sense.

As I mentioned at the beginning of this chapter, SVGs are an appropriate for-
mat for storing vector images (FIGURE 7-1). Instead of a grid of pixels, vectors
are made up of shapes and paths that are defined mathematically. And even
more interesting, in SVGs those shapes and paths are specified by instruc-
tions written out in a text file. Let that sink in: they are images that are written
out in text! All of the shapes and paths as well as their properties are written
out in the standardized SVG markup language (see Note). As HTML has ele-
ments for paragraphs (p) and tables (table), SVG has elements that define
shapes like rectangle (rect), circle (circle), and paths (path).

A simple example will give you the general idea. Here is the SVG code that
describes a rectangle (rect) with rounded corners (rx and ry, for x-radius
and y-radius) and the word “hello” set as text with attributes for the font
and color (FIGURE 7-7). Browsers that support SVG read the instructions and
draw the image exactly as I designed it:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 180">
 <rect width="300" height="180" fill="purple" rx="20" ry="20"/>
 <text x="40" y="114" fill="yellow" font-family="'Verdana-Bold'"
font-size="72">
 hello!
 </text>
</svg>

FIGURE 7-7.   A simple SVG made up of a rectangle and text.

NOTE

SVG is an example, or application, of
XML (Extensible Markup Language),
which provides the rules and standards
for how markup languages should be
written and work together. As a result,
SVG plays well alongside HTML content.

7. Adding Images

Adding SVG Images

139

SVGs offer some significant advantages over their bitmapped counterparts
for certain image types:

•	 Because they save only instructions for what to draw, they generally
require less data than an image saved in a bitmapped format. That means
faster downloads and better performance.

•	 Because they are vectors, they can resize as needed in a responsive layout
without loss of quality. An SVG is always nice and crisp. No fuzzy edges.

•	 Because they are text, they integrate well with HTML/XML and can be
compressed with tools like Gzip and Brotli, just like HTML files.

•	 They can be animated.

•	 You can change how they look with Cascading Style Sheets.

•	 You can add interactivity with JavaScript so things happen when users
hover their mouse over or click the image.

Again, all of the ins and outs of creating SVGs, as well as their many features,
are discussed in detail in Chapter 25. For now, I’d like to focus on the HTML
required to place them in the flow of a web page. You have a few options:
embedded with the img element, written out in code as an inline svg element,
embedded with object, and used as a background image with CSS.

Embedded with the img Element
SVG text files saved with the .svg suffix (sometimes referred to as a stand-
alone SVG) can be treated as any other image, including placing it in the
document by using the img element. You’re an expert on the img element by
now, so the following example should be clear:

Pros and cons
The advantage to embedding an SVG with img is that it is universally sup-
ported in browsers that support SVG.

This approach works fine when you are using a standalone SVG as a simple
substitute for a GIF or a PNG, but there are a few disadvantages to embed-
ding SVGs with img:

•	 You cannot apply styles to the items within the SVG by using an external
style sheet, such as a .css file applied to the whole page. The .svg file may
include its own internal style sheet using the style element, however, for
styling the elements within it. You can also apply styles to the img element
itself.

•	 You cannot manipulate the elements within the SVG with JavaScript, so
you lose the option for interactivity. Scripts in your web document can’t

Part II. HTML for Structure

Adding SVG Images

140

see the content of the SVG, and scripts in the SVG file do not run at all.
Other interactive effects, like links or :hover styles, are never triggered
inside an SVG embedded with img as well.

•	 You can’t use any external files, such as embedded images or web fonts,
within the SVG.

In other words, standalone SVGs behave as though they are in their own little,
self-contained bubble. But for static illustrations, that is just fine.

Browser support for SVG with img
The good news is that all modern browsers support SVGs embedded with the
img element. The two notable exceptions are Internet Explorer versions 8 and
earlier, and the Android browser prior to version 3. As of this writing, users
with those browsers may still show up in small but significant numbers in
your user logs. If you see a reason for your site to support these older brows-
ers, there are workarounds, which I address briefly in the upcoming “SVG
Fallbacks” section.

Inline in the HTML Source
Another option for putting an SVG on a web page is to copy the content of
the SVG file and paste it directly into the HTML document. This is called
using the SVG inline. Here is an example that looks a lot like the inline img
example that we saw way back in FIGURE 7-2, only this time our pizza is a
vector image drawn with circles and inserted with the svg element (FIGURE

7-8). Each circle element has attributes that describe the fill color, the posi-
tion of its center point (cx and cy), and the length of its radius (r):

<p>This summer, try making pizza

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 72 72" width="100"
height="100">
 <circle fill="#D4AB00" cx="36" cy="36" r="36"/>
 <circle opacity=".7" fill="#FFF" stroke="#8A291C" cx="36.1" cy="35.9"
r="31.2"/>
 <circle fill="#A52C1B" cx="38.8" cy="13.5" r="4.8"/>
 <circle fill="#A52C1B" cx="22.4" cy="20.9" r="4.8"/>
 <circle fill="#A52C1B" cx="32" cy="37.2" r="4.8"/>
 <circle fill="#A52C1B" cx="16.6" cy="39.9" r="4.8"/>
 <circle fill="#A52C1B" cx="26.2" cy="53.3" r="4.8"/>
 <circle fill="#A52C1B" cx="42.5" cy="27.3" r="4.8"/>
 <circle fill="#A52C1B" cx="44.3" cy="55.2" r="4.8"/>
 <circle fill="#A52C1B" cx="54.7" cy="42.9" r="4.8"/>
 <circle fill="#A52C1B" cx="56" cy="28.3" r="4.8"/>
</svg>

 on your grill.</p>

SVG Server Configuration
If you are using SVGs and they are
not showing up correctly when your
site is uploaded, you may need to
configure the server to recognize
the SVG image type, as discussed at
the beginning of this chapter. Here’s
how to do it on the Apache server,
but similar configurations can be
done in other server languages:

AddType image/svg+xml .svg

7. Adding Images

Adding SVG Images

141

<svg>
An inline SVG image

FIGURE 7-8.   This pizza image is an SVG made up of 11 circle elements. Instead
of an img element, the SVG source code is placed right in the HTML document with an
svg element.

This code was generated by Adobe Illustrator, where I created the illustration
and saved it in SVG format. I also optimized it to strip out a lot of cruft that
Illustrator adds in there. We’ll discuss SVG optimization in Chapter 25.

Pros and cons
Inline SVGs allow developers to take full advantage of SVG features. When
the SVG markup is alongside the HTML markup, all of its elements are part
of the main DOM tree. That means you can access and manipulate SVG
objects with JavaScript, making them respond to user interaction or input.
There are similar benefits for style sheets because the elements in the SVG
can inherit styles from HTML elements. That makes it easy to apply the same
styles to elements on the page and within the SVG graphic.

On the downside, the code for SVG illustrations can get extremely long and
unwieldy, resulting in bloated HTML documents that are difficult to read.
Even that little pepperoni pizza requires a serious block of code. It also makes
the images for a site more difficult to maintain, since they are tucked away
in the HTML documents. Another disadvantage is that inline SVGs are not
cached by the browser separate from the HTML file, so avoid this method for
large images that are reused across many HTML pages.

Browser support
The good news is that all modern browsers support SVG images placed
inline with the svg element. The following older browser versions lack sup-
port: Internet Explorer versions 8 and earlier, Safari versions 5 and earlier,
Android mobile browser prior to version 3, and iOS prior to version 5.

Embedded with the object Element
HTML has an all-purpose media embedding element called object. We’ll
talk about it more in Chapter 10, Embedded Media, but for now, know that
object is another option for embedding an SVG in a web page. It is a good

Part II. HTML for Structure

Adding SVG Images

142

compromise between img and inline SVG, allowing a fully functional SVG
that is still encapsulated in a separate, cacheable file.

The opening object tag specifies the media type (an svg+xml image) and
points to the file to be used with the data attribute. The object element
comes with its own fallback mechanism—any content within the object gets
rendered if the media specified with data can’t be displayed. In this case, a
PNG version of the image will be placed with an img if the .svg is not sup-
ported or fails to load:

<object type="image/svg+xml" data="pizza.svg">

</object>

There is one catch, however. Some browsers download the fallback image
even if they support SVG and don’t need it. Useless downloads are not ideal.
The workaround is to make the fallback image a CSS background image in an
empty div container. Unfortunately, it is not as flexible for scaling and sizing,
but it does solve the extra download issue.

<object type="image/svg+xml" data="pizza.svg">
 <div style="background-image: url(pizza.png); width 100px; height:
100px;" role="img" aria-label="pizza">
</object>

Pros and cons
The main advantage to embedding SVGs with the object element is that they
can be scripted and load external files. They can also use scripts to access
the parent HTML document (with some security restrictions). However,
because they are separate files and not part of the DOM for the page, you
can’t use a style sheet in the HTML document to style elements within the
SVG. Embedded SVGs may also have some buggy behaviors in browsers, so
be sure to test thoroughly.

Used as a Background Image with CSS
I know that this is an HTML chapter, but I’d be remiss if I didn’t at least men-
tion that SVGs can be used as background images with CSS. This style rule
example puts a decorative image in the background of a header:

header {
 background-image: url(/images/decorative.svg);
}

SVG Fallbacks
As mentioned earlier, all modern browsers support SVGs either embedded as
an img, embedded as an object, or included inline, which is very good news.
However, if your server logs show significant traffic from Internet Explorer
8 and earlier, Android version 3 and earlier, or Safari 5 and earlier, or if your

Other Embedding
Options
Older techniques for adding SVGs
involve using two other HTML
elements for embedding media:
embed and iframe (we’ll talk about
them in Chapter 10). You may still
see these in use with SVGs out there,
and they work fine for browsers that
support SVG, but most developers
consider them to be outdated
methods. Stick with img, inline svg,
object, and CSS background-
image.

7. Adding Images

Adding SVG Images

143

client just requires support for those browsers, you may need to use a fallback
technique. One option is to use the object element to embed the SVG on the
page and take advantage of its fallback content feature shown earlier.

If you are using SVG as an image with the img element, another option is
to use the picture element (it’s discussed as part of the “Responsive Image
Markup” section later in this chapter). The picture element can be used to
provide several versions of an image in different formats. Each version is
suggested with the source element, which in the following example points to
the pizza.svg image and defines its media type. The picture element also has
a built-in fallback mechanism. If the browser doesn’t support the suggested
source files, or if it does not support the picture element, users will see the
PNG image provided with the good old img element instead:

<picture>
 <source type="image/svg+xml" srcset="pizza.svg">

</picture>

If you Google for “SVG fallbacks,” you’ll likely get quite a few hits, many
of which use JavaScript to detect support. For more detailed information
on SVG fallbacks, I recommend reading Amelia Bellamy-Royd’s article, “A
Complete Guide to SVG Fallbacks” (css-tricks.com/a-complete-guide-to-svg-
fallbacks/) or Chris Coyier’s book, Practical SVG (A Book Apart) when you
are ready. Ideally, you will be reading this in a world where old Internet
Explorer and Android versions are no longer an issue.

Are you ready to give SVGs a spin? Try out some of the embedding tech-
niques we discussed in EXERCISE 7-2.

EXERCISE 7-2.   Adding an SVG to a page

In this exercise, we’ll add some SVG images to the Black Goose Bistro page that we worked
on in Chapter 4. The materials for this exercise are available online at learningwebdesign.
com/5e/materials. You will find everything in a directory called svg. The resulting code is
provided with the materials.

This exercise has two parts: first, we’ll replace the logo with an SVG version, and second,
we’ll add a row of social media icons at the bottom of the page (FIGURE 7-9).

Part I: Replacing the logo
1.	 Open blackgoosebistro.html in a text editor. It should look just like we left it in Chapter 4.

2.	 Just for fun, let’s see what happens when you make the current PNG logo really large.
Add width="500" height="500" to the img tag. Save the file and open it in the
browser to see how blurry bitmapped images get when you size them larger. Yuck.

3.	 Let’s replace it with an SVG version of the same logo by using the inline SVG method.
In the svg folder, you will find a file called blackgoose-logo.svg. Open it in your text
editor and copy all of the text (from <svg> to </svg>).

Part II. HTML for Structure

Adding SVG Images

144

FIGURE 7-9.   The Black Goose Bistro page with SVG images.

4.	 Go back to the blackgoosebistro.html file and delete the entire
img element (be careful not to delete the surrounding markup).
Paste the SVG text in its place. If you look closely, you will see
that the SVG contains two circles, a gradient definition, and two
paths (one for the starburst shape and one for the goose).

5.	 Next, set the size the SVG should appear on the page. In the
opening svg tag, add width and height attributes set to
200px each.

<h1><svg width="200px" height="200px" …

Save the file and open the page in the browser. You should see
the SVG logo in place, looking a lot like the old one.

6.	 Try seeing what happens when you make the SVG logo really
big! Change the width and height to 500 pixels, save the file, and
reload the page in the browser. It should be big and sharp! No
blurry edges like the PNG. OK, now put the size back to 200 ×
200 or whatever looks good to you.

Part II: Adding icons
7.	 Next we’re going to create a footer at the bottom of the page for

social media icons. Below the Location & Hours section, add the
following (the empty paragraph is where we’ll add the logos):

<footer>
 <p>Please visit our social media pages</p>
 <p> </p>
</footer>

8.	 Use the img element to place three SVG icons: twitter.svg,
facebook.svg, and instagram.svg. Note that they are located in
the icons directory. There are also icons for Tumblr and GitHub if
you’d like extra practice. Here’s a head start on the first one:

<p></p>

9.	 Save the file and open it in the browser. The icons should be
there, but they are huge. Let’s write a couple of style rules to
make the footer look nice. We haven’t done much with style
rules yet, so just copy exactly what you see here inside the
style element in the head of the document:

footer { 	
 border-top: 1px solid #57b1dc;
 text-align: center;
 padding-top: 1em;
}
footer img {
 width: 40px;
 height: 40px;
 margin-left: .5em;
 margin-right: .5em;
}

10.	Save the file again and open it in the browser (you should see
a page that looks like FIGURE 7-9). Go ahead and play around
with the style settings, or even the code in the inline SVG, if
you’d like to get a feel for how they affect the appearance of the
images. It’s kinda fun.

7. Adding Images

Adding SVG Images

145

RESPONSIVE IMAGE MARKUP

Pretty quickly after smartphones, tablets, “phablets,” and other devices hit the
scene, it became clear that large images that look great on a large screen were
overkill on smaller screens. All that image data…downloaded and wasted.
Forcing huge images onto small devices slows down page display and may
cost real money too, depending on the user’s data plan (and your server
costs). Conversely, small images that download quickly may be blurry on
large, high-resolution screens. Just as we need a way to make whole web pages
respond and adapt to various screen sizes, we need a way to make images on
those page “responsive” as well. Our trusty img element with its single src
attribute just doesn’t cut it in most cases.

It took a couple of years of proposals, experimentation, and discussion
between browser makers and the web development community, but we now
have a way to suggest alternate images by using HTML markup alone. No
complicated JavaScript or server-side hacks. The resulting responsive image
features (srcset and sizes attributes as well as the picture element) have
been incorporated into the HTML 5.1 specification, and browser support is
growing steadily, led by the Chrome browser in September 2014.

Thanks to a foolproof fallback and scripts that add support to older browsers,
you can start using these techniques right away. That said, none of this is set
in stone. Responsive image solutions are likely to be tweaked and improved,
or perhaps one day even made obsolete. If you are going to include them
in your sites, a good starting place for getting up-to-speed is the Responsive
Images Community Group (responsiveimages.org). RICG is a group of devel-
opers who worked together to hammer out the current spec with the browser
creators. They are on top of this stuff. You should also look for recent articles
and perhaps even crack open the spec.

How It Works
When we say “responsive images,” we are talking about providing images that
are tailored to the user’s viewing environment. First and foremost, responsive
image techniques prevent browsers on small screens from downloading more
image data than they need. They also include a mechanism to give high-reso-
lution displays on fast networks images large enough to look extra-gorgeous.
In addition, they provide a way for developers to take advantage of new, more
efficient image formats.

In short, responsive images work this way: you provide multiple images,
sized or cropped for different screen sizes, and the browser picks the most
appropriate one based on what it knows about the current viewing environ-
ment. Screen dimensions are one factor, but resolution, network speed, what’s
already in its cache, user preferences, and other considerations may also be
involved.

You provide multiple
images, sized or cropped
for different screen sizes,
and the browser picks
the most appropriate one
based on what it knows
about the current viewing
environment.

Part II. HTML for Structure

Responsive Image Markup

146

The responsive image attributes and elements address the following four
basic scenarios:

•	 Providing extra-large images that look crisp on high-resolution screens

•	 Providing a set of images of various dimensions for use on different
screen sizes

•	 Providing versions of the image with varying amount of detail based on
the device size and orientation (known as the art direction use case)

•	 Providing alternative image formats that store the same image at much
smaller file sizes

Let’s take a look at each of these common use cases.

High-Density Displays (x-descriptor)
Everything that you see on a screen display is made up of little squares of
colored light called pixels. We call the pixels that make up the screen itself
device pixels (you’ll also sometimes see them referred to as hardware pixels
or physical pixels). Until recently, screens commonly fit 72 or 96 device pixels
in an inch (now 109 to 160 is the norm). The number of pixels per inch (ppi)
is the resolution of the screen.

Bitmapped images, like JPEG, PNG, and GIF, are made up of a grid of pixels
too. It used to be that the pixels in images as well as pixel dimensions speci-
fied in our style sheets mapped one-to-one with the device pixels. An image
or box element that was 100 pixels wide would be laid out across 100 device
pixels. Nice and straightforward.

Device-pixel-ratios
It should come as no surprise that it’s not so straightforward today.
Manufacturers have been pushing screen resolutions higher and higher in an
effort to improve image quality. The result is that device pixels have been get-
ting smaller and smaller, so small that our images and text would be illegibly
tiny if they were mapped one-to-one.

To compensate, devices use a measurement called a reference pixel for lay-
out purposes. Reference pixels are also known as points (PT) in iOS, Device
Independent Pixels (DP or DiP) in Android, or CSS pixels because they are
the unit of measurement we use in style sheets. The iPhone 8 has a screen
that is made up of 750 × 1334 device pixels, but it uses a layout grid of 375 ×
667 points or CSS pixels (a ratio of 2 device pixels to 1 layout pixel—2:1 or
2x). A box sized to 100 pixels wide in CSS would be laid out across 200 device
pixels on the iPhone8. The iPhone X has a screen that is made up of 1125 ×
2436 pixels, but it uses a layout grid of 375 × 812 points (a ratio of 3 device
pixels to one point—or 3x). A box sized to 100 pixels is laid out across 300
device pixels on the iPhone X.

Devices use a
measurement called a
reference pixel for layout
purposes.

7. Adding Images

Responsive Image Markup

147

The ratio of the number of device pixels to CSS pixels is called the device-
pixel-ratio (FIGURE 7-10). Common device-pixel-ratios on handheld devices
are 1.325x, 1.5x, 1.7x, 2x, 2.4x, 3x, and even 4x (the “x” is the convention for
indicating a device-pixel-ratio). Even large desktop displays are featuring
ratios of 2x, 3x, and 4x.

Image or object =
3 x 3 reference or CSS pixels

1:1 device-pixel-ratio (1x)
3 x 3 device pixels, indicated by grid

2:1 device-pixel-ratio (2x)
6 x 6 device pixels

3:1 device-pixel-ratio (3x)
9 x 9 device pixels

FIGURE 7-10.   Device pixels compared to CSS/reference pixels.

Let’s say you have an image that you want to appear 200 pixels wide on all
displays. You can make the image exactly 200px wide (px is short for pixels),
and it will look fine on standard-resolution displays, but it might be a little
blurry on high-resolution displays. To get that image to look sharp on a
display with a device-pixel-ratio of 2x, you’d need to make that same image
400 pixels wide. It would need to be 600 pixels wide to look sharp on a 3x
display. Unfortunately, the larger images may have file sizes that are four or
more times the size of the original. Who wants to send all that extra data to
a 1x device that really only needs the smaller image?

Introducing srcset
We now have a way to serve larger images just to the browsers on displays
that benefit from them. We do it using the new srcset attribute with our old
friend the img element. srcset allows developers to specify a list of image
source options for the browser to choose from.

The value of srcset is a comma-separated list of options. Each item in that
list has two parts: the URL of an image and an x-descriptor that specifies the
target device-pixel-ratio. Note that the whole list is the value of srcset and

Part II. HTML for Structure

Responsive Image Markup

148

goes inside a single set of quotation marks. This sample shows the structure
of a srcset value:

srcset="image-URL #x, image-URL #x"

The src attribute is still required, and is generally used to specify the default
1x image for browsers that don’t support srcset. Make sure there is an alt
attribute as well:

Let’s look at an example. I have an image of a turkey that I’d like to appear 200
pixels wide. For standard resolution, I created the image at 200 pixels wide
and named it turkey-200px.jpg. I’d also like it to look crisp in high-resolution
displays, so I have two more versions: turkey-400px.jpg (for 2x) and turkey-
600px.jpg (for 3x). Here is the markup for adding the image and indicating
its high-density equivalents with x-descriptors:

<img src="/images/turkey-200px.jpg" alt=""
srcset="/images/turkey-400px.jpg 2x, /images/turkey-600px.jpg 3x" >

Because browsers ignore line returns and spaces in the source document, I
can also write that same element stacked in this way to make it a little easier
to read, as I will be doing throughout this chapter:

<img
 src="/images/turkey-200px.jpg" alt=""
 srcset="/images/turkey-400px.jpg 2x,
 /images/turkey-600px.jpg 3x" >

That makes the options and structure more clear at a glance, don’t you think?

