HTML FOR STRUCTURE

CREATING A
SIMPLE PAGE

(HTML OVERVIEW)

Part | provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start creat-
ing a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step-by-step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

* Get a feel for how markup works, including an understanding of elements
and attributes.

* See how browsers interpret HTML documents.
* Learn how HTML documents are structured.
* Get a first glimpse of a style sheet in action.

Don't worry about learning the specific text elements or style sheet rules
at this point; we'll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A WEB PAGE, STEP-BY-STEP

You got a look at an HTML document in Chapter 2, How the Web Works, but
now you'll get to create one yourself and play around with it in the browser.
The demonstration in this chapter has five steps that cover the basics of page
production:

CHAPTER

4

IN THIS CHAPTER

An introduction to elements
and attributes

Marking up a simple web page

The elements that provide
document structure

Troubleshooting broken
web pages

49

Launch a Text Editor

HTML the Hard Way

I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, and

then opening your page in a browser.

It doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use

a visual or drag-and-drop web-
authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you're seeing. It

is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually for better control
over the code and the ability to
make deliberate decisions about
what elements to use.

Step 1: Start with content. As a starting point, we’ll write up raw text content
and see what browsers do with it.

Step 2: Give the document structure. You'll learn about HTML element syn-
tax and the elements that set up areas for content and metadata.

Step 3: Identify text elements. You'll describe the content using the appropri-
ate text elements and learn about the proper way to use HTML.

Step 4: Add an image. By adding an image to the page, you'll learn about
attributes and empty elements.

Step 5: Change how the text looks with a style sheet. This exercise gives you
a taste of formatting content with Cascading Style Sheets.

By the time we're finished, you'll have written the document for the page
shown in FIGURE 4-1. It’s not very fancy, but you have to start somewhere.

BLACK GOOSE BISTRO

The Restaurant

The Black Goose Bistro offers casual lunch and dinner fare in a relaxed atmosphere. The menu
changes regularly o highlight the freshest local ingredients.

Catering

‘You have fun. We'll handle the cooking. Black Goose Catering can handle events from snacks for
ameetup 1o elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;

Monday through Thursday 11am to 9pm;
Friday and Saturday, 11am to midnight

In this chapter, we’ll write the HTML document for this page in five steps.

We'll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it’s helpful to see the cause and effect of each small
change to the source file along the way:.

LAUNCH A TEXT EDITOR

In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain-text files with the .html exten-
sion. If you have a visual web-authoring tool such as Dreamweaver, set it
aside for now. I want you to get a feel for marking up a document manually
(see the sidebar “HTML the Hard Way”).

50

Part Il. HTML for Structure

This section shows how to open new documents in Notepad and TextEdit.
Even if you've used these programs before, skim through for some special set-
tings that will make the exercises go more smoothly. We'll start with Notepad;
Mac users can jump ahead.

Creating a New Document in Notepad (Windows)

These are the steps to creating a new document in Notepad on Windows 10

(FIGURE 4-2):

1. Search for “Notepad” to access it quickly. Click on Notepad to open a new

document window, and you're ready to start typing. @

2. Next, make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Open the File Explorer, select the View tab, and then select the Options
button on the right. In the Folder Options panel, select the View tab

again. @

3. Find “Hide extensions for known file types” and uncheck that option. ©

4. Click OK to save the preference @, and the file extensions will now be

visible.

] Untitled - Notepad

File Edit Format View Help

Folder Options
emmuy
- .
General View Sgarch
LR S
FolderVigws
You can apply this view (such as Details or Icons) to
all folders of this type.

Apply to Folders Reset Folders

Advanced settings:

[Display the full path in the titie bar ~
Hidden files and folders
@ Don't show hidden files, folders, or drives
O Show hidden files, folders, and drives

b " 2 Higs Brfiptydives = = =<ttt e e .
Bl ic extensions for known filo types] :
P = 4 Hide folder merge conflicts= = = = = = = = = = v

Hide protected operating system files (Recommended)
[] Launch folder windows in a separate process

[_] Restore previous folder windows at logon

Show drive letters

Show encrypted or compressed NTFS files in color
Show pop-up description for folder and desktop items
[P -

Restore Defaults

. OK ‘. Cancel Apply
-

Launch a Text Editor

©® Click on Notepad to open a new
document.

® Open the File Explorer, select the View
tab, and then select the Options
button on the right (not shown).
Select the View tab.

® Uncheck “Hide extensions for known
file types.”

@ Click OK to save the preference, and
the file extensions will now be visible.

Creating a new document in Notepad.

4. Creating a Simple Page 51

Launch a Text Editor

Creating a New Document in TextEdit
(mac0s)

By default, TextEdit creates rich-text documents—that
is, documents that have hidden style-formatting instruc-
tions for making text bold, setting font size, and so on.
You can tell that TextEdit is in rich-text mode when it has
a formatting toolbar at the top of the window (plain-text
mode does not). HTML documents need to be plain-text
documents, so we'll need to change the format, as shown
in this example (FIGURE 4-3):

1. Use the Finder to look in the Applications folder for
TextEdit. When you've found it, double-click the
name or icon to launch the application.

2. In the initial TextEdit dialog box, click the New
Document button in the bottom-left corner. If you
see the text formatting menu and tab ruler at the top
of the Untitled document, you are in rich-text mode
@. If you don’t, you are in plain-text mode @. Either
way, there are some preferences you need to set.

® Formatting menu indicates rich text.

[XoN) 4 Untitled — o0 ®
av| roeics o) ewiar 212 v | @Ml 3 i u|E] 65l = I
F > > S S S S S S S >
Ty Ty Tz T e Ts e T7 Ty
[] Preferences

Format

3. Close that document, and open the Preferences dia-
log box from the TextEdit menu.

4. Change these preferences:

On the New Document tab, select Plain text ©.
Under Options, deselect all of the automatic format-
ting options @.

On the Open and Save tab, select Display HTML files
as HTML Code ® and deselect “Add ‘.txt’ extensions
to plain text files” ®. The rest of the defaults should
be fine.

5. When you are done, click the red button in the top-
left corner.

6. Now create a new document by selecting File > New.
The formatting menu will no longer be there, and
you can save your text as an HTML document. You
can always convert a document back to rich text by
selecting Format » Make Rich Text when you are not
using TextEdit for HTML.

® Plain text documents have no menu.

Untitled

L] Preferences

New Document Open and Save

‘When Opening a File:

Use the Format menu to choose settings for an open document. (5 Dlsplay HTML files as HTML code instead of formatted text
Rich text Wrap to page Display RTF files as RTF code instead of formatted text
@ © Plain text

‘Whn Saving a File:

Window Size
(6] Add "txt" extension to plain text files
Width: |80 | characters
5 Plain Text File Encoding

Height: | 30 lines =

Opening files: | Automatic
Font B
Plain text font: | Change... | Menlo Regular 11 Saving files: Automatic B
Rich textfont: | Change... | Helvetica 12 HTML Saving Options
Properties Document type: | HTML 4.01 Strict a
Document properties are saved only with rich text files. Choose
File > Show Properties to change the praperties for an open Styling: Embedded CSS B
document.

Encoding: Unicode (UTF-B} B
Author:

Preserve white space
Organization:
Copyright:

(%) Options

Check spelling as you type
Check grammar with spelling
Correct spelling automatically
Show ruler

Data detectors

Restore All Defaults

Smart copy/paste
Smart quotes
Smart dashes
Smart links

Text replacement

Restore All Defaults

Launching TextEdit and choosing “Plain text” settings in the Preferences.

52 PartIl. HTML for Structure

STEP 1: START WITH CONTENT

Now that we have our new document, it’s time to get typing. A web page is
all about content, so that’s where we begin our demonstration. EXERCISE 4-1
walks you through entering the raw text content and saving the document

in a

EX

new folder.

ERCISE 4-1. Entering content

1. Type the home page content below into the new document in your text editor. Copy it
exactly as you see it here, keeping the line breaks the same for the sake of playing along.
The raw text for this exercise is also available online at learningwebdesign.com/5e/
materials/.

2. Select “Save” or “Save as” from the File menu to get the Save As dialog box (FIGURE 4-4).

Black Goose Bistro

The Restaurant

The Black Goose Bistro offers casual lunch and dinner fare in a relaxed
atmosphere. The menu changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose Catering can handle
events from snacks for a meetup to elegant corporate fundraisers.

Location and Hours

Seekonk, Massachusetts;

Monday through Thursday 1iam to 9pm; Friday and Saturday, 1iam to
midnight

The first thing you need to do is create a new folder (click the New Folder button on both
Windows and Mac) that will contain all of the files for the site. The technical name for the
folder that contains everything is the local root directory.

Windows 10 MacOS 10
Save As e Untitled —
“ % P [Ms THs P Docimints Save As: | index.nimi a
Organize % New folder Tags:
&l N
. OneDrive ame = Now Folder =
~ = This PC iGloud Neme of new folder:
% TextEdit bist
m Desktop istrd|
> B re—
Documents —
8 Downloads
T ——

 Music
& Pictures
B Videos
£, BOOTCAMP (C))
-~ Clone () R A5
File name: | indexhtm|
Save as type: All Files (%)
Plain Text Encoding: Unicade (UTF-8)
1f no ext

& Hide Folders Hide extension Cancel

Saving index.html in a new folder called bistro.