Browsers that recognize the srcset attribute check the screen resolution and
download what they believe to be the most appropriate image. If the browser
is on a Mac with a 2x Retina display, it may download image-400px.jpg. If the
device-pixel-ratio is 1.5x, 2.4x, or something else, it checks the overall viewing
environment and makes the best selection. It is important to know that when
we use srcset with the img element, we are handing the keys to the browser
to make the final image selection.

When to use x-descriptors
X-descriptors tell the browser to make a selection based on screen resolution
only, with no regard for the dimensions of the screen or viewport. For this
reason, x-selectors are best used for images that stay the same pixel dimen-
sions regardless of the screen size, such as logos, social media badges, or other
fixed-width images.

It is much more likely that you’ll want images to resize based on the size of
the screen and to be able to serve small images to small handheld devices,
and large images to desktops (that’s kind of the crux of this responsive image
thing, after all). Now that you are familiar with using the srcset attribute,
let’s see how it can be used to deliver images targeted to various screen sizes.
Here’s where srcset really shines.

When we use srcset with
the img element, we are
allowing the browser to
make the best image
selection.

The srcset attribute
specifies a list of image
options for the browser to
choose from.

7. Adding Images

Responsive Image Markup

149

Variable-Width Images (w-descriptor)
When you’re designing a responsive web page, chances are you’ll want image
sizes to change based on the size of the browser viewport (see Note). This is
known as a viewport-based selection. And because you are the type of web
developer who cares about how fast pages display, you’ll want to limit unnec-
essary data downloads by providing appropriately sized images.

To achieve this goal, use the srcset and sizes attributes with the img element.
As we saw in previous examples, the srcset gives the browser a set of image
file options, but this time, it uses a w-descriptor (width descriptor) that pro-
vides the actual pixel width of each image. Using srcset with a w-descriptor
is appropriate when the images are identical except for their dimensions (in
other words, they differ only in scale). Here’s an example of a srcset attribute
that provides four image options and specifies their respective pixel widths
via w-descriptors. Note again that the whole list is in a single set of quota-
tion marks:

srcset="strawberries-480.jpg 480w,
 strawberries-960.jpg 960w,
 strawberries-1280.jpg 1280w,
 strawberries-2400.jpg 2400w"

Using the sizes attribute
That’s a good start, but whenever you use w-descriptors, you also need to use
the sizes attribute to tell the browser the approximate size that the image will
appear in the page’s layout. There is a very good reason (in addition to being
required in the spec), and it is worth understanding.

When a browser downloads the HTML document for a web page, the first
thing it does is look through the whole document and establish its outline
structure (its Document Object Model, or DOM). Then, almost immediately,
a preloader goes out to get all the images from the server so they are ready
to go. Finally, the CSS and the JavaScript are downloaded. It is likely that the
style sheet has instructions for layout and image sizes, but by the time the
browser sees the styles, the images are already downloaded. For that reason,
we have to give the browser a good hint with the sizes attribute whether the
image will fill the whole viewport width or only a portion of it. That allows
the preloader to pick the correct image file from the srcset list.

We’ll start with the simplest scenario in which the image is a banner and
always appears at 100% of the viewport width, regardless of the device
(FIGURE 7-11). Here’s the complete img element:

<img src="strawberries-640.jpg"
 alt="baskets of ripe strawberries"
 srcset="strawberries-480.jpg 480w,
 strawberries-960.jpg 960w,
 strawberries-1280.jpg 1280w,
 strawberries-2400.jpg 2400w"
 sizes="100vw">

NOTE

On a mobile device, the viewport fills
the whole screen. On a desktop browser,
the viewport is the area where the page
displays, not including the scrollbars and
other browser “chrome.”

The sizes attribute is
required when you use
width descriptors.

Part II. HTML for Structure

Responsive Image Markup

150

FIGURE 7-11.   The image fills 100% of the viewport width, regardless of its size.

In this example, the sizes attribute tells the browser that the image fills the
full viewport by using viewport width units (vw), the most common unit for
the sizes attribute, so the browser can pick the best image for the job. For
example, 100vw translates to 100% of the viewport width, 50vw would be 50%,
and so on. You can also use em, px, and a few other CSS units, but you cannot
use percentages. Browsers that do not support srcset and sizes simply use
the image specified in the src attribute.

Sizing an image to fill the whole width of the browser is a pretty specific case.
More likely, your images will be one component in a responsive page layout
that resizes and rearranges to make best use of the available screen width.
FIGURE 7-12 shows a sidebar of food photos that take up the full width of the
screen on small devices, take up a portion of the width on larger devices, and
appear three across in a layout for large browser windows.

FIGURE 7-12.   The width of the images changes based on the width of the viewport.

7. Adding Images

Responsive Image Markup

151

Browsers that do not
support srcset and sizes
use the image specified in
the src attribute.

For cases like these, use the sizes attribute to tell the browser something
about how the image will be sized for each layout. The sizes value is a
comma-separated list in which each item has two parts. The first part in
parentheses is a media condition that describes a parameter such as the
width of the viewport. The second part is a length that indicates the width
that image will occupy in the layout if the media condition is met. Here’s how
that syntax looks:

sizes="(media-feature: condition) length,
  (media-feature: condition) length,
  (media-feature: condition) length"

I’ve added some media conditions to the previous example, and now we have
a complete valid img element for one of the photo images in FIGURE 7-12:

<img src="strawberries-640.jpg" alt="baskets of ripe strawberries"
 srcset="strawberries-240.jpg 240w,
  strawberries-480.jpg 480w,
  strawberries-672.jpg 672w"
 sizes="(max-width: 480px) 100vw,
	 (max-width: 960px) 70vw,
	 240px">

The sizes attribute tells the browser the following:

•	 If the viewport is 480 pixels wide or smaller (maximum width is 480
pixels), the image fills 100% of the viewport width.

•	 If the viewport is wider than 480 pixels but no larger than 960 pixels
(max-width: 960px), then the image will appear at 70% of the viewport.
(This layout has 15% margins on the left and the right of the images, or
30% total.)

•	 If the viewport is larger than 960 pixels and doesn’t meet any of the prior
media conditions, the image gets sized to exactly 240 pixels.

Now that the browser knows the width of the viewport and how big the
image will appear within it, it can select the most appropriate image from the
srcset list to download.

There’s a bit more to using sizes than shown here—other media conditions,
additional length units, even the ability to ask the browser to calculate widths
for you. If you plan on using viewport-width-based images in your designs, I
recommend reading the spec to take full advantage of the possibilities.

NOTE

Strategies and tools for producing the image sets for responsive layouts are introduced in
Chapter 24, Image Asset Production.

WARNIN G

The sizes attribute will resize an image
even if there is no CSS applied to it. If
there is a CSS rule specifying image size
that conflicts with the value of the sizes
attribute, the style rule wins (i.e., it over-
rides the sizes value).

Part II. HTML for Structure

Responsive Image Markup

152

Art Direction (picture Element)
So far, we’ve looked at image selection based on the resolution of the screen
and the size of the viewport. In both of these scenarios, the content of the
image does not change but merely resizes.

But sometimes, resizing isn’t enough. You might want to crop into important
details of an image when it is displayed on a small screen. You may want to
change or remove text from the image if it gets too small to be legible. Or you
might want to provide both landscape (wide) and portrait (tall) versions of
the same image for different layouts.

For example, in FIGURE 7-13, the whole image of the table as well as the dish
reads fine on larger screens, but at smartphone size, it gets difficult to see the
delicious detail. It would be nice to provide alternate versions of the image
that make sense for the browsing conditions.

That dinner looks delicious on desktop browsers.
(1280px wide)

Detail is lost when the full image is
shrunk down on small devices.
(300px wide)

Cropping to the most important detail
may make better sense.
(300px wide)

FIGURE 7-13.   Some images are illegible when resized smaller for mobile devices.

This scenario is known as an art-direction-based selection and it is accom-
plished with the picture element. The picture element has no attributes; it
is just a wrapper for some number of source elements and an img element.
The img element is required and must be the last element in the list. If the img
is left out, no image will display at all because it is the piece that is actually

Use the picture element
when simply resizing the
image is not enough.

<picture>…</picture>
Specifies a number of image options

<source>…</source>
Specifies alternate image sources

7. Adding Images

Responsive Image Markup

153

placing the image on the page. Let’s look at a sample picture element and
then pick it apart:

<picture>
 <source media="(min-width: 1024px)" srcset="icecream-large.jpg">
 <source media="(min-width: 760px)" srcset="icecream-medium.jpg">
 <img src="icecream-small.jpg" alt="hand holding ice cream cone and
text that reads Savor the Summer">
</picture>

This example tells the browser that if the viewport is 1024 pixels wide or
larger, use the large version of the ice cream cone image. If it is wider than
760 pixels (but smaller than 1024, such as on a tablet), use the medium ver-
sion. Finally, for viewports that are smaller than 760 pixels and therefore
don’t match any of the media queries in the previous source elements, the
small version should be used (FIGURE 7-14). The small version, as specified
in the img element, will be used for browsers that do not recognize picture
and source.

Each source element includes a media attribute and a srcset attribute. It
can also use the sizes attribute, although that is not shown in the previous
example. The media attribute supplies a media query for checking the cur-
rent browsing conditions. It is similar to the media conditions we saw in the
earlier srcset example, but the media attribute specifies a full-featured CSS
media query (we’ll talk more about media queries in Chapter 17, Responsive
Web Design). The srcset attribute supplies the URL for the image to use if
the media query is a match. In the previous example, there is just one image
specified, but it could also be a comma-separated list if you wanted to pro-
vide several options using x- or w-descriptors.

Browsers download the image from the first source that matches the cur-
rent conditions, so the order of the source elements is important. The URL
provided in the srcset attribute gets passed to the src attribute in the img

iPhone iPad Chrome browser on desktop

FIGURE 7-14.   The picture element provides different image versions to be sourced
at various screen sizes.

Part II. HTML for Structure

Responsive Image Markup

154

element. Again, it’s the img that places the image on the page, so don’t omit
it. The alt attribute for the img element is required, but alt is not permitted
in the source element.

Art direction is the primary use of the picture element, but let’s look at one
more thing it can do to round out our discussion on responsive images.

Alternative Image Formats (type Attribute)
Once upon a time, in the early 1990s, the only image type you could put on a
web page was a GIF. JPEGs came along not long after, and we waited nearly
a decade for reliable browser support for the more feature-rich PNG format.
It takes a notoriously long time for new image formats to become universally
supported. In the past, that meant simply avoiding newer formats.

In an effort to reduce image file sizes, more efficient image formats have been
developed—such as WebP, JPEG 2000, and JPEG XR—that can compress
images significantly smaller than their JPEG and PNG counterparts (see
Note). And once again, some browsers support them and some don’t. The dif-
ference is that today we can use the picture element to serve the newer image
formats to browsers that can handle them, and a standard image format to
browsers that can’t. We no longer have to wait for universal browser support.

In the following example, the picture element specifies two image alterna-
tives before the fallback JPEG listed in the img element:

<picture>
 <source type="image/webp" srcset="pizza.webp">
 <source type="image/jxr" srcset="pizza.jxr">

</picture>

For image-format-based selections, each source element has two attributes:
the srcset attribute that we’ve seen before, and the type attribute for specify-
ing the type of file (also known as its MIME type, see the “File (MIME) Types”
sidebar). In this example, the first source points to an image that is in the
WebP format, and the second specifies a JPEG XR. Again, the browser uses
the image from the first source that matches the browser’s image support, so
it makes sense to put them in order from smallest to largest file size.

Browser Support
As I write this section, it seems like a new browser is adding support for pic-
ture, srcset, and sizes every day, but of course, old browser versions have
a bad habit of sticking around for years. This is not a reason to avoid using
responsive images, however. First of all, all of these features are designed to
include the img element as a built-in fallback for browsers that don’t recognize
the newer markup. In the worst case, the browser grabs the image specified
in the img element.

NOTE

The bitmapped image formats, includ-
ing WebP, JPEG 2000, and JPEG XR, are
discussed in more detail in Chapter 23,
Web Image Basics.

File (MIME) Types
The web uses a standardized
system to communicate the type
of media files being transferred
between the server and browser.
It is based on MIME (Multipurpose
Internet Mail Extension), which was
originally developed for sending
attachments via email. Every file
format has a standardized type
(such as image, application,
audio, or video), subtype that
identifies the specific format, and
one or more file extensions. In our
example, the type attribute specifies
the WebP option with its type/
subtype (image/webp) and uses the
proper file extension (.webp). Other
examples of media MIME types are
image/jpeg (extensions .jpg, .jpeg),
video/mpeg (extensions .mpg,
.mpe, .mpeg, .m1v, .mp2, .mp3, and
.mpa), and application/pdf (.pdf).
The complete listing of registered
MIME types is published by the
IANA (Internet Assigned Numbers
Authority) at www.iana.org/
assignments/media-types.

7. Adding Images

Responsive Image Markup

155

If that isn’t good enough, try including Picturefill with your web pages.
Picturefill is an example of a polyfill, a script that makes older browsers
behave as though they support a new technology—in this case, responsive
images. It was created by Scott Jehl of Filament Group, creators of many fine
responsive design and frontend development tools. Go to scottjehl.github.io/
picturefill/ to download the script and read the very thorough tutorial on how
it works and how to use it.

Responsive Images Summary
This has been a long discussion about responsive images, and we’ve really
only scratched the surface. We’ve looked at how to use the img element with
srcset and sizes to make pixel-ratio-based and viewport-size-based selections
(you can try them yourself in EXERCISE 7-3). We also saw how the picture
element can be used for art-direction-based and image-type-based selections.

I’ve kept my examples short and sweet, but know that it is possible to com-
bine techniques in different ways, often resulting in a tower of code for each
image. To see some examples of how these responsive image techniques
might be combined to target more than one condition, I recommend Andreas
Bovens’s article “Responsive Images: Use Cases and Documented Code
Snippets to Get You Started” on the Dev.Opera site (dev.opera.com/articles/
responsive-images/).

I also recommend the 10-part “Responsive Images 101” tutorial by Jason
Grigsby at Cloud Four. He goes into a bit more detail than I was able to here
and provides links to other good resources. Start with “Part 1: Definitions”
(cloudfour.com/thinks/responsive-images-101-definitions/).

B ROWS E R SU P PO RT
T I P

The site CanIUse.com is a great tool
for checking on the browser support
for HTML, CSS, and other frontend
web technologies. Type in picture,
srcset, or sizes to see where
browser support stands.

EXERCISE 7-3. Adding responsive images

Ready to try out some of this responsive image stuff? I recommend downloading the
latest version of Google Chrome (google.com/chrome/) or Firefox (firefox.com) so you are
certain it supports the responsive image HTML features. The materials for this exercise are
provided at learningwebdesign.com/5e/materials. Use the responsivegallery directory
that contains a starter HTML file and images directory.

We’re going to give the Black Goose Bistro Gallery page a makeover using responsive
images. Now, instead of the user clicking a thumbnail and going to a separate page, the
large images appear right on the page and resize to fill the available space. Small devices
and browsers that don’t support picture get a 400-pixel-square version of each image
(FIGURE 7-15).

1.	 Open the file index.html located in the responsivegallery directory in a text or HTML
editor. I’ve added a meta element that sets the viewport to the same size as the device
width, which is required to make this page responsive. I also added a style for img
elements that sets their maximum width to 100% of the available space. That is the bit
that makes the images scale down for smaller screen widths. We’ll talk a lot more about

Part II. HTML for Structure

Responsive Image Markup

156

Small devices like the iPhone show
the cropped 400-pixel-square image.

On viewports larger than 480
pixels, like the iPad shown here,
the full version of the image is
used. It resizes to fill the available
width of the page between the
margins.

On very large desktop displays, the full version of the
image resizes to fill the available width.

Browsers that do not support picture display the
400-pixel-square image specified by the img element.

FIGURE 7-15.   The Black Goose Bistro Gallery with responsive images in place.
Smaller devices see a square cropped version of the image. Larger browsers get the full
image that resizes to fill the content width.

responsive design in Chapter 17, so don’t worry about it too much now. I just wanted to
point out changes from our previous exercise.

2.	 Because we want to change between horizontal and square versions of the image on
this page, we’ll need to use the picture element. Start by adding the bare bones of a
picture element in the first paragraph after “Our Baked Goods,” including the picture
wrapper and its required img element. The img element points to the default square
version of the image (bread-400.jpg). Add a line break element after the picture
element to start the text on the next line: →

7. Adding Images

Responsive Image Markup

157

<p>
<picture>
 <img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day…

3.	 That takes care of small devices and the fallback for non-supporting devices. Now add
a source element that tells browser to use a 1200-pixel-wide landscape version of the
image when the viewport is larger than 480 pixels:

<p>
<picture>
 <source media="(min-width: 480px)"
  srcset="images/bread-1200.jpg">
 <img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day…

Note that because there is only one image specified in the source, we could have used
a simple src attribute here, but we have more work to do, so the srcset gets us ready
for the next step.

4.	 Because we don’t want to force such a large image on everyone, let’s give the browser
an 800-pixel-wide version as well. (Even more versions would be useful, but for the sake
of keeping this exercise manageable, we’ll stop at two.) Remember that the srcset
attribute specifies a comma-separated list of images and their respective pixel widths
with w-descriptors. I’ve added the 1200w descriptor to the original image and added
the 800-pixel option to the srcset. Finally, use the sizes attribute to let the browser
know that the image will occupy 80% of the viewport width (the style sheet adds a 10%
margin on the left and right sides, leaving 80% for the content). Now the browser can
choose the most appropriate size.

<p>
<picture>
 <source media="(min-width: 480px)"
 srcset="images/bread-1200.jpg 1200w,
  images/bread-800.jpg 800w"
 sizes="80vw">
 <img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day…

5.	 Save the file. Launch the Chrome or Firefox desktop browser and resize the window to
as narrow as it will go. Open index.html and you should see the square cropped version
of the bread photo. Slowly drag the corner of the browser window to make the window
wider. When it gets wider than 480 pixels, it should switch to the full version of the
photo. If you see a little “800” in the corner of the image, that means the browser has
downloaded bread-800.jpg for this task. Keep expanding the window, and the image
should keep getting larger. If you see “1200,” it means it is using bread-1200.jpg. Once
the larger image is in the browser’s cache, you won’t see the 800-pixel version again. Try
making the window narrow and wide again and watch what changes. Congratulations!
You are now an official responsive web designer! Making windows narrow and wide is
how we spend a good portion of our workday.

6.	 Add the remaining two images to the page, following my example. Try experimenting
with different min- and max-widths in the media attribute.

EXERCISE 7-3. Continued

NOTE

If you don’t see the images at all, it
could be that your pathnames are
incorrect or the images directory hasn’t
copied to your computer.

Part II. HTML for Structure

Responsive Image Markup

158

WHEW! WE’RE FINISHED

That wraps up our exploration of images. We’ve seen how to place images
with the img element and its required src and alt attributes. We’ve talked
about the importance of good alternative text for accessibility. We also looked
at a few ways to embed SVG images into a web page. Finally, we took on the
newly minted responsive image features, including srcset and sizes for the
img element to target high-density displays or to provide a variety of image
sizes for the browser to choose from, and the picture and source elements for
art direction and alternative image formats. Now try answering a few ques-
tions to test your knowledge.

TEST YOURSELF

Images are a big part of the web experience. Answer these questions to see
how well you’ve absorbed the key concepts of this chapter. The correct
answers can be found in Appendix A.

1.	 Which attributes must be included in every img element?

2.	 Write the markup for adding an image called furry.jpg that is in the same
directory as the current document.

3.	 Name two reasons to include alternative text for an img element.

4.	 What might be going wrong if your images don’t appear when you view
the page in a browser? There are three possible explanations.

5.	 What is the difference between an x-descriptor and a w-descriptor?

6.	 What is the difference between a device pixel and a CSS (reference) pixel?

Alternatives to
Responsive Images
Although it is terrific to have an HTML
solution for getting the right images
to the right browsers, the current
system is cumbersome with stacks
of code and the need to produce
multiple images. If you work on an
image-heavy site, it could prove to be
unmanageable. Image processing is a
task that begs to be automated. The
solution: let the server do it!

Fortunately, there are many tools
and services, both open source and
for pay, that let the server do the
work of creating appropriate image
versions on the fly. You upload the
largest available size of the image
and let the server handle the rest—no
need to create and store multiple
versions of every image. In general,
image-generation services address
only resizing, and not art direction or
alternative image types; however, at
least one service (Cloudinary.com)
uses face detection as a basis for
image cropping.

Some content management systems
(CMSs) have image resizing features
built in. Another option is to install
software on your own server. Bear
in mind, however, that requiring
JavaScript to be running is less than
ideal. There are also many third-party
solutions that provide image-resizing
services (like Cloudinary.com and
Kraken.io), usually for a fee. For large,
image-heavy sites, they are worth
looking into.

Jason Grigsby of Cloud Four has
compiled a spreadsheet of image-
resizing software and services that
serves as a good jumping-off point.
You can get to it from his article,
“Image Resizing Services” (cloudfour.
com/thinks/image-resizing-
services/) or at tinyurl.com/pmpbyzj.

7. Adding Images

Test Yourself

159

7.	 Match the responsive image scenarios with the HTML solutions:

a.	

b.	

c.	 <picture>
 <source type="…" srcset="">

</picture>

d.	 <picture>
 <source media="()" srcset="">

</picture>

____	 You want the image to always fill the width of the browser window.

____	 You want to take advantage of the file savings of the WebP image
format.

____	 You want to remove the text from an image when it is on small
screens.

____	 You want your product images to look as sharp as possible on
high-resolution screens.

____	 You want to show a close-up of the action in a news image on small
screens.

____	 You want the image to resize smaller when it is part of the layout
on a large screen.

8.	 Challenge question: Describe what this example tells the browser to do:

<picture>
 <source sizes="(min-width: 480px) 80vw,
 100vw"
 srcset="photo-200.webp 200w
 photo-400.webp 400w,
 photo-800.webp 800w,
 photo-1200.webp 1200w"
 type="image/webp">
 <img src=" photo-400.jpg" alt=""
 sizes="(min-width: 480px) 80vw,
 100vw"
 srcset="photo-200.jpg 200w,
 photo-400.jpg 400w,
 photo-800.jpg 800w,
 photo-1200.jpg 1200w">
</picture>

Part II. HTML for Structure

Test Yourself

160

9.	 What is cache and how does it affect web page performance?

10.	 Name one advantage and one disadvantage of adding an SVG to a page
with the img element.

11.	 Name one advantage and one disadvantage of inline SVG.

12.	 When would it be appropriate to add an SVG to a page as a background
image with CSS?

13.	 What is this bit of code describing, and when might you need to use it?

image/svg+xml

14.	 What is this bit of code describing, and where would you find it?

http://www.w3.org/2000/svg

P H OTO C R E D I TS

Many of the images in this chapter
are from the fabulous royalty-free
photo site, Unsplash.com: ravioli
by Davide Ragusa, burgers by
Niklas Rhöse, ice cream cone by
Alex Jones, dinner table by Jay
Wennington, strawberries by Priscilla
Fong. From Flickr’s “No Rights
Restrictions” collection: fish dish
by Renata Maia, muffins by Hasma
Kanouni. All others are uncredited
public domain images.

7. Adding Images

Test Yourself

161

ELEMENT REVIEW: IMAGES

Following are the elements you learned in your exploration of image markup.

Element and attributes Description

img Inserts an inline image

alt="text" Alternative text

src="url" The location of the image file

srcset="list of urls
with descriptors"

Images to use in different situations

sizes="list media
conditions and layout
sizes"

Image sizes for different layouts

width="number" Width of the graphic

height="number" Height of the graphic

usemap="usemap" Indicates the client-side image map to use

picture Container that provides multiple sources to its con-
tained img element

source Provides alternate sources for the img element

src="URL" Address of the image resource

srcset="URL" Images to use in different situations

sizes="source size
list"

Image sizes for different page layouts

media="media query" Query to determine applicable media

type="media type" Media (MIME) type of embedded image file

svg Adds an inline SVG image

Part II. HTML for Structure

Element Review: Images

162

IN THIS CHAPTER

How tables are used

Basic table structure

Spanning rows and columns

Row and column groups

Making tables accessible

Before we launch into the markup for tables, let’s check in with our progress
so far. We’ve covered a lot of territory: how to establish the basic structure of
an HTML document, how to mark up text to give it meaning and structure,
how to make links, and how to embed simple images on the page.

This chapter and the next two chapters, Chapter 9, Forms, and Chapter 10,
Embedded Media, describe the markup for specialized content that you might
not have a need for right away. If you’re getting antsy to make your pages look
good, skip right to Part III and start playing with Cascading Style Sheets. The
tables, forms, and media chapters will be here when you’re ready for them.

Are you still with me? Great. Let’s talk tables. We’ll start out by reviewing
how tables should be used, then learn the elements used to create them.
Remember, this is an HTML chapter, so we’re going to focus on the markup
that structures the content into tables, and we won’t be concerned with how
the tables look (that will be tackled in various CSS chapters in Part III).

HOW TO USE TABLES

HTML tables were created for instances when you need to add tabular mate-
rial (data arranged into rows and columns) to a web page. Tables may be
used to organize schedules, product comparisons, statistics, or other types
of information, as shown in FIGURE 8-1. Note that “data” doesn’t necessarily
mean numbers. A table cell may contain any sort of information, including
numbers, text elements, and even images and multimedia objects.

In visual browsers, the arrangement of data in rows and columns gives read-
ers an instant understanding of the relationships between data cells and their
respective header labels. Bear in mind when you are creating tables, however,

TABLE MARKUP 8
CHAPTER

163

that some readers will be hearing your data read aloud with a screen reader
or reading Braille output. Later in this chapter, we’ll discuss measures you
can take to make table content accessible to users who don’t have the benefit
of visual presentation.

In the days before style sheets, tables were the only option for creating mul-
ticolumn layouts or controlling alignment and whitespace. Layout tables,
particularly the complex nested table arrangements that were once standard
web design fare, have gone the way of the dodo. If you need rows and columns
for presentation purposes, there are alternatives that use CSS to achieve the
desired effect. In one approach known as CSS Tables, nested divs provide the
markup, and CSS Table properties make them behave like rows and cells in
the browser. You can also achieve many of the effects that previously required

w3c.org

wikipedia.org

mbta.org

FIGURE 8-1.  Examples of tables used for tabular information, such as charts,
calendars, and schedules.

Part II. HTML for Structure

How to Use Tables

164

table markup using Flexbox and Grid Layout techniques (see Chapter 16, CSS
Layout with Flexbox and Grid).

That said, this chapter focuses on HTML table elements used to semantically
mark up rows and columns of data as described in the HTML specification.

MINIMAL TABLE STRUCTURE

Let’s take a look at a simple table to see what it’s made of. Here is a small table
with three rows and three columns that lists nutritional information.

Menu item Calories Fat (g)

Chicken noodle soup 120 2

Caesar salad 400 26

FIGURE 8-2 reveals the structure of this table according to the HTML table
model. All of the table’s content goes into cells that are arranged into rows.
Cells contain either header information (titles for the columns, such as
“Calories”) or data, which may be any sort of content.

Menu item

Chicken noodle soup 120 2

400Caesar salad 26

Calories Fatrow

row

row

table

header cell header cell header cell

data cell

data cell

data cell

data cell

data cell

data cell

FIGURE 8-2.  Tables are made up of rows that contain cells. Cells are the containers
for content.

Simple enough, right? Now let’s look at how those parts translate into ele-
ments (FIGURE 8-3).

<th>Menu item</th>

<td>Chicken noodle
 soup</td> <td>120</td> <td>2</td>

<td>400</td><td>Caesar salad</td> <td>26</td>

<th>Calories</th> <th>Fat</th><tr>

<tr>

<tr>

<table>

</table>

</tr>

</tr>

</tr>

FIGURE 8-3.  The elements that make up the basic structure of a table.

<table>…</table>
Tabular content (rows and columns)

<tr>…</tr>
Table row

<th>…</th>
Table header

<td>…</td>
Table cell data

8. Table Markup

Minimal Table Structure

165

FIGURE 8-3 shows the elements that identify the table (table), rows (tr, for
“table row”), and cells (th, for “table headers,” and td, for “table data”). Cells
are the heart of the table, because that’s where the actual content goes. The
other elements just hold things together.

What we don’t see are column elements. The number of columns in a table
is implied by the number of cells in each row. This is one of the things that
make HTML tables potentially tricky. Rows are easy—if you want the table
to have three rows, just use three tr elements. Columns are different. For a
table with four columns, you need to make sure that every row has four td or
th elements. (There’s more to the column story, which I cover in the section
“Row and Column Groups” later in this chapter.)

Written out in a source document, the markup for the table in FIGURE 8-3
looks like the following sample. It is common to stack the th and td elements
in order to make them easier to find in the source. This does not affect how
the browser renders them.

<table>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</table>

Remember, all the content must go in cells—that is, within td or th elements.
You can put any content in a cell: text, a graphic, or even another table.

Start and end table tags identify the beginning and end of the tabular mate-
rial. The table element may directly contain only some number of tr (row)
elements, a caption and, optionally, the row and column group elements
listed in the “Row and Column Groups” section. The only thing that can go
in the tr element is some number of td or th elements. In other words, there
may be no text content within the table and tr elements that isn’t contained
within a td or th.

Finally, FIGURE 8-4 shows how the table would look in a simple web page,
as displayed by default in a browser. I know it’s not exciting. Excitement hap-
pens in the CSS. What is worth noting is that tables always start on new lines
by default in browsers.

F U N W I T H T H E S P EC

According to the HTML5 spec, a
table element may contain “in this
order: optionally a caption element,
followed by zero or more colgroup
elements, followed optionally by a
thead element, followed by either
zero or more tbody elements or
one or more tr elements, followed
optionally by a tfoot element (but
there can only be one tfoot element
child in total).”

Well, I’m glad we cleared that up!

Stylin’ Tables
Once you build the structure of the
table in the markup, it’s no problem
to add a layer of style to customize its
appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We’ll get to all
the formatting tools you’ll need in the
following chapters:

Chapter 12, Formatting Text:

•	 Font settings for cell contents

•	 Text color in cells

Chapter 13, Colors and
Backgrounds:

•	 Background colors

•	 Tiling background images

Chapter 14, Thinking Inside the
Box:

•	 Table dimensions (width and
height)

•	 Borders

•	 Cell padding (space around cell
contents)

•	 Margins around the table

Chapter 19, More CSS Techniques:

•	 Special properties for controlling
borders and spacing between cells

Part II. HTML for Structure

Minimal Table Structure

166

FIGURE 8-4.  The default rendering of our sample table in a browser.

Here is the source for another table. Can you tell how many rows and col-
umns it will have when it is displayed in a browser?

<table>
 <tr>
 <th>Burgers</th>
 <td>Organic Grass-fed Beef</td>
 <td>Black Bean Veggie</td>
 </tr>
 <tr>
 <th>Fries</th>
 <td>Hand-cut Idaho potato</td>
 <td>Seasoned sweet potato</td>
 </tr>
</table>

If you guessed that it’s a table with two rows and three columns, you are cor-
rect! Two tr elements create two rows; one th and two td elements in each
row create three columns.

TABLE HEADERS

As you can see in FIGURE 8-4, the text marked up as headers (th elements) is
displayed differently from the other cells in the table (td elements). The dif-
ference, however, is not purely cosmetic. Table headers are important because
they provide information or context about the cells in the row or column they
precede. The th element may be handled differently than tds by alternative
browsing devices. For example, screen readers may read the header aloud
before each data cell (“Menu item: Caesar salad, Calories: 400, Fat-g: 26”).

In this way, headers are a key tool for making table content accessible. Don’t
try to fake them by formatting a row of td elements differently than the rest
of the table. Conversely, don’t avoid using th elements because of their default
rendering (bold and centered). Instead, mark up the headers semantically and
change the presentation later with a style rule.

That covers the basics. Before we get fancier, try your hand at EXERCISE 8-1.

EXERCISE 8-1. 
Making a simple table

Try writing the markup for the table
shown in FIGURE 8-5. You can open
a text editor or just write it down
on paper. The finished markup is
provided in the materials folder (www.
learningwebdesign.com/5e/materials).

Note that I’ve added a 1-pixel border
around cells with a style rule just to
make the structure clear. If you would
like borders on your tables, copy this
style element into the head of the
document(s) you create for the exercises
in this chapter:

<style>
td, th {
 border: 1px solid gray;
}
</style>

Be sure to close all table elements.
Technically, you are not required to close
tr, th, and td elements, but I want you
to get in the habit of writing tidy source
code for maximum predictability across
all browsing devices.

FIGURE 8-5.   Write the markup for
this table.

8. Table Markup

Table Headers

167

SPANNING CELLS

One fundamental feature of table structure is cell spanning, which is the
stretching of a cell to cover several rows or columns. Spanning cells allows
you to create complex table structures, but it has the side effect of making the
markup a little more difficult to keep track of. It can also make it potentially
more difficult for users with screen readers to follow.

You make a header or data cell span by adding the colspan or rowspan attri-
butes, as we’ll discuss next.

Column Spans
Column spans, created with the colspan attribute in the td or th element,
stretch a cell to the right to span over the subsequent columns (FIGURE 8-6).
Here a column span is used to make a header apply to two columns (I’ve
added a border around the cells to reveal the structure of the table in the
screenshot).

<table>
 <tr>
 <th colspan="2">Fat</th>
 </tr>
 <tr>
 <td>Saturated Fat (g)</td>
 <td>Unsaturated Fat (g)</td>
 </tr>
</table>

FIGURE 8-6.  The colspan attribute stretches a cell to the right to span the specified
number of columns.

Notice in the first row (tr) that there is only one th element, while the sec-
ond row has two td elements. The th for the column that was spanned over
is no longer in the source; the cell with the colspan stands in for it. Every
row should have the same number of cells or equivalent colspan values. For
example, there are two td elements and the colspan value is 2, so the implied
number of columns in each row is equal.

Try your hand at column spanning in EXERCISE 8-2.

EXERCISE 8-2. 
Column spans

Try writing the markup for the table
shown in FIGURE 8-7. You can open
a text editor or just write it down on
paper. I’ve added borders to reveal the
cell structure in the figure, but your table
won’t have them unless you add the
style sheet shown in EXERCISE 8-1.
Again, the final markup is provided in
the materials folder.

Some hints:

•	 The first and third rows show that the
table has a total of three columns.

•	 When a cell is spanned over, its td
element does not appear in the table.

FIGURE 8-7.   Practice column spans
by writing the markup for this table.

WARNIN G

Be careful with colspan values. If you
specify a number that exceeds the num-
ber of columns in the table, browsers
add columns to the existing table, which
typically screws things up.

Part II. HTML for Structure

Spanning Cells

168

Row Spans
Row spans, created with the rowspan attribute, work just like column spans,
but they cause the cell to span downward over several rows. In this example,
the first cell in the table spans down three rows (FIGURE 8-8).

<table>
 <tr>
 <th rowspan="3">Serving Size</th>
 <td>Small (8oz.)</td>
 </tr>
 <tr>
 <td>Medium (16oz.)</td>
 </tr>
 <tr>
 <td>Large (24oz.)</td>
 </tr>
</table>

Again, notice that the td elements for the cells that were spanned over (the first
cells in the remaining rows) do not appear in the source. The rowspan="3" implies
cells for the subsequent two rows, so no td elements are needed.

If you loved spanning columns, you’ll love spanning rows in EXERCISE 8-3.

FIGURE 8-8.   The rowspan attribute stretches a cell downward to span the specified
number of rows.

Space in and Between Cells
By default, tables expand just enough to fit the content of the cells, which
can look a little cramped. Old versions of HTML included cellpadding and
cellspacing attributes for adding space within and between cells, but they
have been kicked out of HTML5 as they are obsolete, presentational markup.
The proper way to adjust table cell spacing is with style sheets, of course.
The “Styling Tables” section in Chapter 19, More CSS Techniques addresses
cell spacing.

TABLE ACCESSIBILITY

As a web designer, it is important that you always keep in mind how your
site’s content is going to be used by visitors with impaired sight. It is especially
challenging to make sense of tabular material by using a screen reader, but
the HTML specification provides measures to improve the experience and
make your content more understandable.

EXERCISE 8-3. 
Row spans

Try writing the markup for the table
shown in FIGURE 8-9. Remember
that cells that are spanned over do not
appear in the table code.

Some hints:

•	 Rows always span downward, so the
“oranges” cell is part of the first row
even though its content is vertically
centered.

•	 Cells that are spanned over do not
appear in the code.

FIGURE 8-9.   Practice row spans by
writing the markup for this table.

8. Table Markup

Table Accessibility

169

Describing Table Content
The most effective way to give sight-impaired users an overview of your table
is to give it a title or description with the caption element. Captions display
next to the table (generally, above it) and can be used to describe the table’s
contents or provide hints on how it is structured.

When used, the caption element must be the first thing within the table ele-
ment, as shown in this example, which adds a caption to the nutritional chart
from earlier in the chapter:

<table>
 <caption>Nutritional Information</caption>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <!-- table continues -->
</table>

The caption is displayed above the table by default, as shown in FIGURE

8-10, although you can use a style sheet property to move it below the table
(caption-side: bottom).

FIGURE 8-10.   The table caption is displayed above the table by default.

For longer descriptions, you could consider putting the table in a figure
element and using the figcaption element for the description. The HTML5
specification has a number of suggestions for providing table descriptions
(www.w3.org/TR/html5/tabular-data.html#table-descriptions-techniques).

Connecting Cells and Headers
We discussed headers briefly as a straightforward method for improving
the accessibility of table content, but sometimes it may be difficult to know
which header applies to which cells. For example, headers may be at the left
or right edge of a row rather than at the top of a column. And although it
may be easy for sighted users to understand a table structure at a glance, for
users hearing the data as text, the overall organization is not as clear. The
scope and headers attributes allow authors to explicitly associate headers and
their respective content.

<caption>…</caption>
Title or description to be displayed

with the table

Part II. HTML for Structure

Table Accessibility

170

scope

The scope attribute associates a table header with the row, column, group
of rows (such as tbody), or column group in which it appears by using
the values row, col, rowgroup, or colgroup, respectively. This example uses
the scope attribute to declare that a header cell applies to the current row:

<tr>
 <th scope="row">Mars</th>
 <td>.95</td>
 <td>.62</td>
 <td>0</td>
</tr>

Accessibility experts recommend that every th element contain a scope
attribute to make its associated data explicitly clear.

headers

For really complicated tables in which scope is not sufficient to associ-
ate a table data cell with its respective header (such as when the table
contains multiple spanned cells), the headers attribute is used in the td
element to explicitly tie it to a header’s id value. In this example, the cell
content “.38” is tied to the header “Diameter measured in earths”:

<th id="diameter">Diameter measured in earths</th>
<!-- many other cells -->
<td headers="diameter">.38</td>
<!-- many other cells -->

Unfortunately, support of the id/headers feature is unreliable. The rec-
ommended best practice is to create tables in a way that a simple scope
attribute will do the job.

This section is obviously only the tip of the iceberg of table accessibility.
In-depth instruction on authoring accessible tables is beyond the scope of
this beginner book. If you’d like to learn more, I recommend “Creating
Accessible Tables” at WebAIM (webaim.org/techniques/tables/data) as an
excellent starting point.

There is one more important set of elements for helping make the semantic
structure of a table clear: row and column grouping elements.

ROW AND COLUMN GROUPS

The sample tables we’ve been looking at so far in this chapter have been
stripped down to their bare essentials to make the structure clear while
you’re learning how tables work. But tables in the real world are not always
so simple. Check out the beauty in FIGURE 8-11 from the CSS Writing Modes
Level 3 spec. You can identify three groups of columns (one with headers,
two with two columns each), and three groupings of rows (headers, data, and
a footnote).

BROWSER SUPPORT ALERT

Although the advanced table features
intended to improve accessibility have
been in the specs for many years, sup-
port by screen readers and other assis-
tive devices is unreliable at best. It is still
recommended that you mark up your
data semantically within table cells and
that they make sense when read in order
from the source, which is exactly how
some of your visitors may encounter them.

8. Table Markup

Row and Column Groups

171

Conceptual table groupings like these are marked up with row group and
column group elements that provide additional semantic structure and more
“hooks” for styling or scripting. For example, the row and column groups in
FIGURE 8-11 were styled with thicker borders to make them stand out visually.

FIGURE 8-11.  An example of a table with row and column groups (from the CSS
Writing Modes Level 3 specification).

Row Group Elements
You can describe rows or groups of rows as belonging to a header, footer, or
the body of a table by using the thead, tfoot, and tbody elements, respectively.
Some user agents (another word for a browser) may repeat the header and
footer rows on tables that span multiple pages. For example, the head and
foot rows may print on every page of a multipage table. Authors may also use
these elements to apply styles to various regions of a table.

Row group elements may only contain one or more tr elements. They con-
tain no direct text content. The thead element should appear first, followed
by any number of tbody elements, followed by an optional tfoot.

This is the row group markup for the table in FIGURE 8-11 (td and th ele-
ments are hidden to save space):

<table>
…
<thead>
 <!-- headers in these rows-->
 <tr></tr>
 <tr></tr>
 <tr></tr>
<thead>
<tbody>
 <!-- data -->
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
</tbody>

<thead>…</thead>
Table header row group

<tbody>…</tbody>
Table body row group

<tfoot>…</tfoot>
Table footer row group

V I E W S O U RC E

View the source of the table in
FIGURE 8-11 at www.w3.org/TR/
css-writing-modes-3/#unicode-bidi
(you need to scroll down a little).
The source is too long to print here,
but it is clearly marked up and
easy to follow. Note that it uses all
the row group elements, column
groups, and the scope attribute we
saw in the last section to associate
headers with rows. There are several
interesting tables on this page for
your source-viewing pleasure.