Step 1: Start with Content

4. Creating a Simple Page

53

Step 1: Start with Content

Name the new folder bistro, and save the text file as index.html in it. The filename needs
to end in .html to be recognized by the browser as a web document. See the sidebar
“Naming Conventions” for more tips on naming files.

3. Just for kicks, let’s take a look at index.html in a browser.
Windows users: Double-click the filename in the File Explorer to launch your default
browser, or right-click the file for the option to open it in the browser of your choice.
Mac users: Launch your favorite browser (I’'m using Google Chrome) and choose Open or
Open File from the File menu. Navigate to index.html, and then select the document to
open it in the browser.

4. You should see something like the page shown in FIGURE 4-5. We'll talk about the
results in the following section.

] ® [M index.htmi
€« C [fileyyy

i apps

+ Bookmarks D Mgouse over to Zoor

Jennifer

vl o @ ® =

D popup with tags my pinboard » D Other Bookmarks

Black Goose Bistro The Restaurant The Black Goose Bistro offers casual lunch and dinner fare in a relaxed
atmosphere. The menu changes regularly to highlight the freshest local ingredients. Catering You have fun.
‘We'll handle the cooking. Black Goose Catering can handle events from snacks for a mectup to elegant
corporate fundraisers. Location and Hours Seckonk, Massachusetts; Monday through Thursday 1lam to 9pm;
Friday and Saturday, | lam to midnight

A first look at the content in a browser.

Naming Conventions

It is important that you follow these rules and conventions when
naming your files:

Use proper suffixes for your files. HTML files must end with
.html or .htm. Web graphics must be labeled according to
their file format: .gif, .ong, .jog (jpeg is also acceptable,
although less common), or.svg.

Never use character spaces within filenames. It is common
to use an underline character or hyphen to visually separate
words within filenames, such as robbins_bio.html or robbins-
bio.html.

Avoid special characters such as 2, %, #, /, :, ;, +, etc. Limit
filenames to letters, numbers, underscores, hyphens, and
periods. It is also best to avoid international characters, such
as the Swedish a.

Filenames may be case-sensitive, depending on your server
configuration. Consistently using all lowercase letters in
filenames, although not required, is one way to make your
filenames easier to manage.

Keep filenames short. Long names are more likely to be
misspelled, and short names shave a few extra bytes off the
file size. If you really must give the file a long, multiword
name, you can separate words with hyphens, such as
a-long-document-title.html, to improve readability.

Self-imposed conventions. It is helpful to develop a
consistent naming scheme for huge sites—for instance,
always using lowercase with hyphens between words. This
takes some of the guesswork out of remembering what
you named a file when you go to link to it later.

54 Part Il. HTML for Structure

Learning from Step 1

Our page isn't looking so good (FIGURE 4-5). The text is all run together into
one block—that’s not how it looked when we typed it into the original docu-
ment. There are a couple of lessons to be learned here. The first thing that is
apparent is that the browser ignores line breaks in the source document. The
sidebar “What Browsers Ignore” lists other types of information in the source
document that are not displayed in the browser window.

Second, we see that simply typing in some content and naming the document
.html is not enough. While the browser can display the text from the file, we
haven’t indicated the structure of the content. That's where HTML comes in.
We'll use markup to add structure: first to the HTML document itself (com-
ing up in Step 2), then to the page’s content (Step 3). Once the browser knows
the structure of the content, it can display the page in a more meaningful way.

STEP 2: GIVE THE HTML DOCUMENT
STRUCTURE

We have our content saved in an HTML document—now we'e ready to start
marking it up.

The Anatomy of an HTML Element

Back in Chapter 2 you saw examples of elements with an opening tag (<p> for
a paragraph, for example) and a closing tag (</p>). Before we start adding tags
to our document, let’s look at the anatomy of an HTML element (its syntax)
and firm up some important terminology. A generic container element is
labeled in FIGURE 4-6.

Opening tag Content Closing tag
(may be text and/or other HTML elements) (starts with a /)

<elementname> Content here </elementname>

Element

example: <h1>Black Goose Bistro</h1>

Step 2: Give the HTML Document Structure

The parts of an HTML container element.

What Browsers Ignore

The following information in the
source document will be ignored
when itis viewed in a browser:

Multiple-character (white) spaces

When a browser encounters

more than one consecutive blank
character space, it displays a single
space. So if the document contains

long, long ago
the browser displays:
long, long ago

Line breaks (carriage returns).

Browsers convert carriage returns
to white spaces, so following the
earlier “ignore multiple white
spaces” rule, line breaks have no
effect on formatting the page.

Tabs

Tabs are also converted to
character spaces, so guess what?
They’re useless for indenting
text on the web page (although
they may make your code more
readable).

Unrecognized markup

Browsers are instructed to ignore
any tag they don’t understand

or that was specified incorrectly.
Depending on the element and
the browser, this can have varied
results. The browser may display
nothing at all, or it may display the
contents of the tag as though it
were normal text.

Text in comments

Browsers do not display text
between the special <!-- and -->
tags used to denote a comment.
See the upcoming “Adding
Hidden Comments” sidebar.

4. Creating a Simple Page 55

Step 2: Give the HTML Document Structure

Slash Versus Backslash

HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the English QWERTY keyboard (key
placement on keyboards in other
countries may vary).

It is easy to confuse the slash with
the backslash character (\), which

is found under the bar character ());
see FIGURE 4-7. The backslash key
will not work in tags or URLS, so be
careful not to use it.

Slash versus
backslash keys.

NOTE

There is a stricter version of HTML called
XHTML that requires all element and
attribute names to appear in lowercase.
HTML5 has made XHTML all but obsolete
except for certain use cases when it is
combined with other XML languages, but
the preference for all lowercase element
names has persisted.

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is hid-
den and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use the
similar backslash character in end tags (see the tip “Slash Versus Backslash”).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We'll
talk about empty elements a little later in this chapter.

One last thing: capitalization. In HTML, the capitalization of element names
is not important (it is not case-sensitive). So , , and are all
the same as far as the browser is concerned. However, most developers prefer
the consistency of writing element names in all lowercase (see Note), as T will
be doing throughout this book.

Basic Document Structure

FIGURE 4-8 shows the recommended minimal skeleton of an HTML docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to explic-
itly organize documents into metadata (head) and content (body) areas. Let’s
take a look at what’s going on in this minimal markup example.

o——
—0
6 Title here —0
9—
00— Page content goes here.

The minimal structure of an HTML document includes head and body
contained within the html root element.

56 PartIl. HTML for Structure

Step 2: Give the HTML Document Structure

@ I don't want to confuse things, but the first line in the example isnt an
element at all. It is a document type declaration (also called DOCTYPE
declaration) that lets modern browsers know which HTML specification
to use to interpret the document. This DOCTYPE identifies the docu-
ment as written in HTMLS.

® The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element.

® Within the html element, the document is divided into a head and a
body. The head element contains elements that pertain to the document
that are not rendered as part of the content, such as its title, style sheets,
scripts, and metadata.

@ meta elements provide document metadata, information about the docu-
ment. In this case, it specifies the character encoding (a standardized
collection of letters, numbers, and symbols) used in the document as
Unicode version UTF-8 (see the sidebar “Introducing Unicode”). I don't
want to go into too much detail on this right now, but know that there
are many good reasons for specifying the charset in every document, so [
have included it as part of the minimal document markup. Other types of
metadata provided by the meta element are the author, keywords, publish-
ing status, and a description that can be used by search engines.

@ Also in the head is the mandatory title element. According to the HTML
specification, every document must contain a descriptive title.

® Finally, the body element contains everything that we want to show up in
the browser window.

Are you ready to start marking up the Black Goose Bistro home page? Open
the index.html document in your text editor and move on to EXERCISE 4-2.

Introducing Unicode

All the characters that make up languages are stored in
computers as numbers. A standardized collection of characters
with their reference numbers (code points) is called a coded
character set, and the way in which those characters are
converted to bytes for use by computers is the character
encoding. In the early days of computing, computers used
limited character sets such as ASCII that contained 128
characters (letters from Latin languages, numbers, and common
symbols). The early web used the Latin-1 (ISO 8859-1) character
encoding that included 256 Latin characters from most Western
languages. But given the web was “worldwide,” it was clearly not
sufficient.

Enter Unicode. Unicode (also called the Universal Character
Set) is a super-character set that contains over 136,000

characters (letters, numbers, symbols, ideograms, logograms,
etc.) from all active modern languages. You can read all about it
at unicode.org. Unicode has three standard encodings—UTF-8,
UTF-16, and UTF-32—that differ in the number of bytes used to
represent the characters (1, 2, or 3, respectively).