Part II. HTML for Structure

Row and Column Groups

172

<tfoot>
 <!-- footnote -->
 <tr></tr>
</tfoot>
</table>

Column Group Elements
As you’ve learned, columns are implied by the number of cells (td or th) in
each row. You can semantically group columns (and assign id and class val-
ues) using the colgroup element.

Column groups are identified at the start of the table, just after the caption
if there is one, and they give the browser a little heads-up as to the column
arrangement in the table. The number of columns a colgroup represents is
specified with the span attribute. Here is the column group section at the
beginning of the table in FIGURE 8-11:

<table>
 <caption>…</caption>
 <colgroup></colgroup>
 <colgroup span="2"></colgroup>
 <colgroup span="2"></colgroup>
 <!-- rest of table... -->

That’s all there is to it. If you need to access individual columns within a col-
group for scripting or styling, identify them with col elements. The previous
column group section could also have been written like this:

 <colgroup></colgroup>
 <colgroup>
 <col class="start">
 <col class="end">
 </colgroup>
 <colgroup>
 <col class="start">
 <col class="end">
 </colgroup>

Note that the colgroup elements contain no content—they only provide an
indication of semantically relevant column structure. The empty col ele-
ments are used as handles for scripts or styles, but are not required.

WRAPPING UP TABLES

This chapter gave you a good overview of the components of HTML tables.
EXERCISE 8-4 combines most of what we’ve covered to give you a little more
practice at authoring tables.

<colgroup>…</colgroup>
A semantically related group of columns

<col>…</col>
One column in a column group

NOTE

When colgroup elements contain col
elements, they must not have a span
attribute.

8. Table Markup

Wrapping Up Tables

173

EXERCISE 8-4.  The table challenge

Now it’s time to put together the table writing skills you’ve
acquired in this chapter. Your challenge is to write out the source
document for the table shown in FIGURE 8-12.

FIGURE 8-12.   The table challenge.

I’ll walk you through it one step at a time.

1.	 First, open a new document in your text editor and set up
its overall structure (DOCTYPE, html, head, title, and body
elements). Save the document as table.html in the directory of
your choice.

2.	 Next, in order to make the boundaries of the cells and table
clear when you check your work, I’m going to have you add
some simple style sheet rules to the document. Don’t worry
about understanding exactly what’s happening here (although
it’s fairly intuitive); just insert this style element in the head of
the document exactly as you see it here:

<head>
 <title>Table Challenge</title>
 <style>
 td, th { border: 1px solid #CCC; }
 table { border: 1px solid black; }
 </style>
</head>

3.	 Now it’s time to start building the table. I usually start by setting
up the table and adding as many empty row elements as I’ll
need for the final table as placeholders, as shown here. You can
tell from the figure that there are five rows in this table:

<body>
 <table>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 </table>
</body>

4.	 Start with the top row, and fill in the th and td elements from
left to right, including any row or column spans as necessary. I’ll
help with the first row.

The first cell (the one in the top-left corner) spans down the
height of two rows, so it gets a rowspan attribute. I’ll use a th
here to keep it consistent with the rest of the row. This cell has
no content:

<table>
 <tr>
 <th rowspan="2"></th>
 </tr>

The cell in the second column of the first row spans over the
width of two columns, so it gets a colspan attribute:

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two
subheads</th>
 </tr>

The cell in the third column has been spanned over by the
colspan we just added, so we don’t need to include it in the
markup. The cell in the fourth column also spans down two
rows:

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two
subheads</th>
 <th rowspan="2">Header 3</th>
 </tr>

5.	 Now it’s your turn. Continue filling in the th and td elements for
the remaining four rows of the table. Here’s a hint: the first and
last cells in the second row have been spanned over. Also, if it’s
bold in the example, make it a header.

6.	 To complete the content, add the title over the table by using
the caption element.

7.	 Use the scope attribute to make sure that the Thing A, Thing B,
and Thing C headers are associated with their respective rows.

8.	 Finally, give the table row and column groups for greater sematic
clarity. There is no tfoot in this table. There are two column
groups: one column for headers, the rest for data. Use the span
attribute (no need for individual column identification).

9.	 Save your work and open the file in a browser. The table should
look just like the one on this page. If not, go back and adjust
your markup. If you’re stumped, the final markup for this
exercise is provided in the materials folder.

Part II. HTML for Structure

Wrapping Up Tables

174

TEST YOURSELF

The answers to these questions appear in Appendix A.

1.	 What are the parts (elements) of a basic HTML table?

2.	 What elements can a table contain directly (i.e., first-level children)?

3.	 What elements can a tr contain?

4.	 When would you use the col (column) element?

5.	 Find five errors in this table markup:

<caption>Primetime Television 1965</caption>
<table>
 Thursday Night
 <tr></tr>
 <th>7:30</th>
 <th>8:00</th>
 <th>8:30</th>
 <tr>
 <td>Shindig</td>
 <td>Donna Reed Show</td>
 <td>Bewitched</td>
 <tr>
 <colspan="2">Laredo</colspan>
 <td>Daniel Boone</td>
 </tr>
</table>

8. Table Markup

Test Yourself

175

ELEMENT REVIEW: TABLES

The following is a summary of the elements we covered in this chapter.

Element and attributes Description

table Establishes a table element

tr Establishes a row within a table

td Establishes a cell within a table row

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates the data cell with a header

th Table header associated with a row or column

abbr="text" Alternative label for when the header cell is ref-
erenced in other contexts

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates a header with another header

scope="row|col|
rowgroup|colgroup"

Associates the header with a row, row group,
column, or column group

caption Gives the table a title that displays in the browser

colgroup Declares a group of columns

span="number" Number of columns the column group spans;
may not be used when the colgroup contains
col elements

col Declares a column

span="number" Number of columns the column spans

tbody Identifies a table body row group

thead Identifies a table header row group

tfoot Identifies a table footer row group

Part II. HTML for Structure

Element Review: Tables

176

IN THIS CHAPTER

How forms work

Elements for adding
form widgets

Making forms accessible

Form design basics

It didn’t take long for the web to shift from a network of pages to read to a
place where you go to get things done—making purchases, booking plane
tickets, signing petitions, searching a site, posting a tweet…the list goes on!
Web forms handle all of these interactions.

In fact, in response to this shift from page to application, HTML5 introduced
a bonanza of new form controls and attributes that make it easier for users to
fill out forms and for developers to create them. Tasks that have traditionally
relied on JavaScript may be handled by markup and native browser behavior
alone. HTML5 introduces a number of new form-related elements, 12 new
input types, and many new attributes (they are listed in TABLE 9-1 at the end
of this chapter). Some of these features are waiting for browser implementa-
tion to catch up, so I will be sure to note which controls may not be univer-
sally supported.

This chapter introduces web forms, how they work, and the markup used to
create them. I’ll also briefly discuss the importance of web form design.

HOW FORMS WORK

There are two parts to a working form. The first part is the form that you see
on the page itself that is created using HTML markup. Forms are made up
of buttons, input fields, and drop-down menus (collectively known as form
controls) used to collect information from the user. Forms may also contain
text and other elements.

The other component of a web form is an application or script on the server
that processes the information collected by the form and returns an appro-
priate response. It’s what makes the form work. In other words, posting an

FORMS 9
CHAPTER

177

HTML document with form elements isn’t enough. Web applications and
scripts require programming know-how that is beyond the scope of this
book, but the “Getting Your Forms to Work” sidebar, later in this chapter, pro-
vides some options for getting the scripts you need.

From Data Entry to Response
If you are going to be creating web forms, it is beneficial to understand what
is happening behind the scenes. This example traces the steps of a transaction
using a simple form that gathers names and email addresses for a mailing list;
however, it is typical of the process for many forms.

1.	 Your visitor—let’s call her Sally—opens the page with a web form in
the browser window. The browser sees the form control elements in the
markup and renders them with the appropriate form controls on the page,
including two text-entry fields and a Submit button (shown in FIGURE 9-1).

2.	 Sally would like to sign up for this mailing list, so she enters her name
and email address into the fields and submits the form by hitting the
Submit button.

3.	 The browser collects the information she entered, encodes it (see the
sidebar “A Word About Encoding”), and sends it to the web application on
the server.

4.	 The web application accepts the information and processes it (that is,
does whatever it is programmed to do with it). In this example, the name
and email address are added to a mailing list database.

5.	 The web application also returns a response. The kind of response sent
back depends on the content and purpose of the form. Here, the response
is a simple web page saying thank you for signing up for the mailing
list. Other applications might respond by reloading the form page with
updated information, by moving the user on to another related form page,
or by issuing an error message if the form is not filled out correctly, to
name only a few examples.

6.	 The server sends the web application’s response back to the browser,
where it is displayed. Sally can see that the form worked and that she has
been added to the mailing list.

A Word About Encoding
Form data is encoded via the same method used for URLs. Spaces and other
characters that are not permitted get translated into their hexadecimal equivalents.
For example, each space character in the collected form data is represented by the
character + or %20 and a slash (/) character is replaced with %2F. You don’t need to
worry about this; the browser handles it automatically.

Part II. HTML for Structure

How Forms Work

178

Name = Sally Strongarm
Email = strongarm@example.com

Data

Response
(HTML)

Web application
(stores data in database)

FIGURE 9-1.   What happens behind the scenes when a web form is submitted.

THE FORM ELEMENT

Forms are added to web pages with (no surprise here) the form element. The
form element is a container for all the content of the form, including some
number of form controls, such as text-entry fields and buttons. It may also
contain block elements (h1, p, and lists, for example). However, it may not
contain another form element.

This sample source document contains a form similar to the one shown in
FIGURE 9-1:

<!DOCTYPE html>
<html>
<head>
 <title>Mailing List Signup</title>
 <meta charset="utf-8">
</head>

<form>…</form>
Interactive form

M AR KU P T I P

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

9. Forms

The form Element

179

<body>
 <h1>Mailing List Signup</h1>

 <form action="/mailinglist.php" method="POST">
 <fieldset>
 <legend>Join our email list</legend>
 <p>Get news about the band such as tour dates and special MP3
releases sent to your own in-box.</p>

	 <label for="firstlast">Name:</label>
	 <input type="text" name="fullname" id="firstlast">
	 <label for="email">Email:</label>
	 <input type="text" name="email" id="email">
	
 <input type="submit" value="Submit">
 </fieldset>
 </form>

</body>
</html>

In addition to being a container for form control elements, the form element
has some attributes that are necessary for interacting with the form processing
program on the server. Let’s take a look at each.

The action Attribute
The action attribute provides the location (URL) of the application or script
that will be used to process the form. The action attribute in this example
sends the data to a script called mailinglist.php:

<form action="/mailinglist.php" method="POST">...</form>

The .php suffix indicates that this form is processed by a script written in
the PHP scripting language, but web forms may be processed by any of the
following technologies:

•	 PHP (.php) is an open source scripting language most commonly used
with the Apache web server. It is the most popular and widely supported
forms processing option.

•	 Microsoft ASP (Active Server Pages; .asp) is a programming environment
for the Microsoft Internet Information Server (IIS).

•	 Microsoft’s ASP.NET (Active Server Page; .aspx) is a newer Microsoft lan-
guage that was designed to compete with PHP.

•	 Ruby on Rails. Ruby is the programming language that is used with the
Rails platform. Many popular web applications are built with it.

•	 JavaServer Pages (.jsp) is a Java-based technology similar to ASP.

•	 Python is a popular scripting language for web and server applications.

There are other form-processing options that may have their own suffixes or
none at all (as is the case for the Ruby on Rails platform). Check with your

NOTE

It is current best practice to wrap form
controls in semantic HTML elements such
as lists or divs. Ordered lists, as shown in
this example, are a popular solution, but
know that there are often default styles
that you’ll need to clear out before styl-
ing them, particularly on mobile brows-
ers. The fieldset, legend, and label
elements used in the example improve
accessibility. They are explained later in
this chapter.

Part II. HTML for Structure

The form Element

180

programmer, server administrator, or script documentation for the proper
name and location of the program to be provided by the action attribute (see
Web Hosting Tip).

Sometimes there is form processing code such as PHP embedded right in the
HTML file. In that case, leave the action empty, and the form will post to the
page itself.

The method Attribute
The method attribute specifies how the information should be sent to the
server. Let’s use this data gathered from the sample form in FIGURE 9-1 as an
example.

fullname = Sally Strongarm
email = strongarm@example.com

When the browser encodes that information for its trip to the server, it looks
like this (see the earlier sidebar if you need a refresher on encoding):

fullname=Sally+Strongarm&email=strongarm%40example.com

There are only two methods for sending this encoded data to the server:
POST or GET, indicated by the method attribute in the form element. The
method is optional and will default to GET if omitted. We’ll look at the dif-
ference between the two methods in the following sections. Our example uses
the POST method, as shown here:

<form action="/mailinglist.php" method="POST">...</form>

The GET method
With the GET method, the encoded form data gets tacked right onto the URL
sent to the server. A question mark character separates the URL from the fol-
lowing data, as shown here:

get http://www.bandname.com/mailinglist.php?name=Sally+Strongarm&email=
strongarm%40example.com

GET is inappropriate if the form submission performs an action, such as
deleting something or adding data to a database, because if the user goes
back, it gets submitted again.

The POST method
When the form’s method is set to POST, the browser sends a separate server
request containing some special headers followed by the data. In theory, only
the server sees the content of this request, and thus it is the best method for
sending secure information such as a home address or other personal informa-
tion. In practice, make sure HTTPS is enabled on your server so the user’s data
is encrypted and inaccessible in transit. (HTTPS is discussed in Chapter 2, How
the Web Works.)

W E B H O ST I N G T I P

If you know you want or need to work
with a particular form processing
language, make sure to confirm it is
supported when you are shopping for
a web hosting service.

Getting Your Forms
to Work
If you aren’t a programmer, don’t fret.
You have a few options for getting
your forms operational:

Use hosting plan goodies
Many site hosting plans include
access to scripts for simple
functions such as mailing lists.
More advanced plans may even
provide everything you need to
add a full shopping cart system to
your site as part of your monthly
hosting fee. Documentation or a
technical support person should
be available to help you use them.

Hire a programmer
If you need a custom solution, you
may need to hire a programmer
who has server-side programming
skills. Tell your programmer what
you are looking to accomplish with
your form, and she will suggest a
solution. Again, you need to make
sure you have permission to install
scripts on your server under your
current hosting plan, and that the
server supports the language you
choose.

→

9. Forms

The form Element

181

http://www.bandname.com/mailinglist.php?name=Sally%20Strongarm&email=strongarm%40example.com
http://www.bandname.com/mailinglist.php?name=Sally%20Strongarm&email=strongarm%40example.com

The POST method is also preferable for sending a lot of data, such as a
lengthy text entry, because there is no character limit as there is for GET.

The GET method is appropriate if you want users to be able to bookmark
the results of a form submission (such as a list of search results). Because the
content of the form is in plain sight, GET is not appropriate for forms with
private personal or financial information. In addition, GET may not be used
when the form is used to upload a file.

In this chapter, we’ll stick with the more prevalent POST method. Now that
we’ve gotten through the technical aspects of the form element, let’s turn our
attention to form controls.

VARIABLES AND CONTENT

Web forms use a variety of controls that allow users to enter information or
choose between options. Control types include various text-entry fields, but-
tons, menus, and a few controls with special functions. They are added to the
document with a collection of form control elements that we’ll be examining
one by one in the upcoming “The Great Form Control Roundup” section.

As a web designer, you need to be familiar with control options to make your
forms easy and intuitive to use. It is also useful to have an idea of what form
controls are doing behind the scenes.

The name Attribute
The job of each form control is to collect one bit of information from a user.
In the previous form example, text-entry fields collect the visitor’s name and
email address. To use the technical term, “fullname” and “email” are two vari-
ables collected by the form. The data entered by the user (“Sally Strongarm”
and “strongarm@example.com”) is the value or content of the variables.

The name attribute provides the variable name for the control. In this example,
the text gathered by a textarea element is defined as the “comment” variable:

<textarea name="comment" rows="4" cols="45" placeholder="Leave us a
comment."></textarea>

When a user enters a comment in the field (“This is the best band ever!”), it
would be passed to the server as a name/value (variable/content) pair like this:

comment=This+is+the+best+band+ever%21

All form control elements must include a name attribute so the form process-
ing application can sort the information. You may include a name attribute for
submit and reset button elements, but they are not required, because they
have special functions (submitting or resetting the form) not related to data
collection.

NOTE

POST and GET are not case-sensitive and
are commonly listed in all uppercase by
convention. In XHTML documents, how-
ever, the value of the method attribute
(post or get) must be provided in all
lowercase letters.

All form controls (except
submit and reset buttons)
must include a name
attribute.

Part II. HTML for Structure

Variables and Content

182

Naming Your Variables
You can’t just name controls willy-nilly. The web application that processes
the data is programmed to look for specific variable names. If you are design-
ing a form to work with a preexisting application or script, you need to find
out the specific variable names to use in the form so they are speaking the
same language. You can get the variable names from the instructions provided
with a ready-to-use script on your server, your system administrator, or the
programmer you are working with.

If the script or application will be created later, be sure to name your variables
simply and descriptively and to document them well. In addition, to avoid
confusion, you are advised to name each variable uniquely—that is, don’t use
the same name for two variables (however, there may be exceptions for which
it is desirable). You should also avoid putting character spaces in variable
names. Use an underscore or hyphen instead.

We’ve covered the basics of the form element and how variables are named.
Now we can get to the real meat of form markup: the controls.

THE GREAT FORM CONTROL ROUNDUP

This is the fun part—playing with the markup that adds form controls to
the page. This section introduces the elements used to create the following:

•	 Text-entry controls

•	 Specialized text-entry controls

•	 Submit and reset buttons

•	 Radio and checkbox buttons

•	 Pull-down and scrolling menus

•	 File selection and upload control

•	 Hidden controls

•	 Dates and times

•	 Numerical controls

•	 Color picker control

We’ll pause along the way to allow you to try them out by constructing the
pizza ordering form shown in FIGURE 9-2.

As you will see, the majority of controls are added to a form via the input ele-
ment. The functionality and appearance of the input element changes based
on the value of the type attribute in the tag. In HTML5.2, there are twenty-two
types of input controls. We’ll take a look at them all.

NOTE

The attributes associated with each
input type are listed in TABLE 9-1 at the
end of this chapter.

9. Forms

The Great Form Control Roundup

183

FIGURE 9-2.   The pizza ordering form we’ll build in the exercises in this chapter.

Text-Entry Controls
One of the most common web form tasks is entering text information. Which
element you use to collect text input depends on whether users are asked to
enter a single line of text (input) or multiple lines (textarea).

Be aware that if your form has text-entry fields, it needs to use the secure
HTTPS protocol to protect the user-entered content while their data is in
transit to the server (see the “HTTPS, the Secure Web Protocol” sidebar in for
more information).

Single-line text field
One of the most straightforward form input types is the text-entry field for
entering a single word or line of text. In fact, it is the default input type,
which means it is what you’ll get if you forget to include the type attribute
or include an unrecognized value. Add a text input field to a form by insert-
ing an input element with its type attribute set to text, as shown here and
in FIGURE 9-3:

<label>Favorite color: <input type="text" name="favcolor"
value="Red" maxlength="50"></label>

<input type="text">
Single-line text-entry control

NOTE

The markup examples throughout this
section include the label element,
which is used to improve accessibility.
We will discuss label in the upcoming
“Form Accessibility Features” section,
but in the meantime, I want you to get
used to seeing proper form markup.

Part II. HTML for Structure

The Great Form Control Roundup

184

There are a few attributes in there that I’d like to point out:

name

The name attribute is required for indicating the variable name.

value

The value attribute specifies default text that appears in the field when
the form is loaded. When you reset a form, it returns to this value. The
value of the value attribute gets submitted to the server, so in this exam-
ple, the value “Red” will be sent with the form unless the user changes it.
As an alternative, you could use the placeholder attribute to provide a
hint of what to type in the field, such as “My favorite color”. The value of
placeholder is not submitted with the form, and is purely a user interface
enhancement. You’ll see it in action in the upcoming section.

maxlength, minlength	

By default, users can type an unlimited number of characters in a text
field regardless of its size (the display scrolls to the right if the text exceeds
the character width of the box). You can set a maximum character limit
using the maxlength attribute if the form-processing program you are
using requires it. The minlength attribute specifies the minimum number
of characters.

BROWSER SUPPORT NOTE

Versions of Internet Explorer prior to ver-
sion 11 and older versions of Android do
not support placeholder.

Text-entry field (input type="text")

Multiline text-entry field with text content (input type="textarea")

Multiline text-entry field with placeholder text (input type="textarea")

FIGURE 9-3.  Examples of the text-entry control options for web forms.

NOTE

The specific rendering style of form con-
trols varies by operating system and
browser version.

9. Forms

The Great Form Control Roundup

185

size

The size attribute specifies the length of the input field in number of
visible characters. It is more common, however, to use style sheets to set
the size of the input area. By default, a text input widget displays at a size
that accommodates 20 characters.

Multiline text-entry field
At times, you’ll want your users to be able to enter more than just one line of
text. For these instances, use the textarea element, which is replaced by a mul-
tiline, scrollable text entry box when displayed by the browser (FIGURE 9-3).