HTML5 uses the UTF-8 encoding by default, which allows wide-
ranging languages to be mixed within a single document. It

is always a good idea to declare the character encoding for a
document with the meta element, as shown in the previous
example. Your server also needs to be configured to identify
HTML documents as UTF-8 in the HTTP header (information
about the document that the server sends to the user agent).
You can ask your server administrator to confirm the encoding
of the HTML documents.

4. Creating a Simple Page

57

Step 2: Give the HTML Document Structure

EXERCISE 4-2. Adding minimal structure

1. Open the new index.html document if it isn’t open already and
add the DOCTYPE declaration:

<IDOCTYPE html>

2. Put the entire document in an HTML root element by adding an
<html> start tag after the DOCTYPE and an </html> end tag at
the very end of the text.

3. Next, create the document head that contains the title for the
page. Insert <head> and </head> tags before the content.
Within the head element, add information about the character
encoding <meta charset="utf-8">, and the title, “Black

Goose Bistro”, surrounded by opening and closing <title> tags.

4. Finally, define the body of the document by wrapping the text
content in <body> and </body> tags. When you are done, the
source document should look like this (the markup is shown in
color to make it stand out):

<IDOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Black Goose Bistro</title>

</head>
® ® D Black Goose Bistro x
€« C | [file:yyy
E=' Apps W Bookmarks B Mouse over to Zeon D popup with tags my pinboard

<body>
Black Goose Bistro

The Restaurant

The Black Goose Bistro offers casual lunch and
dinner fare in a relaxed atmosphere. The menu
changes regularly to highlight the freshest local
ingredients.

Catering

You have fun. We'll handle the cooking. Black
Goose Catering can handle events from snacks for a
meetup to elegant corporate fundraisers.

Location and Hours

Seekonk, Massachusetts;

Monday through Thursday 1iam to 9pm; Friday and
Saturday, 11am to midnight

</body>

</html>

5. Save the document in the bistro directory, so that it overwrites
the old version. Open the file in the browser or hit Refresh or
Reload if it is open already. FIGURE 4-9 shows how it should
look now.

Jennifer

PR RO

» [] Other Bookmarks

Black Goose Bistro The Restaurant The Black Goose Bistro offers casual lunch and dinner fare in a relaxed
atmosphere. The menu changes regularly to highlight the freshest local ingredients. Catering You have fun.
‘We'll handle the cooking. Black Goose Catering can handle events from snacks for a meetup to clegant
corporate fundraisers. Location and Hours Seekonk, Massachusetts; Monday through Thursday 11lam to 9pm;

Friday and Saturday, 1 lam to midnight

The page in a browser after the document structure elements have

been defined.

58 PartIl. HTML for Structure

Not much has changed in the bistro page after setting up the document,
except that the browser now displays the title of the document in the top bar
or tab (FIGURE 4-9). If someone were to bookmark this page, that title would
be added to their Bookmarks or Favorites list as well (see the sidebar “Don’t
Forget a Good Title”). But the content still runs together because we haven't
given the browser any indication of how it should be structured. We'll take
care of that next.

STEP 3: IDENTIFY TEXT ELEMENTS

With a little markup experience under your belt, it should be a no-brainer to
add the markup for headings and subheads (h1 and h2), paragraphs (p), and
emphasized text (em) to our content, as we'll do in EXERCISE 4-3. However,
before we begin, I want to take a moment to talk about what we're doing and
not doing when marking up content with HTML.

Mark It Up Semantically

The purpose of HTML is to add meaning and structure to the content. It is
not intended to describe how the content should look (its presentation).

Your job when marking up content is to choose the HTML element that pro-
vides the most meaningful description of the content at hand. In the biz, we
call this semantic markup. For example, the most important heading at the
beginning of the document should be marked up as an h1 because it is the
most important heading on the page. Don't worry about what it looks like...
you can easily change that with a style sheet. The important thing is that you
choose elements based on what makes the most sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another cre-
ates relationships between them. You can think of this structure as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy gives browsers cues on how to handle the content.
It is also the foundation upon which we add presentation instructions with
style sheets and behaviors with JavaScript.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.
In this book, however, I'll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in EXERCISE 4-3.

Step 3: Identify Text Eleme

nts

Don’t Forget a Good Title

Atitle elementis not only required
for every document, but it is also
quite useful. The title is what is
displayed in a user’s Bookmarks or
Favorites list and on tabs in desktop
browsers. Descriptive titles are also

a key tool for improving accessibility,
as they are the first things a person
hears when using a screen reader
(an assistive device that reads the
content of a page aloud for users with
impaired sight). Search engines rely
heavily on document titles as well.

For these reasons, it's important to
provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want

to keep the length of your titles in
check so they are able to display in
the browser’s title area. Knowing that
users typically have a number of tabs
open or a long list of Bookmarks,

put your most uniquely identifying
information in the first 20 or so
characters.

4. Creating a Simple Page

59

Step 3: Identify Text Elements

EXERCISE 4-3. Defining text elements

=

. Open the document index.html in your text editor, if it isn’t open already.
. The first line of text, “Black Goose Bistro,” is the main heading for the page, so we’ll mark

it up as a Heading Level 1 (h1) element. Put the opening tag, <h1>, at the beginning of
the line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</hi>

. Our page also has three subheads. Mark them up as Heading Level 2 (h2) elements in a

similar manner. I'll do the first one here; you do the same for “Catering” and “Location
and Hours.”

<h2>The Restaurant</h2>

Each h2 element is followed by a brief paragraph of text, so let's mark those up as
paragraph (p) elements in a similar manner. Here’s the first one; you do the rest:

<p>The Black Goose Bistro offers casual lunch and dinner fare in
a relaxed atmosphere. The menu changes regularly to highlight the
freshest local ingredients.</p>

. Finally, in the Catering section, | want to emphasize that visitors should just leave

the cooking to us. To make text emphasized, mark it up in an emphasis element (em)
element, as shown here:

<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to elegant
corporate fundraisers.</p>

Now that we’'ve marked up the document, let’s save it as we did before, and open (or

reload) the page in the browser. You should see a page that looks much like the one in
FIGURE 4-10. If it doesn’t, check your markup to be sure that you aren’t missing any

angle brackets or a slash in a closing tag.

® ® [Y Black Goose Bistro * Jennifer
« C [fileyy w/l o @ © =
Black Goose Bistro

The Restaurant

The Black Goose Bistro offers casual lunch and dinner fare in a relaxed atmosphere. The menu changes
regularly to highlight the freshest local ingredients.

Catering

You have fun. We'll handle the cooking. Black Goose Catering can handle events from snacks for a meetup to
elegant corporate fundraisers.

Location and Hours

Seckonk, Massachusetts; Monday through Thursday 11am to 9pm; Friday and Saturday, 11am to midnight

The home page after the content has been marked up with HTML

elements.

60

Part Il. HTML for Structure

Now weTe getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in FIGURE 4-10.

Block and Inline Elements

Although it may seem like stating the obvious, it’s worth pointing out that the
heading and paragraph elements start on new lines and do not run together
as they did before. That is because by default, headings and paragraphs dis-
play as block elements. Browsers treat block elements as though they are in
little rectangular boxes, stacked up in the page. Each block element begins
on a new line, and some space is also usually added above and below the
entire element by default. In FIGURE 4-11, the edges of the block elements are
outlined in red.

ece [Black Goose Bistro X genniey
€ = C [fileyyy vl o @ @ =
Black Goose Bistro |
The Restaurant |

e Black Goose Bistro offers casual lunch and dinner fare in a relaxed atmosphere. The menu changes
cgularly to highlight the freshest local ingredients.

(Catering |

You have fun. |We'll handle the cooking | Black Goose Catering can handle events from snacks for a meetup to
legant corporate fundraisers.

ILocation and Hours |

|Sockonk, Massachusetts; Monday through Thursday 11am to 9pm; Friday and Saturday, 11lam to midnight |

Step 3: Identify Text Elements

Adding Hidden
Comments

You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<1-- -->) will not display in
the browser and will not have any
effect on the rest of the source:

<!-- This is a comment -->

<!-- This is a
multiple-line comment
that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared
by a team of developers. In this
example, comments are used to
point out the section of the source
that contains the navigation:

<!-- start global nav -->

<7u1>
<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone.

The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em, outlined in
blue in FIGURE 4-11). It does not start a new line, but rather stays in the flow
of the paragraph. That is because the em element is an inline element (also
called a text-level semantic element or phrasing element). Inline elements do
not start new lines; they just go with the flow.

Default Styles

The other thing that you will notice about the marked-up page in FIGURES
4-10 and 4-11is that the browser makes an attempt to give the page some

4. Creating a Simple Page 61

Step 4: Add an Image

visual hierarchy by making the first-level heading the biggest and boldest
thing on the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (the blockquote element
for long quotes may or may not be indented).

If you think the h1 is too big and clunky as the browser renders it, just change
it with your own style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better—for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. You should always choose elements
based on how accurately they describe the content, and don’t worry about
the browser’s default rendering.

We'll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

STEP 4: ADD AN IMAGE

What fun is a web page with no images? In EXERCISE 4-4, we’ll add an image
to the page with the img element. Images will be discussed in more detail in
Chapter 7, Adding Images, but for now, they give us an opportunity to intro-
duce two more basic markup concepts: empty elements and attributes.