Unlike the empty input element, you can put content between the opening
and closing tags in the textarea element. The content of the textarea ele-
ment shows up in the text box when the form is displayed in the browser. It
also gets sent to the server when the form is submitted, so carefully consider
what goes there.

<p><label>Official contest entry:

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" rows="5" cols="50">The band is totally
awesome!</textarea></label></p>

The rows and cols attributes provide a way to specify the size of the textarea
with markup. rows specifies the number of lines the text area should display,
and cols specifies the width in number of characters (although it is more
common to use CSS to specify the width of the field). Scrollbars will be pro-
vided if the user types more text than fits in the allotted space.

There are also a few attributes not shown in the example. The wrap attribute
specifies whether the soft line breaks (where the text naturally wraps at the
edge of the box) are preserved when the form is submitted. A value of soft
(the default) does not preserve line breaks. The hard value preserves line
breaks when the cols attribute is used to set the character width of the box.
The maxlength and minlength attributes set the maximum and minimum
number of characters that can be typed into the field.

It is not uncommon for developers to put nothing between the opening and
closing tags, and provide a hint of what should go there with a placeholder
attribute instead. Placeholder text, unlike textarea content, is not sent to the
server when the form is submitted. Examples of textarea content and place-
holder text are shown in FIGURE 9-3.

<p>Official contest entry:

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" placeholder="50 words or less" rows="5"
cols="50"></textarea>
</p>

<textarea>…</textarea>
Multiline text-entry control

Part II. HTML for Structure

The Great Form Control Roundup

186

Specialized Text-Entry Fields
In addition to the generic single-line text entry, there are a number of input
types for entering specific types of information such as passwords, search
terms, email addresses, telephone numbers, and URLs.

Password entry field
A password field works just like a text-entry field, except the characters are
obscured from view by asterisk (*) or bullet (•) characters, or another charac-
ter determined by the browser.

It’s important to note that although the characters entered in the password
field are not visible to casual onlookers, the form does not encrypt the infor-
mation, so it should not be considered a real security measure.

Here is an example of the markup for a password field. FIGURE 9-4 shows
how it might look after the user enters a password in the field.

<label for="form-pswd">Password:</label>

 <input type="password" name="pswd" maxlength="12" id="form-pswd">

FIGURE 9-4.   Passwords are converted to bullets in the browser display.

disabled and readonly
The disabled and readonly attributes both prevent users from interacting with a
form control, but they work slightly differently.

When a form element is disabled, it cannot be selected. Visual browsers may render
the control as grayed-out by default (which you can change with CSS, of course).
The disabled state can only be changed with a script. This is a useful attribute for
restricting access to some form fields based on data entered earlier in the form and
can be applied to any form control or fieldset.

The readonly attribute prevents the user from changing the value of the form
control (although it can be selected). This enables developers to use scripts to set
values for controls contingent on other data entered earlier in the form. Inputs that
are readonly should have strong visual cues that they are somehow different from
other inputs, or they could be confusing to users who are trying to change their
values. The readonly attribute can be used with textarea and text-based input
controls (see TABLE 9-1 at the very end of this chapter).

The most important difference is that readonly fields are submitted when the form
is submitted, but disabled ones are not.

<input type="password">
Password text control

9. Forms

The Great Form Control Roundup

187

Search, email, telephone numbers, and URLs
Until HTML5, the only way to collect email addresses, telephone numbers,
URLs, or search terms was to insert a generic text input field. In HTML5, the
email, tel, url, and search input types give the browser a heads-up as to what
type of information to expect in the field. These input types use the same
attributes as the generic text input type described earlier (name, maxlength,
minlength, size, and value), as well as a number of other attributes (see
TABLE 9-1 at the end of the chapter).

All of these input types are typically displayed as single-line text inputs. But
browsers that support them can do some interesting things with the extra
semantic information. For example, Safari on iOS uses the input type to pro-
vide a keyboard well suited to the entry task, such as the keyboard featuring
a Search button for the search input type or a “.com” button when the input
type is set to url (FIGURE 9-5). Browsers usually add a one-click “clear field”
icon (usually a little X) in search fields. A supporting browser could check the
user’s input to see that it is valid—for example, by making sure text entered
in an email input follows the standard email address structure (in the past,
you needed JavaScript for validation). For example, the Opera (FIGURE 9-6)
and Chrome browsers display a warning if the input does not match the
expected format.

Although email, search, telephone, and URL inputs are well supported by up-
to-date browsers, there may be inconsistencies in the way they are handled.
Older browsers, such as Opera Mini and any version of Internet Explorer
prior to 11, do not recognize them at all, but will display the default generic
text input instead, which works perfectly fine.

input type="email" input type="search" input type="tel" input type="url"

FIGURE 9-5.   Safari on iOS provides custom keyboards based on the input type.

<input type="search">
Search field

<input type="email">
Email address

<input type="tel">
Telephone number

<input type="url">
Location (URL)

Part II. HTML for Structure

The Great Form Control Roundup

188

FIGURE 9-6.   Opera displays a warning when input does not match the expected
email format as part of its client-side validation support.

Drop-Down Suggestions

<datalist>…</datalist>
Drop-down menu input

The datalist element allows the author to provide a drop-down menu of suggested
values for any type of text input. It gives the user some shortcuts to select from, but
if none are selected, the user can still type in their own text. Within the datalist
element, suggested values are marked up as option elements. Use the list
attribute in the input element to associate it with the id of its respective datalist.

In the following example (FIGURE 9-7), a datalist suggests several education level
options for a text input:

<p>Education completed: <input type="text" list="edulevel"
name="education">

<datalist id="edulevel">
 <option value="High School">
 <option value="Bachelors Degree">
 <option value="Masters Degree">
 <option value="PhD">
</datalist>

As of this writing, browser support for datalists remains spotty. Chrome and Opera
support it, but there is a bug that makes datalists unscrollable (i.e., unusable) if the
list is too long, so it is best used for short lists of options. IE11 and Edge have buggy
implementations, and Safari and iOS don’t support it at all. The good news is if it is
unsupported, browsers present a simple text input, which is a perfectly acceptable
fallback. You could also use a JavaScript polyfill to create datalist functionality.

FIGURE 9-7.   A datalist creates a pop-up menu of suggested values for a text-
entry field.

WARNING

The values from form controls should
be checked by the server code (PHP,
ASP.NET, etc.), as they can be hacked or
manipulated. So, although they make
controlling and validating user input
easier, it is still vital to perform server-
side checks before updating the data-
base on the server.

9. Forms

The Great Form Control Roundup

189

Submit and Reset Buttons

<input type="submit">
Submits the form data to the server

<input type="reset">
Resets the form controls to their default settings

There are several kinds of buttons that can be added to web forms. The most
fundamental is the submit button. When clicked or tapped, the submit but-
ton immediately sends the collected form data to the server for processing.
A reset button returns the form controls to the state they were in when the
form initially loaded. In other words, resetting the form doesn’t simply clear
all the fields.

Both submit and reset buttons are added via the input element. As mentioned
earlier, because these buttons have specific functions that do not include the
entry of data, they are the only form control elements that do not require the
name attribute, although it is OK to add one if you need it.

Submit and reset buttons are straightforward to use. Just place them in
the appropriate place in the form, which in most cases is at the very end.
By default, the submit button displays with the label “Submit” or “Submit
Query,” and the reset button is labeled “Reset.” You can change the text on
the button by using the value attribute, as shown in the reset button in this
example (FIGURE 9-8).

<p><input type="submit"> <input type="reset" value="Start over"></p>

FIGURE 9-8.   Submit and reset buttons.

The reset button is not used in forms as commonly as it used to be. That is
because in contemporary form development, we use JavaScript to check the
validity of form inputs along the way, so users get feedback as they go along.
With thoughtful design and assistance, fewer users should get to the end of
the form and need to reset the whole thing. Still, it is a good function to be
aware of.

At this point, you know enough about form markup to start building the
questionnaire shown in FIGURE 9-2.

EXERCISE 9-1 walks you through the first steps.

A Few More Buttons
There are a handful of custom button
elements that are a little off the
beaten path for beginners, but in the
interest of thoroughness, here they
are tucked off in a sidebar.

Image buttons
<input type="image">
This type of input control allows you
to replace the submit button with
an image of your choice. The image
will appear flat, not like a 3-D button.
Unfortunately, this type of button
has accessibility issues, so be sure to
include a carefully chosen alt value.

Custom input button
<input type="button">
Setting the type of the input element
to “button” creates a button that can
be customized with JavaScript. It has
no predefined function on its own,
unlike submit and reset buttons.

The button element
<button>…</button>
The button element is a flexible
element for creating custom buttons
similar to those created with the
input element. The content of the
button element (text and/or images)
is what gets displayed on the button.

For more information on what you
can do with the button element,
read “Push My Button” by Aaron
Gustafson at digital-web.com/
articles/push_my_button. “When
to Use the Button Element,” by Chris
Coyier is another helpful read (css-
tricks.com/use-button-element/).

Part II. HTML for Structure

The Great Form Control Roundup

190

FIGURE 9-9.   A sketch of the Black Goose Bistro pizza ordering form.

EXERCISE 9-1.  Starting the pizza order form

Here’s the scenario. You are the web designer in charge of creating
an online pizza ordering form for Black Goose Bistro. The owner
has handed you a sketch (FIGURE 9-9) of the form’s content.
There are sticky notes from the programmer with information
about the script and variable names you need to use.

Your challenge is to turn the sketch into a functional form. I’ve
given you a head start by creating a bare-bones document with
text content and minimal markup and styles. This document,
pizza.html, is available online at learningwebdesign.com/​5e/
materials. The finished form is also provided.

→

9. Forms

The Great Form Control Roundup

191

Radio and Checkbox Buttons
Both checkbox and radio buttons make it simple for your visitors to choose
from a number of provided options. They are similar in that they function
like little on/off switches that can be toggled by the user and are added with
the input element. They serve distinct functions, however.

A form control made up of a collection of radio buttons is appropriate when
only one option from the group is permitted—in other words, when the selec-
tions are mutually exclusive (such as “Yes or No,” or “Pick-up or Delivery”).
When one radio button is “on,” all of the others must be “off,” sort of the way
buttons used to work on old radios: press one button in, and the rest pop out.

When checkboxes are grouped together, however, it is possible to select as
many or as few from the group as desired. This makes them the right choice
for lists in which more than one selection is OK.

1.	 Open the file pizza.html in a text editor.

2.	 The first thing we’ll do is put everything after the intro paragraph
into a form element. The programmer has left a note specifying
the action and the method to use for this form. The resulting
form element should look like this (keep it on one line):

<form action="http://www.blackgoosebistro.com/
pizza.php" method="POST">
…
</form>

3.	 In this exercise, we’ll work on the “Your Information” section of
the form. Start with the first four short text-entry form controls
that are marked up appropriately as an unordered list. Here’s
the first one; you insert the other three:

Name: <input type="text" name="customername">

HINTS: Choose the most appropriate input type for each entry
field. Be sure to name the input elements as specified in the
programmer’s note.

4.	 After “Delivery instructions:” add a line break and a multiline
text area. Because we aren’t writing a style sheet for this form,
use markup to make it four rows long and 60 characters wide (in
the real world, CSS is preferable because it gives you more fine-
tuned control):

Delivery instructions:

<textarea name="instructions" rows="4" cols="60"
maxlength="400" placeholder="No more than 400
characters long"></textarea>

5.	 We’ll skip the rest of the form for now until we get a few more
controls under our belt, but we can add the submit and reset

buttons at the end, just before the </form> tag. Note that
they’ve asked us to change the text on the submit button.

<p><input type="submit" value="Bring me a
pizza!"><input type="reset"></p>

6.	 Now, save the document and open it in a browser. The parts
that are finished should generally match FIGURE 9-2. If they
don’t, then you have some more work to do.

Once the document looks right, take it for a spin by entering
some information and submitting the form. You should get a
response like the one shown in FIGURE 9-10. Yes, pizza.php
actually works, but sorry, no pizzas will be delivered.

FIGURE 9-10.   You should see a response page like this if your
form is working. The pizza description fields will be added in later
exercises, so they will return “empty” for now.

NOTE

I have omitted the fieldset and label
elements from the code examples for
radio buttons, checkboxes, and menus
in order to keep the markup structure
as simple and clear as possible. In the
upcoming section “Form Accessibility
Features,” you will learn why it is impor-
tant to include them in your markup for
all form elements.

EXERCISE 9-1. Continued

Part II. HTML for Structure

The Great Form Control Roundup

192

Radio buttons
Radio buttons are added to a form via the input element with the type attri-
bute set to “radio.” Here is the syntax for a minimal radio button:

<input type="radio" name="variable" value="value">

The name attribute is required and plays an important role in binding mul-
tiple radio inputs into a set. When you give a number of radio button inputs
the same name value (“age” in the following example), they create a group of
mutually exclusive options.

In this example, radio buttons are used as an interface for users to enter their
age group. A person can’t belong to more than one age group, so radio but-
tons are the right choice. FIGURE 9-11 shows how radio buttons are rendered
in the browser.

<p>How old are you?</p>

 <input type="radio" name="age" value="under24" checked> under
24
 <input type="radio" name="age" value="25-34"> 25 to 34
 <input type="radio" name="age" value="35-44"> 35 to 44
 <input type="radio" name="age" value="over45"> 45+

Notice that all of the input elements have the same variable name (“age”), but
their values are different. Because these are radio buttons, only one button
can be checked at a time, and therefore, only one value will be sent to the
server for processing when the form is submitted.

You can decide which button is checked when the form loads by adding the
checked attribute to the input element (see Note). In this example, the button
next to “under 24” will be checked when the page loads.

<input type="radio">
Radio button

NOTE

It may look like the checked attribute
has no value, but it is one of the attri-
butes in HTML that can be minimized to
one word. Behind the scenes, the mini-
mized checked attribute stands for the
rather redundant:

checked="checked"

One of the rules of the stricter XHTML
syntax is that attributes cannot be mini-
mized in this way.

Checkboxes (input type="checkbox")Radio buttons (input type="radio")

FIGURE 9-11.  Radio buttons (left) are appropriate when only one selection is
permitted. Checkboxes (right) are best when users may choose any number of choices,
from none to all of them.

9. Forms

The Great Form Control Roundup

193

Checkbox buttons
Checkboxes are added via the input element with its type set to checkbox.
As with radio buttons, you create groups of checkboxes by assigning them
the same name value. The difference, as we’ve already noted, is that more than
one checkbox may be checked at a time. The value of every checked button
will be sent to the server when the form is submitted. Here’s an example of
a group of checkbox buttons used to indicate musical interests; FIGURE 9-11
shows how they look in the browser:

<p>What type of music do you listen to?</p>

 <input type="checkbox" name="genre" value="punk" checked> Punk
rock
 <input type="checkbox" name="genre" value="indie" checked> Indie
rock
 <input type="checkbox" name="genre" value="hiphop"> Hip Hop
 <input type="checkbox" name="genre" value="rockabilly">
Rockabilly

Checkboxes don’t necessarily need to be used in groups, of course. In this
example, a single checkbox is used to allow visitors to opt in to special pro-
motions. The value of the control will be passed along to the server only if
the user checks the box.

<p><input type="checkbox" name="OptIn" value="yes"> Yes, send me news
and special promotions by email.</p>

Checkbox buttons also use the checked attribute to make them preselected
when the form loads.

In EXERCISE 9-2, you’ll get a chance to add both radio and checkbox buttons
to the pizza ordering form.

<input type="checkbox">
Checkbox button

EXERCISE 9-2.  Adding radio buttons and checkboxes

The next section of the Black Goose Bistro pizza ordering form uses radio buttons and
checkboxes for selecting pizza options. Open the pizza.html document and follow these
steps:

1.	 In the “Design Your Dream Pizza” section, there are lists of Crust and Toppings options.
The Crust options should be radio buttons because pizzas have only one crust. Insert a
radio button before each option. Follow this example for the remaining crust options:

<input type="radio" name="crust" value="white"> Classic white

2.	 Mark up the Toppings options as you did the Crust options, but this time, the type
should be checkbox. Be sure the variable name for each is toppings[], and that the
“Red sauce” option is preselected (checked), as noted on the sketch.

3.	 Save the document and check your work by opening it in a browser to make sure it
looks right; then submit the form to make sure it’s functioning properly.

Part II. HTML for Structure

The Great Form Control Roundup

194

Menus
Another way to provide a list of choices is to put them in a drop-down or
scrolling menu. Menus tend to be more compact than groups of buttons and
checkboxes.

You add both drop-down and scrolling menus to a form with the select
element. Whether the menu pulls down or scrolls is the result of how you
specify its size and whether you allow more than one option to be selected.
Let’s take a look at both menu types.

Drop-down menus
The select element displays as a drop-down menu (also called a pull-down
menu) by default when no size is specified or if the size attribute is set to
1. In pull-down menus, only one item may be selected. Here’s an example
(shown in FIGURE 9-12):

<p>What is your favorite 80s band?
<select name="EightiesFave">
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option>Tears for Fears</option>
 <option>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

FIGURE 9-12.  Pull-down menus pop open when the user clicks the arrow or bar.

You can see that the select element is just a container for a number of option
elements. The content of the chosen option element is what gets passed to the
web application when the form is submitted. If, for some reason, you want to
send a different value than what appears in the menu, use the value attribute
to provide an overriding value. For example, if someone selects “Everything
But the Girl” from the sample menu, the form submits the value “EBTG” for
the “EightiesFave” variable. For the others, the content between the option
tags will be sent as the value.

Scrolling menus
To make the menu display as a scrolling list, simply specify the number of
lines you’d like to be visible using the size attribute. This example menu has

<select>…</select>
Menu control

<option>…</option>
An option within a menu

<optgroup>…</optgroup>
A logical grouping of options within
a menu

9. Forms

The Great Form Control Roundup

195

the same options as the previous one, except it has been set to display as a
scrolling list that is six lines tall (FIGURE 9-13):

<p>What 80s bands did you listen to?
<select name="EightiesBands" size="6" multiple>
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option selected>Tears for Fears</option>
 <option selected>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

FIGURE 9-13.  A scrolling menu with multiple options selected.

You may notice a few minimized attributes tucked in there. The multiple
attribute allows users to make more than one selection from the scrolling
list. Note that pull-down menus do not allow multiple selections; when the
browser detects the multiple attribute, it displays a small scrolling menu
automatically by default.

Use the selected attribute in an option element to make it the default value
for the menu control. Selected options are highlighted when the form loads.
The selected attribute can be used with pull-down menus as well.

Grouping menu options
You can use the optgroup element to create conceptual groups of options.
The required label attribute provides the heading for the group (see Note).
FIGURE 9-14 shows how option groups are rendered in modern browsers.

<select name="icecream" size="7" multiple>
 <optgroup label="traditional">
 <option>vanilla</option>
 <option>chocolate</option>
 </optgroup>
 <optgroup label="fancy">
 <option>Super praline</option>
 <option>Nut surprise</option>
 <option>Candy corn</option>
 </optgroup>
</select>

NOTE

The label attribute in the optgroup
element is not the same as the label
element used to improve accessibility
(discussed later in this chapter).

Part II. HTML for Structure

The Great Form Control Roundup

196

FIGURE 9-14.   Option groups.

In EXERCISE 9-3, you will use the select element to let Black Goose Bistro
customers choose a number of pizzas for their order.

File Selection Control

<input type="file">
File selection field

Web forms can collect more than just data. They can also be used to trans-
mit external documents from a user’s hard drive. For example, a printing
company could use a web form to upload artwork for a business card order.
A magazine could use a form to collect digital photos for a photo contest.

The file selection control makes it possible for users to select a document
from the hard drive to be submitted with the form data. We add it to the form
by using our old friend, the input element, with its type set to file.

The markup sample here (FIGURE 9-15) shows a file selection control used
for photo submissions:

<form action="/client.php" method="POST" enctype="multipart/form-data">
 <label>Send a photo to be used as your online icon (optional)

 <input type="file" name="photo"></label>
</form>

The file upload widget varies slightly by browser and operating system, but
it is generally a button that allows you to access the file organization system
on your computer (FIGURE 9-15).

File input (on Chrome browser)

FIGURE 9-15.  A file selection form field.

EXERCISE 9-3. 
Adding a menu

The only other control that needs to be
added to the order form is a pull-down
menu for selecting the number of pizzas
to have delivered.

1.	 Insert a select menu element with
the option to order between 1 and 6
pizzas:

<p>How many pizzas:
<select name="pizzas"
size="1">
 <option>1</option>
<-- more options here -->
 </select>
</p>

2.	 Save the document and check it in
a browser. You can submit the form,
too, to be sure that it’s working. You
should get the “Thank You” response
page listing all of the information you
entered in the form.

Congratulations! You’ve built your first
working web form. In EXERCISE 9-4,
we’ll add markup that makes it more
accessible to assistive devices.

9. Forms

The Great Form Control Roundup

197

It is important to note that when a form contains a file selection input ele-
ment, you must specify the encoding type (enctype) as multipart/form-data
in the form element and use the POST method.

The file input type has a few attributes. The accept attribute gives the
browser a heads-up on what file types may be accepted (audio, video, image,
or some other format identified by its media type). Adding the multiple attri-
butes allows multiple files to be selected for upload. The required attribute,
as it says, requires a file to be selected.