Empty Elements

So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in FIGURE 4-6: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have content because they are used
to provide a simple directive. These elements are said to be empty. The image
element (img) is an example of an empty element. It tells the browser to get
an image file from the server and insert it at that spot in the flow of the text.
Other empty elements include the line break (br), thematic breaks (hr, a.k.a.
“horizontal rules”), and elements that provide information about a document
but don't affect its displayed content, such as the meta element that we used
earlier.

FIGURE 4-12 shows the very simple syntax of an empty element (compare it
to FIGURE 4-6).

62

Part Il. HTML for Structure

<element-name>

Step 4: Add an Image

Example: The br element inserts a line break.

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Attributes

Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—it doesn’t indicate which image to use.
That’s where attributes come in. Attributes are instructions that clarify or
modify an element. For the img element, the src (short for “source”) attribute
is required, and specifies the location (URL) of the image file.

The syntax for an attribute is as follows:

Attribute name

Empty element structure.

attributename="value"

What Is That Extra Slash?

If you poke around in source
documents for existing web pages,
you may see empty elements

with extra slashes at the end, like
so:,
, <meta />,
and <hr />. That indicates the
document was written according

to the stricter rules of XHTML. In
XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
You terminate empty elements by
adding a trailing slash before the
closing bracket. The preceding
character space is not required but
was used for backward compatibility
with browsers that did not have
XHTML parsers, so ,
,
and so on are valid.

Attributes go after the element name, separated by a space. In non-empty ele-
ments, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces:

<element attributei="value" attribute2="value">

FIGURE 4-13 shows an img element with its required attributes labeled.

Attribute names and values are separated by an equals sign (=)

Value Attribute name Value

| |
<img\lsrc=" bird.jpg" alt="photo of bird/”l>
| |

Attribute Attribute

Multiple attributes are separated by a space

An img element with two attributes.

4. Creating a Simple Page 63

Step 4: Add an Image

Here’s what you need to know about attributes:

Attributes go after the element name in the opening tag only, never in the
closing tag.

There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values are single descriptive words. For example, the
checked attribute, which makes a form checkbox checked when the form
loads, is equivalent to checked="checked". You may hear this type of
attribute called a Boolean attribute because it describes a feature that is
either on or off.

A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You'll see examples of
all of these throughout this book.

Wrapping attribute values in double quotation marks is a strong conven-
tion, but note that quotation marks are not required and may be omitted.
In addition, either single or double quotation marks are acceptable as
long as the opening and closing marks match. Note that quotation marks
in HTML files need to be straight ("), not curly (7).

The attribute names and values available for each element are defined in
the HTML specifications; in other words, you can’t make up an attribute
for an element.

Some attributes are required, such as the src and alt attributes in the
img element. The HTML specification also defines which attributes are
required in order for the document to be valid.

Now you should be more than ready to try your hand at adding the img ele-

m

ent with its attributes to the Black Goose Bistro page in EXERCISE 4-4. We'll

throw a few line breaks in there as well.

EXERCISE 4-4. Adding an image

. If you're working along, the first thing you’ll need to do is get a copy of the image file on

your hard drive so you can see it in place when you open the file locally. The image file
is provided in the materials for this chapter (learningwebdesign.com/5e/materials).
You can also get the image file by saving it right from the sample web page online at
learningwebdesign.com/5e/materials/ch04/bistro. Right-click (or Control-click on a
Mac) the goose image and select “Save to disk” (or similar) from the pop-up menu, as
shown in FIGURE 4-14. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

. Once you have the image, insert it at the beginning of the first-level heading by typing in

the img element and its attributes as shown here:

<h1>Black Goose Bistro</hi>

64

Part Il. HTML for Structure

Step 4: Add an Image

Windows: Right-click
on the image to access
the pop-up menu.

Mac: Control-click on
the image to access the
pop-up menu. The
Copy Image options may vary by
Copy Image Address browser.

Search Google for Image

CK GOO SI Inspect

Open Image in New Tab

Saving an image file from a page on the web.

The src attribute provides the name of the image file that should be inserted, and the
alt attribute provides text that should be displayed if the image is not available. Both of
these attributes are required in every img element.

. I'd like the image to appear above the title, so add a line break (br) after the img
element to start the headline text on a new line.

<h1>
Black Goose Bistro</h1>

. Let’s break up the last paragraph into three lines for better clarity. Drop a
 tag at the
spots youd like the line breaks to occur. Try to match the screenshot in FIGURE 4-15.

. Now save index.html and open or refresh it in the browser window. The page should
look like the one shown in FIGURE 4-15. If it doesn’t, check to make sure that the
image file, blackgoose.png, is in the same directory as index.html. If it is, then check to
make sure that you aren’t missing any characters, such as a closing quote or bracket, in
the img element markup.

ece [® Black Goose Bistro % Jennifer
€ = C [fileyy %% 0=
Black Goose Bistro

The Restaurant

The Black Goose Bistro offers casual lunch and dinner fare in a relaxed atmosphere. The menu changes regularly to highlight the
freshest local ingredients.

Catering

You have fun. We'll kandle the cooking. Black Goose Catering can handle events from snacks for a meetup to elegant corporate
fundraisers.

Location and Hours

Seckonk, Massachusetts;
Monday through Thursday 11am to 9pm;
Friday and Saturday, 11am to midnight

The Black Goose Bistro page with the logo image.

4. Creating a Simple Page 65

Step 5: Change the Look with a Style Sheet

STEP 5: CHANGE THE LOOK WITH A
STYLE SHEET

Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think Id like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I'd like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In EXERCISE 4-5, we'll change the appearance of the text elements and the
page background by using some simple style sheet rules. Don’t worry about
understanding them all right now. We'll get into CSS in more detail in Part
I1. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

EXERCISE 4-5. Adding a style sheet

1. Open index.html if it isn’t open already. We're going to use the h2 {
style element to apply a very simple embedded style sheet to color: .#d1633c;
the page. This is just one of the ways to add a style sheet; the font-size: lem;
others are covered in Chapter 11, Introducing Cascading
Style Sheets. </style>
2. The style element is placed inside the document head. Start 4. Now it's time to save the file and take a look at it in the browser.
by adding the style element to the document as shown here: It should look like the page in FIGURE 4-16. If it doesn’t, go

over the style sheet to make sure you didn’t miss a semicolon or
a curly bracket. Look at the way the page looks with our styles
compared to the browser’s default styles (FIGURE 4-15).

<head>
<meta charset="utf-8">
<title>Black Goose Bistro</title>

<style>
</Sty]‘e> ® ©® [Black Goose Bistro x Jennifer
</head> € & ¢ [Dfieyy wHlG % 0=
3. Next, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know exactly
what’s going on (although it’s fairly intuitive). You'll learn all
about style rules in Part I11.
<style> BLACK GOOSE BISTRO
bOdy { The Restaurant
baCkground'CO]-OI : #fa{2e4; The Black Goose Bistro offers casual lunch and dinner fare in a relaxed atmosphere. The menu

changes regularly to highlight the freshest local ingredients.

margin: 0 10%;

font-family: sans-serif; goterng
y: 4 You have fun. We'l handle the cooking. Black Goose Catering can handle events from snacks for
} ameetup to elegant corporate fundraisers.
h1 { Location and Hours
_ g o o Seekonk, Massachusetts;
teXt allgn * Center) quday through Thursday 11am IO_QDITI.
font_.f:amlly: serlf,‘ Friday and Saturday. 11am to midnight

font-weight: normal;
text-transform: uppercase;

border-bottom: 1px solid #57bidc; :
margin-top: 30px; The Black Goose Bistro page after CSS style

} rules have been applied.

66 PartIl. HTML for Structure

We're finished with the Black Goose Bistro page. Not only have you written
your first web page, complete with a style sheet, but you've also learned about
elements, attributes, empty elements, block and inline elements, the basic
structure of an HTML document, and the correct use of markup along the
way. Not bad for one chapter!

WHEN GOOD PAGES GO BAD

The previous demonstration went smoothly, but it’s easy for small things to
go wrong when you're typing out HTML markup by hand. Unfortunately,
one missed character can break a whole page. 'm going to break my page on
purpose so we can see what happens.

What if T had neglected to type the slash in the closing emphasis tag ()?
With just one character out of place (FIGURE 4-17), the remainder of the
document displays in emphasized (italic) text. That’s because without that
slash, there’s nothing telling the browser to turn “off” the emphasized format-
ting, so it just keeps going (see Note).

<h2>Catering</h2>

<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetdp to elegant
corporate fundraisers.</p>

g.

Catering

You have fun. We'l handle the cooking. Black Goose Catering can handle events from snacks for
a meetup to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;

Monday through Thursday 11am to 9pm;
Friday and Saturday, 11am to midnight

When a slash is omitted, the browser doesn’t know when the element
ends, as is the case in this example.

I've fixed the slash, but this time, let’s see what would have happened if T had
accidentally omitted a bracket from the end of the first <h2> tag (FIGURE 4-18).

See how the headline is missing? That’s because without the closing tag
bracket, the browser assumes that all the following text—all the way up to
the next closing bracket (>) it finds—is part of the <h2> opening tag. Browsers
don't display any text within a tag, so my heading disappeared. The browser
just ignored the foreign-looking element name and moved on to the next
element.

When Good Pages Go Bad

NOTE

Omitting the slash in the closing tag
(or even omitting the closing tag itself)
for block elements, such as headings or
paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

4. Creating a Simple Page 67

Validating Your Documents

Having Problems?

The following are some typical
problems that crop up when you are
creating web pages and viewing them
in a browser:

I’'ve changed my document, but when
I reload the page in my browser, it
looks exactly the same.

It could be you didn’t save your
document before reloading, or you
may have saved it in a different
directory.

Half my page disappeared.

This could happen if you are
missing a closing bracket () or a
quotation mark within a tag. This
is a common error when you're
writing HTML by hand.

I put in a graphic by using the img
element, but all that shows up is a
broken image icon.

The broken graphic could mean

a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure that
the URL to the image file is correct.
(We'll discuss URLs further in
Chapter 6, Adding Links.) Make
sure that the image file is actually
in the directory you've specified.

If the file is there, make sure it is

in one of the formats that web
browsers can display (PNG, JPEG,
GIF, or SVG) and that it is named
with the proper suffix (.png, .jpeg
or.jpg, .gif, or .svg, respectively).

<h2The) Restaurant</h2>

<p>The' Black Goose Bistro offers casual lunch and dinner fare

in a relaxed atmosphere. The menu changes regularly to highlight
the freshe=*-local ingredients.</p>

The

BLACK GOC

The Black Goose Bistro offers casual lunch and d
changes regularly to highlight the freshest local in

Without the bracket, all the
following characters are
interpreted as part of the tag,
and “The Restaurant”
disappears from the page. Catering
You have fun. Welll handle the cooking. Black Go
a meetup to elegant corporate fundraisers.

A missing end bracket makes the browser think the following
characters are part of the tag, and therefore the headline text doesn’t display.

Making mistakes in your first HTML documents and fixing them is a great
way to learn. If you write your first pages perfectly, Id recommend fiddling with
the code to see how the browser reacts to various changes. This can be extreme-
ly useful in troubleshooting pages later. I've listed some common problems in
the sidebar “Having Problems?” Note that these problems are not specific to
beginners. Little stuff like this goes wrong all the time, even for the pros.

VALIDATING YOUR DOCUMENTS

One way that professional web developers catch errors in their markup is to
validate their documents. What does that mean? To validate a document is
to check your markup to make sure that you have abided by all the rules of
whatever version of HTML you are using. Documents that are error-free are
said to be valid. It is strongly recommended that you validate your documents,
especially for professional sites. Valid documents are more consistent on a variety
of browsers, they display more quickly, and they are more accessible.

Right now, browsers don't require documents to be valid (in other words,
they’ll do their best to display them, errors and all), but anytime you stray
from the standard, you introduce unpredictability in the way the page is
handled by browsers or alternative devices.

So how do you make sure your document is valid? You could check it yourself
or ask a friend, but humans make mistakes, and you aren’t expected to memo-
rize every minute rule in the specifications. Instead, use a validator, software
that checks your source against the HTML version you specify. These are
some of the things validators check for:

Part Il. HTML for Structure

Validating Your Documents

¢ The inclusion of a DOCTYPE declaration. Without it the validator
doesn’t know which version of HTML to validate against:

* An indication of the character encoding for the document.

* The inclusion of required rules and attributes.

* Non-standard elements.

* Mismatched tags.

* Nesting errors (incorrectly putting elements inside other elements).
* Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting errors
in HTML documents. The best web-based validator is at html5.validator.nu.
There you can upload a file or provide a link to a page that is already online.
FIGURE 4-19 shows the report the validator generates when I upload the ver-
sion of the Bistro index.html file that doesn’t have any markup. For this docu-
ment, there are a number of missing elements that keep this document from
being valid. It also shows the problem source code and provides an explana-
tion of how the code should appear. Pretty darned handy!

Built-in browser developer tools for Safari and Chrome also have validators
so you can check your work on the fly. Some code editors have validators
built in as well.

(X)HTMLS5 validation results for ex4-1 index.html

- Validater Input

File Upload Choose File | no file selected
| Show Image Report
) Show Source

Validate

Group Messages

1. Error: The character encoding was not declared. Proceeding using windows-1252.

2. Error: Non-space characters found without seeing a doctype first. Expected <1DOCTYPE html>.
From line 1, column 1; to line 11, column 75

3. Error: Element head is missing a required instance of child element title.
From line 1, column 1; to line 11, column 75

Content model for element head:
If the document is an iframe sredoc document or if title information is available from a higher-level protocol: Zero or mere elements of metadata content, of which ne more
than one is a title element and no more than one is a base element.
Otherwise: One or more elements of metadata content, of which exactly one is a title element and no more than one is a base element.
A head element's start tag can be omitted if the element is empty, or if the first thing inside the head element is an element.
A head element's end tag can be omitted if the head element is not immediately followed by a space character or a comment.

|| There were errors. (Tried in the text/htm| mode.) ||

The Content-Type was texthtml. Used the HTML parser.

Total execution time 2 milliseeonds.

About this Service - More options

FIGURE 4-19. The (X)HTML5 Validator (Living Validator) for checking errors in HTML
documents (html5.validator.nu).

4. Creating a Simple Page 69

Test Yourself

ELEMENT

REVIEW: HTML

DOCUMENT
SETUP

TEST YOURSELF

Now is a good time to make sure you understand the basics of markup.

Use what you've learned in this chapter to answer the following questions.

This chapter introduced the ele- L
ments that establish metada-
ta and content portions of an
HTML document. The remain-
ing elements introduced in the 2.
exercises will be treated in more
depth in the following chapters.
Element | Description 3
body Identifies the body of the
document that holds the
content
head Identifies the head of the
document that contains
information about the
document itself
html Is the root element that
contains all the other
elements
meta Provides information
about the document
title Gives the page a title 4.
5.

Answers are in Appendix A.

What is the difference between a tag and an element?

Write out the recommended minimal markup for an HTML5 document.

Indicate whether each of these filenames is an acceptable name for a web
document by circling “Yes” or “No.” If it is not acceptable, provide the
reason:

a. Sunflower.html Yes No
b. index.doc Yes No
c. cooking home page.html Yes No
d. Song_Lyrics.html Yes No
e. games/rubix.html Yes No
t. %whatever.html Yes No

All of the following markup examples are incorrect. Describe what is
wrong with each one, and then write it correctly.

a.

b. Congratulations!

C. linked text</a href="file.html">

d. <p>This is a new paragraph<\p>

How would you mark up this comment in an HTML document so that it
doesn't display in the browser window?

product list begins here

70 Partll. HTML for Structure

MARKING UP TEXT

Once your content is ready to go (you've proofread it, right?) and you've
added the markup to structure the document (<!DOCTYPE>, html, head, title,
meta charset, and body), you are ready to identify the elements in the content.
This chapter introduces the elements you have to choose from for marking
up text. There probably aren’t as many of them as you might think, and really
just a handful that you'll use with regularity. That said, this chapter is a big
one and covers a lot of ground.

As we begin our tour of elements, I want to reiterate how important it is
to choose elements semantically—that is, in a way that most accurately
describes the content’s meaning. If you don’t like how it looks, change it with
a style sheet. A semantically marked-up document ensures your content is
available and accessible in the widest range of browsing environments, from
desktop computers and mobile devices to assistive screen readers. It also
allows non-human readers, such as search engine indexing programs, to cor-
rectly parse your content and make decisions about the relative importance
of elements on the page.

With these principles in mind, it is time to meet the HTML text elements,
starting with the most basic element of them all, the humble paragraph.

PARAGRAPHS
<p>..</p>

Paragraph element

Paragraphs are the most rudimentary elements of a text document. Indicate

a paragraph with the p element by inserting an opening <p> tag at the begin-

ning of the paragraph and a closing </p> tag after it, as shown in this example:
<p>Serif typefaces have small slabs at the ends of letter strokes. In

general, serif fonts can make large amounts of text easier to
read.</p>

CHAPTER

S

IN THIS CHAPTER

Choosing the best element for
your content

Paragraphs and headings
Three types of lists

Organizing content into
sections

Text-level (inline) elements
Generic elements, div and span

Special characters

NOTE

| will be teaching markup according to
the HTML5 standard maintained by the
W3C (www.w3.0org/TR/html5/). As of this
writing, the latest version is the HTML
5.2 Proposed Recommendation (www.
w3.0rg/TR/html52/).

71

http://www.w3.org/TR/html5/

Headings

No Naked Text!

You must assign an element to all

the text in a document. In other
words, all text must be enclosed in
some sort of element. Text that is not
contained within tags is called naked
or anonymous text, and it will cause a
document to be invalid.