Hidden Controls
There may be times when you need to send information to the form process-
ing application that does not come from the user. In these instances, you can
use a hidden form control that sends data when the form is submitted, but is
not visible when the form is displayed in a browser.

Hidden controls are added via the input element with the type set to hidden.
Its sole purpose is to pass a name/value pair to the server when the form is
submitted. In this example, a hidden form element is used to provide the
location of the appropriate thank-you document to display when the transac-
tion is complete:

<input type="hidden" name="success-link" value="http://www.example.com/
thankyou.html">

I’ve worked with forms that have had dozens of hidden controls in the form
element before getting to the parts that the user actually fills out. This is
the kind of information you get from the application programmer, system
administrator, or whoever is helping you get your forms processed. If you are
using an existing script, be sure to check the accompanying instructions to
see if any hidden form variables are required.

Date and Time Controls
If you’ve ever booked a hotel or a flight online, you’ve no doubt used a little
calendar widget for choosing the date. Chances are, that little calendar was
created with JavaScript. HTML5 introduced six new input types that make
date and time selection widgets part of a browser’s standard built-in display
capabilities, just as they can display checkboxes, pop-up menus, and other
widgets today. As of this writing, the date and time pickers are implemented
on only a few browsers (Chrome, Microsoft Edge, Opera, Vivaldi, and
Android), but on non-supporting browsers, the date and time input types
display as a perfectly usable text-entry field instead. FIGURE 9-16 shows date
and time widgets as rendered in Chrome on macOS.

<input type="hidden">
Hidden control field

<input type="date">
Date input control

<input type="time">
Time input control

<input type="datetime-local">
Date/time control

<input type="month">
Specifies a month in a year

<input type="week">
Specifies a particular week in a year

WARNIN G

It is possible for users to access and
manipulate hidden form controls. If
you should become a professional web
developer, you will learn to program
defensively for this sort of thing.

Part II. HTML for Structure

The Great Form Control Roundup

198

input type="time"

input type="date" input type="datetime-local"

input type="month" input type="week"

FIGURE 9-16.   Date and time picker inputs (shown in Chrome on macOS).

The new date- and time-related input types are as follows:

<input type="date" name="name" value="2017-01-14">

Creates a date input control, such as a pop-up calendar, for specifying a
date (year, month, day). The initial value must be provided in ISO date
format (YYYY-MM-DD).

<input type="time" name="name" value="03:13:00">

Creates a time input control for specifying a time (hour, minute, seconds,
fractional sections) with no time zone indicated. The value is provided as
hh:mm:ss.

<input type="datetime-local" name="name" value="2017-01-14T03:13:00">

Creates a combined date/time input control with no time zone informa-
tion (YYYY-MM-DDThh:mm:ss).

NOTE

The value attribute is optional but may
be included to provide a starting date or
time in the widget. It is included here to
demonstrate date and time formats.

9. Forms

The Great Form Control Roundup

199

<input type="month" name="name" value="2017-01">

Creates a date input control that specifies a particular month in a year
(YYYY-MM).

<input type="week" name="name" value="2017-W2">

Creates a date input control for specifying a particular week in a year
using an ISO week numbering format (YYYY-W#).

Numerical Inputs
The number and range input types collect numerical data. For the number
input, the browser may supply a spinner widget with up and down arrows for
selecting a specific numerical value (a text input may display in user agents
that don’t support the input type). The range input is typically displayed as
a slider (FIGURE 9-17) that allows the user to select a value within a specified
range:

<label>Number of guests <input type="number" name="guests" min="1"
max="6"></label>

<label>Satisfaction (0 to 10) <input type="range" name="satisfaction"
min="0" max="10" step="1"></label>

input type="number"

input type="range"

FIGURE 9-17.   The number and range input types (shown in Chrome on macOS).

Both the number and range input types accept the min and max attributes for
specifying the minimum and maximum values allowed for the input (again,
the browser could check that the user input complies with the constraint).
Both min and max are optional, and you can also set one without the other.
Negative values are allowed. When the element is selected, the value can be
increased or decreased with the number keys on a computer keyboard, in
addition to being moved with the mouse or a finger.

<input type="number">
Number input

<input type="range">
Slider input

Part II. HTML for Structure

The Great Form Control Roundup

200

The step attribute allows developers to specify the acceptable increments for
numerical input. The default is 1. A value of “.5” would permit values 1, 1.5,
2, 2.5, and so on; a value of 100 would permit 100, 200, 300, and so on. You
can also set the step attribute to any to explicitly accept any value increment.

These two elements allow for only the calculated step values, not for a speci-
fied list of allowed values (such as 1, 2, 3, 5, 8, 13, 21). If you need customized
values, you need to use JavaScript to program that behavior.

Because these are newer elements, browser support is inconsistent. Some
UI widgets include up and down arrows for increasing or decreasing the
amount, but many don’t. Mobile browsers (iOS Safari, Android, Chrome for
Android) currently do not support min, max, and step. Internet Explorer 9
and earlier do not support number and range inputs at all. Again, browsers
that don’t support these new input types display a standard text input field
instead, which is a fine fallback.

Color Selector
The intent of the color control type is to create a pop-up color picker for
visually selecting a color value similar to those used in operating systems
or image-editing programs. Values are provided in hexadecimal RGB values
(#RRGGBB). FIGURE 9-18 shows the color picker in Chrome on macOS (it is
the same as the macOS color picker). Non-supporting browsers—currently all
versions of IE, iOS Safari, and older versions of Android—​display the default
text input instead.

<label>Your favorite color: <input type="color" name="favorite">
</label>

FIGURE 9-18.   The color input type (shown in Chrome on macOS).

<input type="color">
Color picker

9. Forms

The Great Form Control Roundup

201

That wraps up the form control roundup. Learning how to insert form
controls is one part of the forms production process, but any web developer
worth her salt will take the time to make sure the form is as accessible as
possible. Fortunately, there are a few things we can do in markup to describe
the form’s structure.

A Few More Form Elements
For the sake of completeness, let’s look at the remaining form elements. These were
added in HTML5 and, as of this writing, they still have spotty browser support. They
are somewhat esoteric anyway, so you may wait a while to add these to your HTML
toolbox. We’ve already covered the datalist element for providing suggested values
for text inputs. HTML5 also introduced the following elements:

progress
<progress>…</progress>
Indicates the state of an ongoing process

The progress element gives users feedback on the state of an ongoing process,
such as a file download. It may indicate a specific percentage of completion
(determinate), like a progress bar, or just indicate a “waiting” state (indeterminate),
like a spinner. The progress element requires scripting to function.

Percent downloaded: <progress max="100" id="fave">0</progress>

meter
<meter>…</meter>
Represents a measurement within a range

meter represents a measurement within a known range of values (also known as a
gauge). It has a number of attributes: min and max indicate the highest and lowest
values for the range (they default to 0 and 100); low and high could be used to
trigger warnings at undesirable levels; and optimum specifies a preferred value.

<meter min="0" max="100" name="volume">60%</meter>

output
<output>…</output>
Calculated output value

Simply put, the output element indicates the result of a calculation by a script or
program. This example, taken from the HTML5.2 specification, uses the output
element and JavaScript to display the sum of numbers entered into inputs a and b.

<form onsubmit="return false" oninput="o.value = a.valueAsNumber +
b.valueAsNumber">
<input name=a type=number step=any>
+ <input name=b type=number step=any> =
<output name=o for="a b"></output>
</form>

Part II. HTML for Structure

The Great Form Control Roundup

202

FORM ACCESSIBILITY FEATURES

It is essential to consider how users without the benefit of visual browsers
will be able to understand and navigate through your web forms. The label,
fieldset, and legend form elements improve accessibility by making the
semantic connections between the components of a form clear. Not only is
the resulting markup more semantically rich, but there are also more ele-
ments available to act as “hooks” for style sheet rules. Everybody wins!

Labels
Although we may see the label “Address” right next to a text field for entering
an address in a visual browser, in the source, the label and field input may
be separated. The label element associates descriptive text with its respec-
tive form field. This provides important context for users with speech-based
browsers. Another advantage to using labels is that users can click or tap any-
where on them to select or focus the form control. Users with touch devices
will appreciate the larger tap target.

Each label element is associated with exactly one form control. There are two
ways to use it. One method, called implicit association, nests the control and
its description within a label element. In the following example, labels are
assigned to individual checkboxes and their related text descriptions. (By the
way, this is the way to label radio buttons and checkboxes. You can’t assign a
label to the entire group.)

 <label><input type="checkbox" name="genre" value="punk"> Punk
rock</label>
 <label><input type="checkbox" name="genre" value="indie"> Indie
rock</label>
 <label><input type="checkbox" name="genre" value="hiphop"> Hip
Hop</label>
 <label><input type="checkbox" name="genre" value="rockabilly">
Rockabilly</label>

The other method, called explicit association, matches the label with the con-
trol’s id reference. The for attribute says which control the label is for. This
approach is useful when the control is not directly next to its descriptive text
in the source. It also offers the potential advantage of keeping the label and
the control as two distinct elements, which you may find handy when align-
ing them with style sheets.

<label for="form-login-username">Login account</label>
<input type="text" name="login" id="form-login-username">

<label for="form-login-password">Password</label>
<input type="password" name="password" id="form-login-password">

<label>…</label>
Attaches information to form controls

M AR KU P T I P

To keep form-related ids distinct
from other ids on the page, consider
prefacing them with “form-” as shown
in the examples.

Another technique for keeping forms
organized is to give the form element
an ID name and include it as a prefix
in the IDs for the controls it contains
as follows:

<form id="form-login">
<input id="form-login-user">
<input id="form-login-passwd">

9. Forms

Form Accessibility Features

203

fieldset and legend
The fieldset element indicates a logical group of form controls. A fieldset
may also include a legend element that provides a caption for the enclosed
fields.

FIGURE 9-19 shows the default rendering of the following example, but you
could use style sheets to change the way the fieldset and legend appear (see
Warning):

<fieldset>
 <legend>Mailing List Sign-up</legend>

 <label>Add me to your mailing list <input type="radio"
 name="list" value="yes" checked></label>
 <label>No thanks <input type="radio" name="list" value="no">
 </label>

</fieldset>

<fieldset>
 <legend>Customer Information</legend>

 <label>Full name: <input type="text" name="fullname"></label>

 <label>Email: <input type="text" name="email"></label>
 <label>State: <input type="text" name="state"></label>

</fieldset>

FIGURE 9-19.  The default rendering of fieldsets and legends.

In EXERCISE 9-4, we’ll wrap up the pizza order form by making it more acces-
sible with labels and fieldsets.

WARNIN G

Fieldsets and legends tend to throw some
curveballs when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser to
browser. Legends are unique in that their
text doesn’t wrap. The solution is to put a
span or b element in them and control
presentation of the contained element
without sacrificing accessibility. Be sure
to do lots of testing if you style these form
elements.

<fieldset>…</fieldset
Groups related controls and labels

<legend>…</legend>
Assigns a caption to a fieldset

Part II. HTML for Structure

Form Accessibility Features

204

EXERCISE 9-4.  Labels and fieldsets

Our pizza ordering form is working, but we need to label it
appropriately and create some fieldsets to make it more usable
on assistive devices. Once again, open the pizza.html document
and follow these steps.

I like to start with the broad strokes and fill in details later, so we’ll
begin this exercise by organizing the form controls into fieldsets,
and then we’ll do all the labeling. You could do it the other way
around, and ideally, you’d just mark up the labels and fieldsets as
you go along instead of adding them all later.

1.	 The “Your Information” section at the top of the form is definitely
conceptually related, so let’s wrap it all in a fieldset element.
Change the markup of the section title from a paragraph (p) to a
legend for the fieldset:

<fieldset>
 <legend>Your Information</legend>

 Name: <input type="text" name="fullname">

 …

</fieldset>

2.	 Next, group the Crust, Toppings, and Number questions in a big
fieldset with the legend “Pizza specs” (the text is there; you just
need to change it from a p to a legend):

<h2>Design Your Dream Pizza:</h2>
<fieldset>
<legend>Pizza specs</legend>
 Crust…
 Toppings…
 Number…
</fieldset>

3.	 Create another fieldset just for the Crust options, again changing
the description in a paragraph to a legend. Do the same for the
Toppings and Number sections. In the end, you will have three
fieldsets contained within the larger “Pizza specs” fieldset. When
you are done, save your document and open it in a browser.
Now it should look very close to the final form shown back in
FIGURE 9-2, given the expected browser differences:

<fieldset>
<legend>Crust (Choose one):</legend>
 …
</fieldset>

4.	 OK, now let’s get some labels in there. In the “Your Information”
fieldset, explicitly tie the label to the text input by using the for/
id label method. Wrap the description in label tags and add
the id to the input. The for/id values should be descriptive
and they must match. I’ve done the first one for you; you do the
other four:

<label for="form-name">Name:</label> <input
type="text" name="fullname" id="form-name">

5.	 For the radio and checkbox buttons, wrap the label element
around the input and its value label. In this way, the button will
be selected when the user clicks or taps anywhere inside the
label element. Here’s the first one; you do the rest:

<label><input type="radio" name="crust"
value="white"> Classic White</label>

Save your document, and you’re done! Labels don’t have any
effect on how the form looks by default, but you can feel good
about the added semantic value you’ve added and maybe even
use them to apply styles at another time.

DIY Form Widgets
Despite having dozens of form widgets straight out of HTML to
choose from, it is common for developers to “roll their own”
form widgets using markup, CSS, and JavaScript. This might
be preferable if you want to provide custom functionality or to
make the styling of the form extra-fancy. For example, you could
create a drop-down menu using an unordered list inside a div
instead of the standard select element:

<div class="select" role="listbox">
 <ul class="optionlist">
 <li class="option" role="option">Red
 <li class="option" role="option">Yellow

</div>

To help assistive technologies like screen readers recognize this
as a form element, use the ARIA role attribute to describe the

intended function of the div (a listbox) and each li (an option
in that listbox). There are also many ARIA states and properties
that make forms, both standard and custom, usable with
assistive devices. For a complete list, see www.w3.org/TR/wai-
aria/states_and_properties.

Custom form widgets require scripting and CSS well beyond
the scope of this book, but I wanted you to be aware of the
technique. It’s also extremely easy to mess up, making a user’s
interaction with the form awkward and frustrating (even for
sighted users), so “roll your own” with caution.

The article “How to Build Custom Form Widgets” on MDN Web
Docs provides a nice overview (developer.mozilla.org/en-US/
docs/Web/Guide/HTML/Forms/How_to_build_custom_form_
widgets). You might also choose to use a premade custom
widget from one of the available JavaScript Libraries like jQuery
UI (jqueryui.com).

9. Forms

Form Accessibility Features

205

http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties

FORM LAYOUT AND DESIGN

I can’t close this chapter without saying a few words about form design, even
though this chapter is about markup, not presentation.

Usable Forms
A poorly designed form can ruin a user’s experience on your site and nega-
tively impact your business goals. Badly designed forms mean lost custom-
ers, so it is critical to get it right—both on the desktop and for small-screen
devices with their special requirements. You want the path to a purchase or
other action to be as frictionless as possible.

The topic of good web form design is a rich one that could fill a book in itself.
In fact, there is such a book: Web Form Design (Rosenfeld Media) by web
form expert Luke Wroblewski, and I recommend it highly. Luke’s subsequent
book, Mobile First (A Book Apart), includes tips for how to format forms in
a mobile context. You can browse over a hundred articles about forms on his
site at www.lukew.com/ff?tag=forms.

Here I’ll offer just a very small sampling of tips from Web Form Design to get
you started, but the whole book is worth a read:

Avoid unnecessary questions.

Help your users get through your form as easily as possible by not includ-
ing questions that are not absolutely necessary to the task at hand. Extra
questions, in addition to slowing things down, may make a user wary of
your motivations for asking. If you have another way of getting the infor-
mation (for example, the type of credit card can be determined from the
first four numbers of the account), then use alternative means and don’t
put the burden on the user. If there is information that might be nice to
have but is not required, consider asking at a later time, after the form has
been submitted and you have built a relationship with the user.

Consider the impact of label placement.

The position of the label relative to the input affects the time it takes to
fill out the form. The less the user’s eye needs to bounce around the page,
the quicker the form completion. Putting the labels above their respective
fields creates a single alignment for faster scans and completion, par-
ticularly when you’re asking for familiar information (name, address, etc.).
Top-positioned labels can also accommodate labels of varying lengths
and work best on narrow, small-screen devices. They do result in a longer
form, however, so if vertical space is a concern, you can position the labels
to the left of the inputs. Left alignment of labels results in the slowest
form completion, but it may be appropriate if you want the user to slow
down or be able to scan and consider the types of required information.

Part II. HTML for Structure

Form Layout and Design

206

Choose input types carefully.

As you’ve seen in this chapter, there are quite a few input types to choose
from, and sometimes it’s not easy to decide which one to use. For example,
a list of options could be presented as a pull-down menu or a number of
choices with checkboxes. Weigh the pros and cons of each control type
carefully, and follow up with user testing.

Group related inputs.

It is easier to parse the many fields, menus, and buttons in a form if they
are visually grouped by related topic. For example, a user’s contact infor-
mation could be presented in a compact group so that five or six inputs
are perceived as one unit. Usually, all you need is a very subtle indication,
such as a fine horizontal rule and some extra space. Don’t overdo it.

Clarify primary and secondary actions.

The primary action at the end of the form is usually some form of submit
button (“Buy,” “Register,” etc.) that signals the completion of the form
and the readiness to move forward. You want that button to be visually
dominant and easy to find (aligning it along the main axis of the form is
helpful as well). Using JavaScript, you can gray out the submit button as
non-functioning until all necessary data has been filled in.

Secondary actions tend to take you a step back, such as clearing or reset-
ting the form. If you must include a secondary action, make sure that it is
styled to look different and less important than the primary action. It is
also a good idea to provide an opportunity to undo the action.

Styling Forms
As we’ve seen in this chapter, the default rendering of form markup is not up
to par with the quality we see on most professional web forms today. As for
other elements, you can use style sheets to create a clean form layout as well
as change the appearance of most form controls. Something as simple as nice
alignment and a look that is consistent with the rest of your site can go a long
way toward improving the impression you make on a user.

Keep in mind that form widgets are drawn by the browser and are informed
by operating system conventions. However, you can still apply dimensions,
margins, fonts, colors, borders, and background effects to form elements such
as text inputs, select menus, textareas, fieldsets, labels, and legends. Be sure
to test in a variety of browsers to check for unpleasant surprises. Chapter 19,
More CSS Techniques, in Part III, lists some specific techniques once you have
more experience with CSS. For more help, a web search for “CSS for forms”
will turn up a number of tutorials.

9. Forms

Form Layout and Design

207

TEST YOURSELF

Ready to put your web form know-how to the test? Here are a few questions
to make sure you’ve gotten the basics. You’ll find the answers in Appendix A.

1.	 Decide whether each of these forms should be sent via the GET or POST
method:

a.	 A form for accessing your bank account online	 ________

b.	 A form for sending t-shirt artwork to the printer	 ________

c.	 A form for searching archived articles		 ________

d.	 A form for collecting long essay entries		 ________

2.	 Which form control element is best suited for the following tasks? When
the answer is “input,” be sure to also include the type. Some tasks may
have more than one correct answer.

a.	 Choose your astrological sign from 12 signs.

b.	 Indicate whether you have a history of heart disease (yes or no).

c.	 Write up a book review.

d.	 Select your favorite ice cream flavors from a list of eight flavors.

e.	 Select your favorite ice cream flavors from a list of 25 flavors.

3.	 Each of these markup examples contains an error. Can you spot it?

a.	 <input name="country" value="Your country here.">

b.	 <checkbox name="color" value="teal">

c.	 <select name="popsicle">
	 <option value="orange">
	 <option value="grape">
	 <option value="cherry">
 </select>

d.	 <input type="password">

e.	 <textarea name="essay" width="100" height="6">Your story.
</textarea>

Part II. HTML for Structure

Test Yourself

208

ELEMENT REVIEW: FORMS

The following table lists all of the form-related elements and attributes
included in HTML 5.2 (some attributes were not covered in this chapter). The
attributes for each input type are listed in TABLE 9-1.

Element and attributes Description

button Generic input button

autofocus Automatically focuses the form control when the page is loaded

name="text" Supplies a unique variable name for the control

disabled Disables the input so it cannot be selected

type="submit|reset|button" The type of custom button

value="text" Specifies the value to be sent to the server

menu="idvalue" Specifies a designated pop-up menu

form,formaction, formenctype,
formmethod, formnovalidate,
formtarget

Form submission-related attributes used for submit and reset type buttons

datalist Provides a list of options for text inputs

fieldset Groups related controls and labels

disabled Disables all the inputs in the fieldset so they cannot be selected, edited, or
submitted

form="idvalue" Associates the element with a specific form

name="text" Supplies a unique variable name for the control

form Form element

action="url" Location of forms processing program (required)

method="get|post" The method used to submit the form data

enctype="content type" The encoding method, generally either application/x-www-form-urlencoded
(default) or multipart/form-data

accept-charset="characterset" Character encodings to use

autocomplete Default setting for autofill feature for controls in the form

name="text" Name of the form to use in the document.forms API

novalidate Bypasses form control validation for this form

target="text|_blank|_self|
_parent|_top"

Sets the browsing context

9. Forms

Element Review: Forms

209

Element and attributes Description

input Creates a variety of controls, based on the type value

autofocus Indicates the control should be ready for input when the document loads

type="submit|reset|button|
text|password|checkbox|radio|
image|file|hidden|email|tel|
search|url|date|time|
datetime-local|month|week|
number|range|color"

See TABLE 9-1 for a full list of
attributes associated with each
input type.

The type of input

disabled Disables the input so it cannot be selected, edited, or submitted

form="form id value" Associates the control with a specified form

label Attaches information to controls

for="text" Identifies the associated control by its id reference

legend Assigns a caption to a fieldset

meter Represents a fractional value within a known range

high="number" Indicates the range that is considered “high” for the gauge

low="number" Indicates the range that is considered “low” for the gauge

max="number" Specifies the highest value for the range

min="number" Specifies the lowest value for the range

optimum="number" Indicates the number considered to be “optimum”

value="number" Specifies the actual or measured value

optgroup Defines a group of options

disabled Disables the optgroup so it cannot be selected

label="text" Supplies a label for a group of options

option An option within a select menu control

disabled Disables the option so it cannot be selected

label="text" Supplies an alternate label for the option

selected Preselects the option

value="text" Supplies an alternate value for the option

output Represents the results of a calculation

for="text" Creates a relationship between output and another element

form="form id value" Associates the control with a specified form

name="text" Supplies a unique variable name for the control

Part II. HTML for Structure

Element Review: Forms

210

Element and attributes Description

progress Represents the completion progress of a task (can be used even if the maximum value
of the task is not known)

max="number" Specifies the total value or final size of the task

value="number" Specifies how much of the task has been completed

select Pull-down menu or scrolling list

autofocus Indicates the control should be highlighted and ready for input when the
document loads

disabled Indicates the control is nonfunctional; can be activated with a script

form="form id value" Associates the control with a specified form

multiple Allows multiple selections in a scrolling list

name="text" Supplies a unique variable name for the control

required Indicates the user input is required for this control

size="number" The height of the scrolling list in text lines

textarea Multiline text-entry field

autocomplete Hint for form autofill feature

autofocus Indicates the control should be highlighted and ready for input when the
document loads

cols="number" The width of the text area in characters

dirname="text" Allows text directionality to be submitted

disabled Disables the control so it cannot be selected

form="form id value" Associates the control with a specified form

inputmode Hint for selecting an input modality

maxlength="text" Specifies the maximum number of characters the user can enter

minlength="text" Specifies the minimum number of characters the user can enter

name="text" Supplies a unique variable name for the control

placeholder="text" Provides a short hint to help the user enter the correct data

readonly Makes the control unalterable by the user

required Indicates user input is required for this control

rows="number" The height of the text area in text lines

wrap="hard|soft" Controls whether line breaks in the text input are returned in the data; hard
preserves line breaks, while soft does not

9. Forms

Element Review: Forms

211

TABLE 9-1.   Available attributes for each input type

Attribute submit reset button text password checkbox radio image file hidden

accept •

alt •

autocomplete • •

autofocus • • • • • • • • •

checked • •

disabled • • • • • • • • • •

form • • • • • • • • • •

formaction • •

formenctype • •

formmethod • •

formnovalidate • •

formtarget • •

height •

list •

max

min

maxlength • • •

minlength • • •

multiple •

name • • • • • • • • • •

pattern • •

placeholder • •

readonly • •

required • • • • •

size • • •

src •

step

value • • • • • • • • •

width •

Part II. HTML for Structure

Element Review: Forms

212

Attribute email telephone, search, url number range
date, time, datetime-local,
month, week color

accept

alt

autocomplete • • • • • •

autofocus • • • • • •

checked

disabled • • • • • •

form • • • • • •

formaction

formenctype

formmethod

formnovalidate

formtarget

height

list • • • • • •

max • • •

min • • •

maxlength • •

minlength • •

multiple • •

name • • • • • •

pattern • •

placeholder • •

readonly • • •

required • • • •

size • •

src

step • • •

value • • • • • •

width

9. Forms

Element Review: Forms

213

IN THIS CHAPTER

The iframe element

The object element

Video and audio players

The canvas element

The HTML specification defines embedded content as follows:

content that imports another resource into the document, or content from
another vocabulary that is inserted into the document

In Chapter 7, Adding Images, you saw examples of both parts of that defini-
tion because images are one type of embedded content. The img and picture
elements point to an external image resource using the src or srcset attri-
butes, and the svg element embeds an image file written in the SVG vocabu-
lary right in the page.

But images certainly aren’t the only things you can stick in a web page. In this
chapter, we’ll look at other types of embedded content and their respective
markup, including the following:

•	 A window for viewing an external HTML source (iframe)

•	 Multipurpose embedding elements (object and embed)

•	 Video and audio players (video and audio)

•	 A scriptable drawing area that can be used for animations or game-like
interactivity (canvas)

WINDOW-IN-A-WINDOW (IFRAME)

The iframe (short for inline frame) element lets you embed a separate HTML
document or other web resource in a document. It has been around for many
years, but it has recently become one of the most popular ways to share con-
tent between sites.

<iframe>…</iframe>
A nested browsing window

EMBEDDED MEDIA 10
CHAPTER

215

For example, when you request the code to embed a video from YouTube or
a map from Google Maps, they provide iframe-based code to copy and paste
into your page. Many other media sites are following suit because it allows
them to control aspects of the content you are putting on your page. Inline
frames have also become a standard tool for embedding ad content that
might have been handled with Flash back in the day. Web tutorial sites may
use inline frames to embed code samples on pages.

Adding an iframe to the page creates a little window-in-a-window (or a
nested browsing context, as it is known in the spec) that displays the external
resource. You place an inline frame on a page similarly to an image, specifying
the source (src) of its content. The width and height attributes specify the
dimensions of the frame. The content in the iframe element itself is fallback
content for browsers that don’t support the element, although virtually all
browsers support iframes at this point.

In this very crude example, the parent document displays the web page glos-
sary.html in an inline frame (FIGURE 10-1). This iframe has its own set of
scrollbars because the embedded HTML document is too long to fit. To be
honest, you don’t often see iframes used this way in the wild (except for code
examples, perhaps), but it is a good way to understand how they work.

<h1>An Inline Frame</h1>

<iframe src="glossary.html" width="400" height="250" >
 Read the glossary.
</iframe>

FIGURE 10-1.  Inline frames (added with the iframe element) are like a browser
window within the browser that displays external HTML documents and resources.

In modern uses of iframe, the window is not so obvious. In fact, there is usu-
ally no indication that there is an embedded frame there at all, as shown by
the Google Maps example in FIGURE 10-2.

Part II. HTML for Structure

Window-In-A-Window (iframe)

216

FIGURE 10-2.   The edges of an iframe are usually not detectable, as shown in this
embedded Google Map.

There are some security concerns with using iframes because they may act
like open windows through which hackers can sneak. The sandbox attribute
puts restrictions on what the framed content can do, such as not allowing
forms, pop ups, scripts, and the like.

Iframe security is beyond the scope of this chapter, but you’ll need to brush up
if you are going to make use of iframes on your site. I recommend the MDN
Web Docs article “From object to iframe: Other Embedding Technologies” ​
(developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/
Other_embedding_technologies), which provides a good overview of iframe
security issues.

To get a feel for how iframes work, use one to embed your favorite video on
a page in EXERCISE 10-1.

EXERCISE 10-1.  Embedding a video with iframe

If you’d like to poke around with an iframe, it’s easy to grab one from YouTube to
embed your favorite video on a page.

Start by creating a new HTML document, including the basic structural elements that
we covered in Chapter 4, Creating a Simple Page.

Go to YouTube and once you are on the page for your chosen video, look for the Share
button; then choose the Embed option. The iframe code is there for you to copy and
paste. If you click “Show more,” there will be further configuration options. Just copy
the iframe code and paste it into the new HTML document. Open it in a browser, and
you’re done!

10. Embedded Media

Window-In-A-Window (iframe)

217

MULTIPURPOSE EMBEDDER (OBJECT)

In the early days, web browsers were extremely limited in what they were
able to render, so they relied on plug-ins to help them display media that
they couldn’t handle natively. Java applets, Flash movies, RealMedia (an old
web video and audio format), and other media required third-party plug-ins
in order to be played in the browser. Heck, even JPEG images once required
a plug-in to display.

To embed those media resources on the page, we used the object and embed
elements. They have slightly different uses. The object element is a multipur-
pose object placer. It can be used to place an image, create a nested browsing
context (like an iframe), or embed a resource that must be handled by a plug-
in. The embed element was for use with plug-ins only.

To put it frankly, although still in use, object is going out of style, and embed
is all but extinct (I’ve tucked it away in a brief sidebar). Media like Java
applets and Flash movies are disappearing fast, and modern browsers use
APIs to display many types of media natively. In addition, mobile browsers as
well as the desktop Microsoft Edge browser don’t support plug-ins.

That said, let’s take a look at the object element. At its most minimal, the
object element uses the data attribute to point to the resource and the type
attribute to provide its MIME type. Any content within the object element
tags will be used as a fallback for browsers that don’t support the embedded
resource type. Here is a simple object element that places an SVG image on
the page and provides a PNG fallback:

<object data="picture.svg" type="image/svg+xml">

</object>

Additional attributes for the object element are available and vary according
to the type of media it is placing. The media format may also require that the
object contain a number of param elements that set parameters specific to
that type of media.

<object>…</object>
Represents external resource

<param>
Parameters of an object

Farewell Flash
Apple’s announcement that it would not support Flash on its iOS devices, ever,
gave HTML5 an enormous push forward and eventually led to Adobe stopping
development on its mobile Flash products. Not long after, Microsoft announced that
it was discontinuing its Silverlight media player in lieu of HTML5 alternatives. As of
this writing, HTML5 is a long way from being able to reproduce the vast features and
functionality of Flash, but it’s getting there gradually. We are likely to occasionally
see Flash players on the desktop, but the trajectory away from plug-ins and toward
standard web technologies seems clear.

The embed Element
The embed element was created
by Netscape for use with plug-in
technologies. It has always been
well supported, but it wasn’t
adopted into a formal specification
until HTML5. With so many other
options for embedding media, the
embed element is not as useful as
it once was. It is often used as a
fallback when there is a good reason
to support extremely old browser
versions.

embed is an empty element that
points to an external resource with
the src attribute:

<embed type="video/quicktime"
src="movies/hekboy.mov"
width="320" height="256">

There are additional media-specific
attributes that set parameters
similar to the param element, but
I’m not going to cover them all here.
In fact, I think that’s all there is to say
about embed.

A plug-in is software
that gives a browser
functionality that it
doesn’t have natively.

Part II. HTML for Structure

Multipurpose Embedder (object)

218

In this example, param elements specify whether the movie starts automati-
cally (no) or has visible controls (yes):

<object type="video/quicktime" data="movies/hekboy.mov" width="320"
height="256">
 <param name="autostart" value="false">
 <param name="controller" value="true">
</object>

VIDEO AND AUDIO

Until recently, browsers did not have built-in capabilities for handling video
or sound, so they used plug-ins to fill in the gap. With the development of the
web as an open standards platform, and with broadband connections allow-
ing for heftier downloads than previously, it seemed to be time to make mul-
timedia support part of browsers’ out-of-the-box capabilities. Enter the new
video and audio elements and their respective APIs (see the “API” sidebar).

The Good News and the Bad News
The good news is that the video and audio elements are well supported in
modern browsers, including IE 9+, Safari, Chrome, Opera, and Firefox for
the desktop and iOS Safari 4+, Android 2.3+, and Opera Mobile (however,
not Opera Mini).

But if you’re envisioning a perfect world where all browsers are supporting
video and audio in perfect harmony, I’m afraid it’s not that simple. Although
they have all lined up on the markup and JavaScript for embedding media
players, unfortunately they have not agreed on which formats to support.
Let’s take a brief journey through the land of media file formats. If you want
to add video or audio to your page, this stuff is important to understand.

How Media Formats Work
When you prepare audio or video content for web delivery, there are two
format decisions to make. The first is how the media is encoded (the algo-
rithms used to convert the source to 1s and 0s and how they are compressed).
The method used for encoding is called the codec, which is short for “code/
decode” or “compress/decompress.” There are a bazillion codecs out there
(that’s an estimate). Some probably sound familiar, like MP3; others might
sound new, such as H.264, Vorbis, Theora, VP8, and AAC.

Second, you need to choose the container format for the media. You can think
of it as a ZIP file that holds the compressed media and its metadata together
in a package. Usually a container format is compatible with more than one
codec type, and the full story is complicated. Because space is limited in this
chapter, I’m going to cut to the chase and introduce the most common con-
tainer/codec combinations for the web. If you are going to add video or audio
to your site, I encourage you to get more familiar with all of these formats.

T E R M I N O LO GY

API
An API (Application Programming
Interface) is a standardized set of
commands, data names, properties,
actions, and so on, that lets one
software application communicate
with another. HTML5 introduced a
number of APIs that give browsers
programmable features that
previously could only be achieved
with third-party plug-ins.

Some APIs have a markup
component, such as embedding
multimedia with the new HTML5
video and audio elements (Media
Player API). Others happen entirely
behind the scenes with JavaScript
or server-side components, such as
creating web applications that work
even without an internet connection
(Offline Web Application API).

The W3C is working on lots and lots
of APIs for use with web applications,
all in varying stages of completion
and implementation. Most have their
own specifications, separate from
the HTML5 spec itself, but they are
generally included under the wide
HTML5 umbrella that covers web-
based applications.

A list of all HTML5 APIs and specs in
development is available at html5-
overview.net, maintained by Erik
Wilde. You will also find introductions
to better-known APIs in Appendix D.

10. Embedded Media

Video and Audio

219

http://html5-overview.net
http://html5-overview.net

Meet the video formats
For video, the most common options are as follows:

MPEG-4 container + H.264 video codec + AAC audio codec. This com-
bination is generally referred to as “MPEG-4,” and it takes the .mp4 or
.m4v file suffix. H.264 is a high-quality and flexible video codec, but it is
patented and must be licensed for a fee. All current browsers that support
HTML5 video can play MPEG-4 files with the H.264 codec. The newer
H.265 codec (also known as HEVC, High Efficiency Video Coding) is in
development and reduces the bitrate by half, but is not well supported as
of this writing.

WebM container + VP8 video codec + Vorbis audio codec. “WebM” is a
container format that has the advantage of being open source and royalty-
free. It uses the .webm file extension. It was originally designed to work
with VP8 and Vorbis codecs.

WebM container + VP9 video codec + Opus audio codec. The VP9 video
codec from the WebM project offers the same video quality as VP8 and
H.264 at half the bitrate. Because it is newer, it is not as well supported,
but it is a great option for browsers that can play it.

Ogg container + Theora video codec + Vorbis audio codec. This is typically
called “Ogg Theora,” and the file should have an .ogv suffix. All of the
codecs and the container in this option are open source and unencum-
bered by patents or royalty restrictions, but some say the quality is infe-
rior to other options. In addition to new browsers, it is supported on some
older versions of Chrome, Firefox, and Android that don’t support WebM
or MP4, so including it ensures playback for more users.

Of course, the problem that I referred to earlier is that browser makers have
not agreed on a single format to support. Some go with open source, royalty-
free options like Ogg Theora or WebM. Others are sticking with H.264
despite the royalty requirements. What that means is that we web developers
need to make multiple versions of videos to ensure support across all brows-
ers. TABLE 10-1 lists which browsers support the various video options (see
the “Server Setup” sidebar).

Server Setup
In TABLES 10-1 and 10-2, the Type column identifies the MIME type of each
media format. If your site is running on the Apache server, to make sure that video
and audio files are served correctly, you may need to add their respective types to
the server’s .htaccess file. The following example adds the MP4 type/subtype and
extensions:

AddType video/mp4 mp4 m4v

F U RT H E R R E A D I N G

For a thorough introduction to HTML
video and audio, I recommend
Beginning HTML5 Media: Make the
Most of the New Video and Audio
Standards for the Web by Silvia
Pfeiffer and Tom Green (Apress).

Part II. HTML for Structure

Video and Audio

220

Meet the audio formats
The landscape looks similar for audio formats: several to choose from, but no
format that is supported by all browsers (TABLE 10-2).

MP3. The MP3 (short for MPEG-1 Audio Layer 3) format is a codec and
container in one, with the file extension.mp3. It has become ubiquitous
as a music download format.

WAV. The WAV format (.wav) is also a codec and container in one. This
format is uncompressed so it is only good for very short clips, like sound
effects.

Ogg container + Vorbis audio codec. This is usually referred to as “Ogg
Vorbis” and is served with the .ogg or .oga file extension.

MPEG 4 container + AAC audio codec. “MPEG4 audio” (.m4a) is less com-
mon than MP3.

WebM container + Vorbis audio codec. The WebM (.webm) format can also
contain audio only.

WebM container + Opus audio codec. Opus is a newer, more efficient audio
codec that can be used with WebM.

FO R F U RT H E R
E X P LO RAT I O N

HLS (HTTP Streaming
Video)
If you are serious about web video,
you should become familiar with
HLS (HTTP Streaming Video), a
streaming format that can adapt its
bitrate on the fly. The HLS Wikipedia
entry is as good a place as any to
get started: en.wikipedia.org/wiki/
HTTP_Live_Streaming.

TABLE 10-2.   Audio support in current browsers (as of 2017)

Format Type IE MS Edge Chrome Firefox Opera Safari iOS Safari Android

MP3 audio/mpeg mp3 9.0+ 12+ 3.0+ 22+ 15+ 4+ 4.1 2.3+

WAV audio/wav or
audio/wave

– 12+ 8.0+ 3.5+ 11.5+ 4+ 3.2+ 2.3+

Ogg Vorbis audio/ogg ogg oga – – 4.0+ 3.5+ 11.5+ – – 2.3+

MPEG-4/AAC audio/mp4 m4a 11.0+ 12+ 12.0+ – 15+ 4+ 4.1+ 3.0+

WebM/Vorbis audio/webm webm – – 6.0+ 4.0+ 11.5+ – – 2.3.3+

WebM/Opus audio/webm webm – 14+ 33+ 15+ 20+ – – –

TABLE 10-1.   Video support in desktop and mobile browsers (as of 2017)

Format Type IE MS Edge Chrome Firefox Safari Opera Android iOS Safari

MP4 (H.264) video/mp4 mp4 m4v 9.0+ 12+ 4+ Yes* 3.2+ 25+ 4.4+ 3.2+

WebM (VP8) video/webm webm
webmv

– – 6+ 4.0+ – 15+ 2.3+ –

WebM (VP9) video/webm webm
webmv

– 14+ 29+ 28+ – 16+ 4.4+ –

Ogg Theora video/ogg ogv – – 3.0+ 3.5+ – 13+ 2.3+ –

* Firefox version varies by operating system.

10. Embedded Media

Video and Audio

221

Adding a Video to a Page
I guess it’s about time we got to the markup for adding a video to a web page
(this is an HTML chapter, after all). Let’s start with an example that assumes
you are designing for an environment where you know exactly what browser
your user will be using. When this is the case, you can provide only one video
format using the src attribute in the video tag (just as you do for an img).
FIGURE 10-3 shows a movie with the default player in the Chrome browser.

FIGURE 10-3.   An embedded movie using the video element (shown in Chrome on
a Mac).

<video>…</video>
Adds a video player to the page

Video and Audio Encoding Tools
There are scores of options for editing and encoding video and audio files, so I can’t cover them all here, but the following tools are
free and get the job done.

Video conversion
•	 Handbrake (handbrake.fr) is a popular open source tool for

converting to MPEG4 with H.264, H.265, VP8, and Theora. It is
available for Windows, macOS, and Linux.

•	 Firefogg (firefogg.org) is an extension to Firefox for
converting video to the WebM (VP8 and VP9) and Ogg Theora
formats. Simply install the Firefogg extension to Firefox (cross-
platform); then visit the Firefogg site and convert video by
using its online interface.

•	 FFmpeg (ffmpeg.org)is an open source, command-line tool
for converting just about any video format. If you are not
comfortable with the command line, there are a number of
software packages (some for pay, some free) that offer a user
interface to FFmpeg to make it more user-friendly.

•	 Freemake (freemake.com) is a free video and audio
conversion tool for Windows that supports over 500 media
formats.

Audio conversion
•	 Audio Converter (online-audio-converter.com) is one of the

free audio and video tools from 123Apps.com that converts
files to MP3, WAV, OGG, and more.

•	 Media.io (media.io) is a free web service that converts audio
to MP3, WAV, and OGG.

•	 MediaHuman Audio Converter (www.mediahuman.com/
audio-converter/) is free for Mac and Windows and can
convert to all of the audio formats listed in this chapter and
more. It has an easy drag-and-drop interface, but is pretty
much no-frills.

•	 Max (sbooth.org/Max/) is an open source audio converter
(Mac only).

•	 Audacity (www.audacityteam.org) is free, open source,
cross-platform audio software for multitrack recording and
editing. It can import and export files in many of the formats
listed in this chapter.