Heading elements

<p>Sans-serif fonts do not have serif slabs; their strokes are square
on the end. Helvetica and Arial are examples of sans-serif fonts.
In general, sans-serif fonts appear sleeker and more modern.</p>

Visual browsers nearly always display paragraphs on new lines with a bit of
space between them by default (to use a term from CSS, they are displayed
as a block). Paragraphs may contain text, images, and other inline elements
(called phrasing content), but they may not contain headings, lists, sectioning
elements, or any elements that typically display as blocks by default.

Technically, it is OK to omit the closing </p> tag because it is not required in
order for the document to be valid. A browser just assumes it is closed when
it encounters the next block element. Many web developers, including myself,
prefer to close paragraphs and all elements for the sake of consistency and
clarity. I recommend folks who are just learning markup do the same.

HEADINGS

In the last chapter, we used the h1 and h2 elements to indicate headings for
the Black Goose Bistro page. There are actually six levels of headings, from
h1 to h6. When you add headings to content, the browser uses them to cre-
ate a document outline for the page. Assistive reading devices such as screen
readers use the document outline to help users quickly scan and navigate
through a page. In addition, search engines look at heading levels as part of
their algorithms (information in higher heading levels may be given more
weight). For these reasons, it is a best practice to start with the Level 1 head-
ing (h1) and work down in numerical order, creating a logical document
structure and outline.

This example shows the markup for four heading levels. Additional heading
levels would be marked up in a similar manner.

<h1>Type Design</h1>

<h2>Serif Typefaces</h2>

<p>Serif typefaces have small slabs at the ends of letter strokes.

In general, serif fonts can make large amounts of text easier to
read.</p>

<h3>Baskerville</h3>

<h4>Description</h4>
<p>Description of the Baskerville typeface.</p>

<h4>History</h4a>
<p>The history of the Baskerville typeface.</p>

<h3>Georgia</h3>
<p>Description and history of the Ceorgia typeface.</p>

<h2>Sans-serif Typefaces</h2>
<p>Sans-serif typefaces do not have slabs at the ends of strokes.</p>

72

Part Il. HTML for Structure

The markup in this example would create the following document outline:

1. Type Design

L

By default, the headings in our example display in bold text, starting in very
large type for his, with each consecutive level in smaller text, as shown in

Serif Typefaces
+ text paragraph

1. Baskerville

1. Description
+ text paragraph
2. History
+ text paragraph
2. Georgia

+ text paragraph

Sans-serif Typefaces
+ text paragraph

FIGURE 5-1. You can use a style sheet to change their appearance.

hi —

ha ——

h3 ——
hg ——

hg —

h3 ——

ha ——

Type Design
Serif Typefaces

Serif typefaces have small slabs at the ends of letter strokes. In general,
serif fonts can make large amounts of text easier to read.:

Baskerville

Description

Description of the Baskerville typeface.
History

The history of the Baskerville typeface.
Georgia

Description and history of the Georgia typeface.
Sans-serif Typefaces

Sans-serif typefaces do not have slabs at the ends of strokes.

The default rendering of four heading levels.

Headings

5. Marking Up Text

73

Thematic Breaks (Horizontal Rule)

A horizontal rule

THEMATIC BREAKS (HORIZONTAL RULE)

If you want to indicate that one topic has completed and another one is
beginning, you can insert what the spec calls a “paragraph-level thematic
break” with the hr element. The hr element adds a logical divider between
sections of a page or paragraphs without introducing a new heading level.

In older HTML versions, hr was defined as a “horizontal rule” because it
inserts a horizontal line on the page. Browsers still render hr as a 3-D shaded
rule and put it on a line by itself with some space above and below by default;
but in the HTMLS spec, it has a new semantic name and definition. If a deco-
rative line is all you're after, it is better to create a rule by specifying a colored
border before or after an element with CSS.

hr is an empty element—you just drop it into place where you want the the-
matic break to occur, as shown in this example and FIGURE 5-2:

<h3>Times</h3>

<p>Description and history of the Times typeface.</p>
<hr>

<h3>Georgia</h3>

<p>Description and history of the Ceorgia typeface.</p>

Times
Description and history of the Times typeface.

Georgia

Description and history of the Georgia typeface.

The default rendering of a thematic break (horizontal rule).

LISTS

Humans are natural list makers, and HTML provides elements for marking
up three types of lists:

Unordered lists

Collections of items that appear in no particular order

Ordered lists
Lists in which the sequence of the items is important

Description lists

Lists that consist of name and value pairs, including but not limited to
terms and definitions

74

Part Il. HTML for Structure

All list elements—the lists themselves and the items that go in them—are
displayed as block elements by default, which means that they start on a new
line and have some space above and below, but that may be altered with CSS.
In this section, we'll look at each list type in detail.

Unordered Lists

Just about any list of examples, names, components, thoughts, or options
qualifies as an unordered list. In fact, most lists fall into this category. By
default, unordered lists display with a bullet before each list item, but you
can change that with a style sheet, as you'll see in a moment.

To identify an unordered list, mark it up as a ul element. The opening
tag goes before the first list item, and the closing tag goes after the last
item. Then, to mark up each item in the list as a list item (11i), enclose it in
opening and closing 1i tags, as shown in this example. Notice that there are
no bullets in the source document. The browser adds them automatically
(FIGURE 5-3).

The only thing that is permitted within an unordered list (that is, between the
start and end ul tags) is one or more list items. You can’t put other elements
in there, and there may not be any untagged text. However, you can put any
type of content element within a list item (11i):

Serif</1i>
Sans-serif
Script</1i>
Display</1li>
Dingbats</1i>

« Serif

» Sans-serif
= Script

» Display

» Dingbats

The default rendering of the sample unordered list. The browser adds
the bullets automatically.

But here’s the cool part. We can take that same unordered list markup and
radically change its appearance by applying different style sheets, as shown in
FIGURE 5-4. In the figure, I've turned off the bullets, added bullets of my own,
made the items line up horizontally, and even made them look like graphical
buttons. The markup stays exactly the same.

Unordered list

List item within an unordered list

Lists

5. Marking Up Text

75

Lists

Ordered list

List item within an ordered list

NOTE

If something is logically an ordered list,
but you don’t want numbers to display,
remember that you can always remove
the numbering with style sheets. So go
ahead and mark up the list semantically
as an ol and adjust how it displays with
a style rule.

% SerIF
Serif . % SANS-SERIF
Sans-serif
Script ¥ ScripT
Display % DispLay
Dingbats .
% DINGBATS
‘ Serif ‘ ‘ Sans-serif | | Script ‘ ‘ Display ‘ ‘ Dingbats

[SERIF “[SANS-SERIF]” SCRIPT “[DISPLAY]” DINGBATS “

With style sheets, you can give the same unordered list many looks.

Ordered Lists

Ordered lists are for items that occur in a particular order, such as step-by-
step instructions or driving directions. They work just like the unordered
lists described earlier, but they are defined with the ol element (for “ordered
list,” of course). Instead of bullets, the browser automatically inserts numbers
before ordered list items (see Note), so you don't need to number them in the
source document. This makes it easy to rearrange list items without renum-
bering them.

Ordered list elements must contain one or more list item elements, as shown
in this example and in FIGURE 5-5:

Gutenberg develops moveable type (1450s)</1i>
Linotype is introduced (1890s)</1i>
Photocomposition catches on (1950s)</1i>
Type goes digital (1980s)</1i>

1. Gutenberg develops moveable type (1450s)
2. Linotype is introduced (1890s)

3. Photocomposition catches on (1950s)

4. Type goes digital (1980s)

The default rendering of an ordered list. The browser adds the numbers
automatically.

76 Partll. HTML for Structure

If you want a numbered list to start at a number other than 1, you can use
the start attribute in the ol element to specify another starting number, as
shown here:
<ol start="17">
Highlight the text with the text tool.
Select the Character tab.</1i>

Choose a typeface from the pop-up menu.</1i>

The resulting list items would be numbered 17, 18, and 19, consecutively.

Description Lists

A description list
A name, such as a term or label

Avalue, such as a description or definition

Description lists are used for any type of name/value pairs, such as terms and
their definitions, questions and answers, or other types of terms and their
associated information. Their structure is a bit different from the other two
lists that we just discussed. The whole description list is marked up as a d1
element. The content of a dl is some number of dt elements indicating the
names, and dd elements for their respective values. I find it helpful to think of
them as “terms” (to remember the “t” in dt) and “definitions” (for the “d” in
dd), even though that is only one use of description lists.

Here is an example of a list that associates forms of typesetting with their
descriptions (FIGURE 5-6):

<dl>

<dt>Linotype</dt>

<dd>Line-casting allowed type to be selected, used, then recirculated
into the machine automatically. This advance increased the speed of
typesetting and printing dramatically.</dd>

<dt>Photocomposition</dt>
<dd>Typefaces are stored on film then projected onto photo-sensitive
paper. Lenses adjust the size of the type.</dd>

<dt>Digital type</dt>

<dd><p>Digital typefaces store the outline of the font shape in a
format such as Postscript. The outline may be scaled to any size for
output.</p>

<p>Postscript emerged as a standard due to its support of

graphics and its early support on the Macintosh computer and Apple
laser printer.</p>

</dd>
</dl>

Lists

Nesting Lists

Any list can be nested within another
list; it just has to be placed within

a list item. This example shows the
structure of an unordered list nested
in the second item of an ordered list:

</1i>

</1i>
<1i></1i>
</1i>

</1i>

When you nest an unordered list
within another unordered list, the
browser automatically changes the
bullet style for the second-level list.
Unfortunately, the numbering style
is not changed by default when you
nest ordered lists. You need to set
the numbering styles yourself with
CSSrules.

Changing Bullets and
Numbering

You can use the list-style-type
style sheet property to change the
bullets and numbers for lists. For
example, for unordered lists, you can
change the shape from the default
dot to a square or an open circle,
substitute your own image, or remove
the bullet altogether. For ordered
lists, you can change the numbers
to Roman numerals (I, Il I, or i, ii
iii), letters (A, B, C, or a, b, ¢), and
several other numbering schemes.
In fact, as long as the list is marked
up semantically, it doesn’t need to
display with bullets or numbering

at all. Changing the style of lists

with CSS is covered in Chapter 12,
Formatting Text.

5. Marking Up Text 77

More Content Elements

Linotype
Line-casting allowed type to be selected, used, then recirculated into the
machine automatically. This advance increased the speed of typesetting and
printing dramatically.

Photocomposition
Typefaces are stored on film then projected onto photo-sensitive paper. Lenses
adjust the size of the type.

Digital type

Digital typefaces store the outline of the font shape in a format such as
Postscript. The outline may may be scaled to any size for output.

Postscript emerged as a standard due to its support of graphics and its early
support on the Macintosh computer and Apple laser printer.

The default rendering of a definition list. Definitions are set off from the
terms by an indent.

The d1 element is allowed to contain only dt and dd elements. You cannot
put headings or content-grouping elements (like paragraphs) in names (dt),
but the value (dd) can contain any type of flow content. For example, the last
dd element in the previous example contains two paragraph elements (the
awkward default spacing could be cleaned up with a style sheet).

It is permitted to have multiple definitions with one term and vice versa. Here,
each term-description group has one term and multiple definitions:
<dl>
<dt>Serif examples</dt>

<dd>Baskerville</dd>
<dd>Goudy</dd>

<dt>Sans-serif examples</dt>
<dd>Helvetica</dd>
<dd>Futura</dd>
<dd>Avenir</dd>

</d1>

MORE CONTENT ELEMENTS

We've covered paragraphs, headings, and lists, but there are a few more
special text elements to add to your HTML toolbox that don’t fit into a neat
category: long quotations (blockquote), preformatted text (pre), and figures
(figure and figcaption). One thing these elements do have in common is
that they are considered “grouping content” in the HTMLS5 spec (along with
p, hr, the list elements, main, and the generic div, covered later in this chapter).
The other thing they share is that browsers typically display them as block
elements by default. The one exception is the newer main element, which is
not recognized by any version of Internet Explorer (although it is supported
in the Edge browser); see the sidebar “HTML5 Support in Internet Explorer,”
later in this chapter, for a workaround.

78

Part Il. HTML for Structure

Long Quotations

If you have a long quotation, a testimonial, or a section of copy from another
source, mark it up as a blockquote element. It is recommended that content
within blockquote elements be contained in other elements, such as para-
graphs, headings, or lists, as shown in this example:

<p>Renowned type designer, Matthew Carter, has this to say about his
profession:</p>

<blockquote>
<p>Our alphabet hasn't changed in eons; there isn't much latitude in
what a designer can do with the individual letters.</p>

<p>Much like a piece of classical music, the score is written
down. It's not something that is tampered with, and yet, each
conductor interprets that score differently. There is tension in
the interpretation.</p>
</blockquote>

FIGURE 5-7 shows the default rendering of the blockquote example. This can
be altered with CSS.

Renowned type designer, Matthew Carter, has this to say about his profession:

Our alphabet hasn't changed in eons; there isn't much latitude in what a
designer can do with the individual letters.

Much like a piece of classical music, the score is written down. It's not
something that is tampered with, and yet, each conductor interprets that
score differently. There is tension in the interpretation.

The default rendering of a blockquote element.

Preformatted Text

In the previous chapter, you learned that browsers ignore whitespace such as
line returns and character spaces in the source document. But in some types
of information, such as code examples or certain poems, the whitespace is
important for conveying meaning. For content in which whitespace is seman-
tically significant, use the preformatted text (pre) element. It is a unique ele-
ment in that it is displayed exactly as it is typed—including all the carriage
returns and multiple character spaces. By default, preformatted text is also
displayed in a constant-width font (one in which all the characters are the
same width, also called monospace), such as Courier; however, you can easily
change the font with a style sheet rule.

More Content Elements

A lengthy, block-level quotation

NOTE

There is also the inline element q for
short quotations in the flow of text. We’ll
talk about it later in this chapter.

Preformatted text

NOTE

Thewhite-space:pre CSS property can
also be used to preserve spaces and
returns in the source.

5.MarkingUp Text 79

More Content Elements

Related image or resource

Text description of a figure

The pre element in this example displays as shown in FIGURE 5-8. The sec-
ond part of the figure shows the same content marked up as a paragraph (p)
element for comparison.

<pre>
This is an example of
text with a lot of
curious
whitespace.
</pre>
<p>
This is an example of
text with a lot of
curious
whitespace.
</p>
This is an example of
text with a lot of

curious
whitespace.

This is an example of text with a lot of curious whitespace.

Preformatted text is unique in that the browser displays the whitespace
exactly as it is typed into the source document. Compare it to the paragraph element, in
which multiple line returns and character spaces are reduced to a single space.

Figures

The figure element identifies content that illustrates or supports some point
in the text. A figure may contain an image, a video, a code snippet, text, or
even a table—pretty much anything that can go in the flow of web content.
Content in a figure element should be treated and referenced as a self-
contained unit. That means if a figure is removed from its original placement
in the main flow (to a sidebar or appendix, for example), both the figure and
the main flow should continue to make sense.

Although you can simply add an image to a page, wrapping it in figure tags

makes its purpose explicitly clear semantically. It also works as a hook for

applying special styles to figures but not to other images on the page:
<figure>

</figure>

If you want to provide a text caption for the figure, use the figcaption ele-
ment above or below the content inside the figure element. It is a more
semantically rich way to mark up the caption than using a simple p element.

80

Part Il. HTML for Structure

More Content Elements

<figure>
<pre>
<code> BROWSER SUPPORT NOTE
body {
background-color: #000; The figure and figcaption elements are
} color: red; not supported in Internet Explorer versions
</code> 8 and earlier (see the sidebar “HTML5
</pre> Support in Internet Explorer,” [ater in
<figcaption>Sample CSS rule.</figcaption> this chapter, for a workaround)
</figure>

In EXERCISE 5-1, you'll get a chance to mark up a document yourself and try
out the basic text elements we’ve covered so far.

EXERCISE 5-1. Marking up a recipe

The owners of the Black Goose Bistro have decided to share recipes and news on their
site. In the exercises in this chapter, we’ll assist them with content markup.

In this exercise, you will find the raw text of a recipe. It's up to you to decide which
element is the best semantic match for each chunk of content. You'll use paragraphs,
headings, lists, and at least one special content element.

You can write the tags right on this page. Or, if you want to use a text editor and see the
results in a browser, this text file, as well as the final version with markup, is available at
learningwebdesign.com/5e/materials.

Tapenade (Olive Spread)

This is a really simple dish to prepare and it’s always a big hit at
parties. My father recommends:

"Make this the night before so that the flavors have time to blend. Just
bring it up to room temperature before you serve it. In the winter, try
serving it warm."

Ingredients

1 80z. jar sundried tomatoes
2 large garlic cloves

2/3 c. kalamata olives

1 t. capers

Instructions

Combine tomatoes and garlic in a food processor. Blend until as smooth
as possible.

Add capers and olives. Pulse the motor a few times until they are
incorporated, but still retain some
texture.

Serve on thin toast rounds with goat cheese and fresh basil garnish
(optional).

5.Marking Up Text 81

Organizing Page Content

NOTE

The new element names are based on
a Google study that looked at the top
20 names that developers assigned to
generic division elements (code.google.
com/webstats/2005-12/classes.html).

ORGANIZING PAGE CONTENT

So far, the elements we've covered handle very specific tidbits of content: a
paragraph, a heading, a figure, and so on. Prior to HTMLS3, there was no way
to group these bits into larger parts other than wrapping them in a generic
division (div) element (I'll cover div in more detail later). HTMLS5 introduced
new elements that give semantic meaning to sections of a typical web page or
application (see Note), including main content (main), headers (header), foot-
ers (footer), sections (section), articles (article), navigation (nav), and tan-
gentially related or complementary content (aside). Curiously; the spec lists
the old address element as a section as well, so we’ll look at that one here too.