Part II. HTML for Structure

Video and Audio

222

Here is a simple video element that embeds a movie and player on a web
page:

<video src="highlight_reel.mp4" width="640" height="480"
poster="highlight_still.jpg" controls autoplay>
 Your browser does not support HTML5 video. Get the MP4 video
</video>

Browsers that do not support video display whatever content is provided
within the video element. In this example, it provides a link to the movie that
your visitor could download and play in another player.

There are also some attributes in that example worth looking at in detail:

width="pixel measurement"
height="pixel measurement"

Specifies the size of the box the embedded media player takes up on the
screen. Generally, it is best to set the dimensions to exactly match the pixel
dimensions of the movie. The movie will resize to match the dimensions
set here.

poster="url of image"

Provides the location of an image that is shown in place of the video
before it plays.

controls

Adding the controls attribute prompts the browser to display its built-
in media controls, generally a play/pause button, a “seeker” that lets you
move to a position within the video, and volume controls. It is possible to
create your own custom player interface using CSS and JavaScript if you
want more consistency across browsers.

autoplay

Makes the video start playing automatically after it has downloaded
enough of the media file to play through without stopping. In general,
use of autoplay should be avoided in favor of letting the user decide when
the video should start. autoplay does not work on iOS Safari and some
other mobile browsers in order to protect users from unnecessary data
downloads.

In addition, the video element can use the loop attribute to make the video
play again after it has finished (ad infinitum), muted for playing the video
track without the audio, and preload for suggesting to the browser whether
the video data should be fetched as soon as the page loads (preload="auto")
or wait until the user clicks the play button (preload="none"). Setting
preload="metadata" loads information about the media file, but not the
media itself. A device can decide how to best handle the auto setting; for
example, a browser in a smartphone may protect a user’s data usage by not
preloading media, even when it is set to auto.

10. Embedded Media

Video and Audio

223

Providing video format options
Do you remember back in Chapter 7 when we supplied multiple image for-
mats with the picture element using a number of source elements? Well,
picture got that idea from video!

As you’ve seen, it is not easy to find one video format to please all browsers
(although MPEG4/H.264 gets close). In addition, new efficient video formats
like VP9 and H.265 are available but not supported in older browsers. Using
source elements, we can let the browsers use what they can.

In the markup, a series of source elements inside the video element point to
each video file. Browsers look down the list until they find one they support
and download only that version. The following example provides a video
clip in the souped-up WebM/VP9 format for supporing browsers, as well as
an MP4 and Ogg Theora for other browsers. This will cover pretty much all
browsers that support HTML5 video (see the sidebar “Flash Video Fallback”).

<video id="video" controls poster="img/poster.jpg">
 <source src="clip.webm" type="video/webm">
 <source src="clip.mp4" type="video/mp4">
 <source src="clip.ogg" type="video/ogg">
 Download the MP4 of the clip.
</video>;

Custom video players
One of the powerful things about the video element and the Media Player
API is that the system allows for a lot of customization. You can change the
appearance of the control buttons with CSS and manipulate the functional-
ity with JavaScript. That is all beyond the scope of this chapter, but I recom-
mend the article “Creating a Cross-Browser Video Player” by Eric Shepherd,
Chris Mills, and Ian Devlin (developer.mozilla.org/en-US/Apps/Fundamentals/
Audio_and_video_delivery/cross_browser_video_player) for a good overview.

You may also be interested in trying out a prefab video player that pro-
vides good looks and advanced performance such as support for streaming
video formats. You can implement many of them by adding a line or two of
JavaScript to your document and then by using the video element, so it’s
not hard to get started. There’s a nice roundup of plug-and-play video player
options listed at VideoSWS (videosws.praegnanz.de/).

Flash Video Fallback
Older browsers—most notably Internet Explorer versions 8 and earlier—do not
support video. If f IE8 is making a significant blip in your site statistics, you may
choose to provide a Flash movie fallback. The “Creating a Cross-Browser Video
Player” article mentioned previously has thorough explanation of the technique.
Another article worth a read is Kroc Camen’s “Video for Everybody” (camendesign.
com/code/video_for_everybody). It is a bit dated, but I’m sure would be helpful,
balanced with your up-to-date browser support knowledge.

Part II. HTML for Structure

Video and Audio

224

Adding Audio to a Page
If you’ve wrapped your head around the video markup example, you already
know how to add audio to a page. The audio element uses the same attri-
butes as the video element, with the exception of width, height, and poster
(because there is nothing to display). Just like the video element, you can
provide a stack of audio format options using the source element, as shown
in the example here. FIGURE 10-4 shows how the audio player might look
when it’s rendered in the browser.

<p>Play "Percussion Gun" by White Rabbits</p>

<audio id="whiterabbits" controls preload="auto">
 <source src="percussiongun.mp3" type="audio/mp3">
 <source src="percussiongun.ogg" type="audio/ogg">
 <source src="percussiongun.webm" type="audio/webm">
 <p>Download "Percussion Gun":</p>

 MP3
 Ogg Vorbis

</audio>

FIGURE 10-4.   Audio player as rendered in Firefox.

If you have only one audio file, you can simply use the src attribute instead. If
you want to be evil, you could embed audio in a page, set it to play automati-
cally and then loop, and not provide any controls to stop it like this:

<audio src="jetfighter.mp3" autoplay loop></audio>

But you would never, ever do something like that, right? Right?! Of course
you wouldn’t.

Adding Text Tracks
The track element provides a way to add text that is synchronized with the
timeline of a video or audio track. Some uses include the following:

•	 Subtitles in alternative languages

•	 Captions for the hearing impaired

•	 Descriptions of what is happening in a video for the sight impaired

•	 Chapter titles to allow for navigation through the media

•	 Metadata that is not displayed but can be used by scripts

<audio>…</audio>
Adds an audio file to the page

<track>…</track>
Adds synchronized text to
embedded media

10. Embedded Media

Video and Audio

225

Clearly, adding text tracks makes the media more accessible, but it has the
added bonus of improving SEO (Search Engine Optimization). It can also
allow for deep linking, linking to a particular spot within the media’s timeline.

FIGURE 10-5 shows how captions might be rendered in a browser that sup-
ports the track element.

FIGURE 10-5.   A video with captions.

Use the track element inside the video or audio element you wish to anno-
tate. The track element must appear after all the source elements, if any, and
may include these attributes:

src

Points to the text file.

kind

Specifies the type of text annotation you are providing (subtitles, cap-
tions, descriptions, chapters, or metadata). If kind is set to subtitle, you
must also specify the language (srclang attribute) by using a standard-
ized IANA two-letter language tag (see Note).

label

Provides a name for the track that can be used in the interface for selecting
a particular track.

default

Marks a particular track as the default and it may be used on only one
track within a media element.

NOTE

The full list of two-letter language codes
is published at www.iana.org/assign-
ments/​language-subtag-registry/lan-
guage-subtag-registry.

Part II. HTML for Structure

Video and Audio

226

The following code provides English and French subtitle options for a movie:

<video width="640" height="320" controls>
 <source src="japanese_movie.mp4" type="video/mp4">
 <source src="japanese_movie.webm" type="video/webm">
 <track src="english_subtitles.vtt"
 kind="subtitles"
 srclang="en"
 label="English subtitles"
 default>
 <track src="french.vtt"
 kind="subtitles"
 srclang="fr"
 label="Sous-titres en français">
</video>

WebVTT
You’ll notice in the previous example that the track points to a file with a .vtt
suffix. That is a text file in the WebVTT (Web Video Text Tracks) format that
contains a list of cues. It looks like this:

WEBVTT

00:00:01.345 --> 00:00:03.456
Welcome to Artifact [applause]

00:00:06.289 --> 00:00:09.066
There is a lot of new mobile technology to discuss.

00:00:06.289 --> 00:00:13.049
We're glad you could all join us at the Alamo Drafthouse.

Cues are separated by empty line spaces. Each cue has a start and end time
in hours:minutes:seconds:milliseconds format, separated by an “arrow” (-->).
The cue text (subtitle, caption, description, chapter, or metadata) is on a line
below. Optionally, an ID can be provided for each cue on the line above the
time sequence.

You can probably guess that there’s a lot more to mastering text tracks for
video and audio. Take a look at the following resources:

•	 “Adding Captions and Subtitles to HTML5 Video” at MDN Web Docs
(developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/​
Adding_captions_and_subtitles_to_HTML5_video)

•	 Subtitle tutorial on Miracle Tutorials (www.miracletutorials.com/how-to-
create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/)

•	 The WebVTT specification at the W3C is available at www.w3.org/TR/
webvtt1/

If you’d like to play around with the video element, spend some time with
EXERCISE 10-2.

NOTE

Other timed text formats include SRT
captioning (replaced by WebVTT) and
TML/DFXP, which is maintained by the
W3C and supported by Internet Explorer
but it is not recommended in the HTML5
specification for track.

10. Embedded Media

Video and Audio

227

https://developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
https://developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/

CANVAS

Another cool, “Look Ma, no plug-ins!” addition in HTML5 is the canvas
element and the associated Canvas API. The canvas element creates an area
on a web page for drawing with a set of JavaScript functions for creating
lines, shapes, fills, text, animations, and so on. You could use it to display an
illustration, but what gives the canvas element so much potential (and has
the web development world so delighted) is that it’s all generated with script-
ing. That means it is dynamic and can draw things on the fly and respond to
user input. This makes it a nifty platform for creating animations, games, and
even whole applications—all using the native browser behavior and without
proprietary plug-ins like Flash.

It is worth noting that the canvas drawing area is raster-based, meaning that
it is made up of a grid of pixels. This sets it apart from the other drawing
standard, SVG, which uses vector shapes and paths that are defined with
points and mathematics.

The good news is that every current browser supports the canvas element
as of this writing, with the exception of Internet Explorer 8 and earlier (see
Note). It has become so well established that Adobe’s Animate software (the
replacement for Flash Pro) now exports to canvas format.

FIGURE 10-6 shows a few examples of the canvas element used to create
games, drawing programs, an interactive molecule structure tool, and an

EXERCISE 10-2.  Embedding a video player

In this exercise, you’ll add a video to a page with the video
element. In the materials for Chapter 10, you will find the small
movie about wind tunnel testing in MPEG-4, OGG/Theora, and
WebM formats.

1.	 Create a new document with the proper HTML5 setup, or you
can use the same document you used in EXERCISE 10-1.

2.	 Start by adding the video element with the src attribute
pointed to windtunnel.mp4 because MP4 video has the best
browser support. Be sure to include the width (320 pixels) and
height (262 pixels), as well as the controls attribute so you’ll
have a way to play and pause it. Include some fallback copy
within the video element—either a message or a link to the
video:

<video src="windtunnel.mp4" width="320"
height="262" controls>
 Sorry, your browser doesn't support HTML5 video.
</video>

3.	 Save and view the document in your browser. If you see the
fallback message, your browser is old and doesn’t support the
video element. If you see the controls but no video, it doesn’t
support MP4, so try it again with one of the other formats.

4.	 The video element is pretty straightforward so you may feel
done at this point, but I encourage you to play around with it a
little to see what happens. Here are some things to try:

•	 Resize the video player with the width and height
attributes.

•	 Add the autoplay attribute.

•	 Remove the controls attribute and see what that’s like as
a user.

•	 Rewrite the video element using source elements for each
of the three provided video formats.

NOTE

If you have a good reason to support
IE8, the FlashCanvas JavaScript library
(flashcanvas.net) adds canvas support
using the Flash drawing API.

Part II. HTML for Structure

Canvas

228

asteroid animation. You can find more examples at EnvatoTuts+ (code.
tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments-
-net-14210), on David Walsh’s blog (davidwalsh.name/canvas-demos), as well
as the results of your own web search.

www.e�ectgames.com/demos/canvascycle/

mahjong.frvr.com/ muro.deviantart.com/

alteredqualia.com/canvasmol/

FIGURE 10-6.   A few examples of the canvas element used for games, animations,
and applications.

Mastering the canvas element is more than we can take on here, particularly
without any JavaScript experience under our belts, but I will give you a taste
of what it is like to draw with JavaScript. That should give you a good idea
of how it works, and also a new appreciation for the complexity of some of
those examples.

The canvas Element
You add a canvas space to the page with the canvas element and specify the
dimensions with the width and height attributes. And that’s really all there is
to the markup. For browsers that don’t support the canvas element, you can
provide some fallback content (a message, image, or whatever seems appro-
priate) inside the tags:

<canvas width="600" height="400" id="my_first_canvas">
Your browser does not support HTML5 canvas. Try using Chrome, Firefox,
Safari or MS Edge.
</canvas>

<canvas>…</canvas>
Adds a 2-D dynamic drawing area

10. Embedded Media

Canvas

229

The markup just clears a space upon which the drawing will happen. You can
affect the drawing space itself with CSS (add a border or a background color,
for example), but all of the contents of the canvas are generated by scripting
and cannot be selected for styling with CSS.

Drawing with JavaScript
The Canvas API includes functions for creating shapes, such as strokeRect()
for drawing a rectangular outline and beginPath() for starting a line drawing.
Some functions move things around, such as rotate() and scale(). It also
includes attributes for applying styles (for example, lineWidth, font, stroke-
Style, and fillStyle).

Sanders Kleinfeld created the following code example for his book HTML5
for Publishers (O’Reilly). He was kind enough to allow me to use it in this
book. FIGURE 10-7 shows the simple smiley face we’ll be creating with the
Canvas API.

FIGURE 10-7.   The finished product of our “Hello Canvas” example. See the original
at examples.oreilly.com/0636920022473/my_first_canvas/my_first_canvas.html.

And here is the script that created it. Don’t worry that you don’t know any
JavaScript yet. Just skim through the script and pay attention to the inline
comments. I’ll also describe some of the functions in use at the end. I bet
you’ll get the gist of it just fine.

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);	
function eventWindowLoaded() {
	 canvasApp();
}

function canvasApp(){
var theCanvas = document.getElementById('my_first_canvas');
var my_canvas = theCanvas.getContext('2d');
my_canvas.strokeRect(0,0,200,225)
 // to start, draw a border around the canvas

Part II. HTML for Structure

Canvas

230

 //draw face
my_canvas.beginPath();
my_canvas.arc(100, 100, 75, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.strokeStyle = "black"; // circle outline is black
my_canvas.lineWidth = 3; // outline is three pixels wide
my_canvas.fillStyle = "yellow"; // fill circle with yellow
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // now, draw left eye
my_canvas.fillStyle = "black"; // switch to black for the fill
my_canvas.beginPath();
my_canvas.arc(65, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // now, draw right eye
my_canvas.beginPath();
my_canvas.arc(135, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // draw smile
my_canvas.lineWidth = 6; // switch to six pixels wide for outline
my_canvas.beginPath();
my_canvas.arc(99, 120, 35, (Math.PI/180)*0, (Math.PI/180)*-180, false);
 // semicircle dimensions
my_canvas.stroke();
my_canvas.closePath();

 // Smiley Speaks!
my_canvas.fillStyle = "black"; // switch to black for text fill
my_canvas.font = '20px _sans'; // use 20 pixel sans serif font
my_canvas.fillText ("Hello Canvas!", 45, 200); // write text
}
</script>

Finally, here is a little more information on the Canvas API functions used in
the example:

strokeRect(x1, y1, x2, y2)

Draws a rectangular outline from the point (x1, y1) to (x2, y2). By default,
the origin of the canvas (0, 0) is the top-left corner, and x and y coordi-
nates are measured to the right and down.

beginPath()

Starts a line drawing.

closePath()

Ends a line drawing that was started with beginPath().

10. Embedded Media

Canvas

231

arc(x, y, arc_radius, angle_radians_beg, angle_radians_end)

Draws an arc where (x,y) is the center of the circle, arc_radius is the
length of the radius of the circle, and angle_radians_beg and _end indi-
cate the beginning and end of the arc angle.

stroke()

Draws the line defined by the path. If you don’t include this, the path
won’t appear on the canvas.

fill()

Fills in the path specified with beginPath() and endPath().

fillText(your_text, x1, y1)

Adds text to the canvas starting at the (x,y) coordinate specified.

In addition, the following attributes were used to specify colors and styles:

lineWidth

Width of the border of the path.

strokeStyle

Color of the border.

fillStyle

Color of the fill (interior) of the shape created with the path.

font

The font and size of the text.

Of course, the Canvas API includes many more functions and attributes
than we’ve used here. For a complete list, see the W3C’s HTML5 Canvas 2D
Context specification at www.w3.org/TR/2dcontext. A web search will turn up
lots of Canvas tutorials should you be ready to learn more. In addition, I can
recommend these resources:

•	 The book HTML5 Canvas, Second Edition, by Steve Fulton and Jeff Fulton
(O’Reilly).

•	 If video is more your speed, try this tutorial by David Geary: HTML5
Canvas for Developers (shop.oreilly.com/product/0636920030751.do).

Part II. HTML for Structure

Canvas

232

TEST YOURSELF

We’ve looked at all sorts of ways to stick things in web pages in this chapter.
We’ve seen how to use iframe to create a “window-in-a-window” for display-
ing external web resources; object for resources that require plug-ins, video
and audio players; and the canvas 2-D scriptable drawing space. Now see if
you were paying attention. As always, answers are in Appendix A.

1.	 What is a “nested browsing context,” and how would you create one?

2.	 Why would you use the sandbox attribute with an iframe?

3.	 Name some instances when you might need to know the MIME type for
your media file.

4.	 Identify each of the following as a container format, video codec, or audio
codec:

a.  Ogg ____________________

b.  H.264 ____________________

c.  VP8 ____________________

d.  Vorbis ____________________

e.  WebM ____________________

f.  Theora ____________________

g.  Opus ____________________

h.  MPEG-4 ____________________

5.	 What does the poster attribute do?

6.	 What is a .vtt file?

7.	 List at least two differences between SVG and Canvas.

8.	 List the two Canvas API functions you would use to draw a rectangle and
fill it with red. You don’t need to write the whole script.

10. Embedded Media

Test Yourself

233

ELEMENT REVIEW: EMBEDDED MEDIA

The following elements are used to embed media files of many types into web pages.

Element and Attributes Description
audio Embeds an audio player on the page

src="URL" Address of the resource

crossorigin="anonymous|
use-credentials"

How the element handles requests from other origins (servers)

preload="auto|none|metadata" Indicates how much the media resource should be buffered on page load

autoplay Indicates the media can play as soon as the page is loaded

loop Indicates the media file should start playing again automatically once it reaches
the end

muted Disables the audio output

controls Indicates the browser should display a set of playback controls for the media file

canvas Represents a two-dimensional area that can be used for rendering dynamic bitmap
graphics

height The height of the canvas area

width The width of the canvas area

embed Embeds a multimedia object that requires a plug-in for playback on the page.
Certain media types require custom attributes not listed below.

src="URL" Address of the media resource

type="media type" The media (MIME) type of the media

width="number" The horizontal dimension of the video player in pixels

height="number" The vertical dimension of the video player in pixels

iframe Creates a nested browsing context to display HTML resources in a page

src="URL" Address of the HTML resource

srcdoc="HTML source code" The HTML source of a document to display in the inline frame

name="text" Assigns a name to the inline frame to be referenced by targeted links

sandbox=
 "allow-forms|
 allow-pointer-lock|
 allow-popups|
 allow-same-origin|
 allow-scripts|
 allow-top-navigation"

Security rules for nested content

allowfullscreen Indicates the objects in the inline frame are allowed to use requestFullScreen()

width="number" The horizontal dimension of the video player in pixels

height="number" The vertical dimension of the video player in pixels

Part II. HTML for Structure

Element Review: Embedded Media

234

Element and Attributes Description
object A generic element for embedding an external resource

data="URI" Address of the resource

type="media type" The media (MIME) type of the resource

typemustmatch Indicates the resource is to be used only if the value of the type attribute and the
content type of the resource match

name="text" The name of the object to be referenced by scripts

form="form ID" Associates the object with a form element

width="number" The horizontal dimension of the video player in pixels

height="number" The vertical dimension of the video player in pixels

param Supplies a parameter within an object element

name="text" Defines the name of the parameter

value="text" Defines the value of the parameter

source Allows authors to specify multiple versions of a media file (used with video
and audio)

src="text" The address of the resource

type="media type" The media (MIME) type of the resource

track Specifies an external resource (text or audio) that is timed with a media file that
improves accessibility, navigation, or SEO

kind="subtitles|captions|
descriptions|chapters|metadata"

Type of text track

src="text" Address of external resource

srclang="valid language tag" Language of the text track

label="text" A title for the track that may be displayed by the browser

default Indicates the track should be used by default if it does not override user prefer-
ences

video Embeds a video player on the page

src="URL" Address of the resource

crossorigin="anonymous|
use-credentials"

How the element handles requests from other origins (servers)

poster="URL" The location of an image file that displays as a placeholder before the video
begins to play

preload="auto|none|metadata" Hints how much buffering the media resource will need

autoplay Indicates the media can play as soon as the page is loaded

loop Indicates the media file should start playing again automatically once it reaches
the end

muted Disables the audio output

controls Indicates the browser should display a set of playback controls for the media file

width="number" Specifies the horizontal dimension of the video player in pixels

height="number" Specifies the vertical dimension of the video player in pixels

10. Embedded Media

Element Review: Embedded Media

235