HTMLS5 Support in Internet Explorer

Nearly all browsers today support the HTML5 semantic elements, and for those that
don't, creating a style sheet rule that tells browsers to format each one as a block-
level element is all you need to make them behave correctly:

section, article, nav, aside, header, footer, main {
display: block;

Unfortunately, that fix won’t work for the small fraction of users who are still using
Internet Explorer versions 8 and earlier (less than 1.5% of browser traffic as of 2017).
IE8 has been hanging around well past its prime because it is tied to the popular
Windows Vista operating system. If you work on a large site for which 1% of users
represents thousands of people, you may want to be familiar with workarounds and
fallbacks for IE8. Most likely, you won't need to support it. Still, at the risk of looking
outdated, | will provide notes about IE8 support throughout this book.

For example, the following is a workaround that applies only to IE8 and earlier. Not
only do those browsers not recognize the HTML5 elements, but they also ignore any
styles applied to them. The solution is to use JavaScript to create each element
so IE knows it exists and will allow nesting and styling. Here’s what a JavaScript
command creating the section element looks like:

documencreateElement("section");

Fortunately, Remy Sharp wrote a script that creates all of the HTML5 elements for IE8
and earlier in one fell swoop. Itis called “HTML5 Shiv” (or Shim) and it is available on
a server that you can point to in your documents. Just copy this code in the head of
your document and use a style sheet to style the new elements as blocks:

<1--[if 1t IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/1libs/html5shiv/3.7.3/
html5shiv.min.js">

</script >

<![endif]-->

9

The HTML5 Shiv is also part of the Modernizr polyfill script that adds HTML5 and CSS3
functionality to older non-supporting browsers. Read more about Modernizr online at
modernizr.com. It is also covered in Chapter 20, Modern Web Development Tools.

82 PartIl. HTML for Structure

http://code.google.com/webstats/2005-12/classes.html
http://code.google.com/webstats/2005-12/classes.html

Organizing Page Content

Main Content

Web pages these days are loaded with different types of content: mastheads,
sidebars, ads, footers, more ads, even more ads, and so on. It is helpful to cut Primary content area of page or app
to the chase and explicitly point out the main content on the page. Use the
main element to identify the primary content of a page or application. It helps
screen readers and other assistive technologies know where the main content
of the page begins and replaces the “Skip to main content” links that have
been utilized in the past. The content of a main element should be unique to
that page. In other words, headers, sidebars, and other elements that appear
across multiple pages in a site should not be included in the main section:
<body>
<header>..</header>
<main>
<h1>Humanist Sans Serif</h1>
<!-- code continues -->

</main>
</body>

The W3C HTMLS specification states that pages should have only one main
section and that it should not be nested within an article, aside, header,
footer, or nav. Doing so will cause the document to be invalid.

The main element is the most recent addition to the roster of HTML5 group-
ing elements. You can use it and style it in most browsers, but for Internet
Explorer (including version 11, the most current as of this writing), you'll need
to create the element with JavaScript and set its display to block with a style
sheet, as discussed in the “HTML5 Support in Internet Explorer” sidebar. Note
that main is supported in MS Edge.

Headers and Footers

Because web authors have been labeling header and footer sections in their

documents for years, it was kind of a no-brainer that full-fledged header and Introductory material for page, section,
footer elements would come in handy. Let’s start with headers. or article
Headers

Footer for page, section, or article

The header element is used for introductory material that typically appears
at the beginning of a web page or at the top of a section or article (we’ll get
to those elements next). There is no specified list of what a header must or
should contain; anything that makes sense as the introduction to a page or
section is acceptable. In the following example, the document header includes
a logo image, the site title, and navigation:

<body>

<header>

<h1>Nuts about Web Fonts</h1>

5. MarkingUp Text 83

Organizing Page Content

NOTE

The code in the
examples is the markup for adding links
to other web pages. We'll take on links
in Chapter 6, Adding Links. Normally
the value would be the URL to the page,
but I've used a simple slash as a space-
saving measure.

NOTE

The time element will be discussed in
the section “Dates and times” (ater in
this chapter.

<nav>

Home</1i>
Blog</1i>
Shop</1i>

</nav>
</header>
<!--page content-->
</body>

When used in an individual article, the header might include the article title,
author, and the publication date, as shown here:

<article>
<header>
<h1>More about WOFF</h1>
<p>by Jennifer Robbins, <time datetime="2017-11-11">November 11,
2017</time></p>
</header>
<!-- article content here -->
</article>

NOTE

Neither header nor footer elements are permitted to contain nested header or footer
elements.

Footers

The footer element is used to indicate the type of information that typi-
cally comes at the end of a page or an article, such as its author, copyright
information, related documents, or navigation. The footer element may
apply to the entire document, or it could be associated with a particular
section or article. If the footer is contained directly within the body element,
either before or after all the other body content, then it applies to the entire
page or application. If it is contained in a sectioning element (section,
article, nav, or aside), it is parsed as the footer for just that section. Note
that although it is called “footer,” there is no requirement that it appear last
in the document or sectioning element. It could also appear at or near the
beginning if that makes sense.

In this simple example, we see the typical information listed at the bottom of
an article marked up as a footer:

<article>
<header>
<h1>More about WOFF</h1>
<p>by Jennifer Robbins, <time datetime="2017-11-11">November 11,
2017</time></p>
</header>
<!-- article content here -->
<footer>
<p><small>Copyright 8copy;2017 Jennifer Robbins.</small></p>

84 PartIl. HTML for Structure

<nav>

Previous</1i>
Next</1i>

</nav>
</footer>
</article>

Sections and Articles

Long documents are easier to use when they are divided into smaller parts.
For example, books are divided into chapters, and newspapers have sections
for local news, sports, comics, and so on. To divide long web documents into
thematic sections, use the aptly named section element. Sections typically
include a heading (inside the section element) plus content that has a mean-
ingful reason to be grouped together.

The section element has a broad range of uses, from dividing a whole page
into major sections or identifying thematic sections within a single article.
In the following example, a document with information about typography
resources has been divided into two sections based on resource type:

<section>
<h2>Typography Books</h2>

.</1i>

</section>

<section>
<h2>0Online Tutorials</h2>
<p>These are the best tutorials on the web.</p>

.</1i>

</section>

Use the article element for self-contained works that could stand alone or
be reused in a different context (such as syndication). It is useful for maga-
zine or newspaper articles, blog posts, comments, or other items that could
be extracted for external use. You can think of it as a specialized section ele-
ment that answers “yes” to the question “Could this appear on another site
and make sense?”

Along article could be broken into a number of sections, as shown here:

<article>
<h1>Get to Know Helvetica</h1>
<section>
<h2>History of Helvetica</h2>
<p>.</p>
</section>

Organizing Page Content

Thematic group of content

Self-contained, reusable composition

NOTE

The HTML5 spec recommends that if the
purpose for grouping the elements is
simply to provide a hook for styling, use
the generic div element instead

5.MarkingUp Text 85

Organizing Page Content

Tangentially related material

<section>
<h2>Helvetica Today</h2>
<p>.</p>
</section>
</article>

Conversely, a section in a web document might be composed of a number
of articles:
<section id="essays">
<article>
<h1>A Fresh Look at Futura</h1>

<p>.</p>
</article>

<article>
<h1>Getting Personal with Humanist</h1>
<p>.</p>
</article>
</section>

The section and article elements are easily confused, particularly because
it is possible to nest one in the other and vice versa. Keep in mind that if the
content is self-contained and could appear outside the current context, it is
best marked up as an article.

Aside (Sidebars)

The aside element identifies content that is separate from, but tangentially
related to, the surrounding content. In print, its equivalent is a sidebar, but
it couldn’t be called “sidebar” because putting something on the “side” is a
presentational description, not semantic. Nonetheless, a sidebar is a good
mental model for using the aside element. aside can be used for pull quotes,
background information, lists of links, callouts, or anything else that might
be associated with (but not critical to) a document.

In this example, an aside element is used for a list of links related to the main
article:

<h1>Web Typography</h1>
<p>Back in 1997, there were competing font formats and tools for
making them..</p>
<p>We now have a number of methods for using beautiful fonts on web
pages..</p>
<aside>
<h2>Web Font Resources</h2>

Typekit</1i>
Google Fonts</1i>

</aside>

The aside element has no default rendering, so you will need to make it a
block element and adjust its appearance and layout with style sheet rules.

86

Part Il. HTML for Structure

Organizing Page Content

Navigation

The nav element gives developers a semantic way to identify navigation for a
site. Earlier in this chapter, we saw an unordered list that might be used as the Primary navigation links
top-level navigation for a font catalog site. Wrapping that list in a nav element
makes its purpose explicitly clear:
<nav>

Serif</1i>
Sans-serif</1i>
Script</1i>
Display</1i>
Dingbats</1i>

</nav>

Not all lists of links should be wrapped in nav tags, however. The spec makes
it clear that nav should be used for links that provide primary navigation
around a site or a lengthy section or article. The nav element may be espe-
cially helpful from an accessibility perspective.

Addresses

Last, and well, least, is the address element that is used to create an area for
contact information for the author or maintainer of the document. It is gener- Contact information
ally placed at the end of the document or in a section or article within a docu-
ment. An address would be right at home in a footer element. It is important
to note that the address element should not be used for any old address on a
page, such as mailing addresses. It is intended specifically for author contact
information (although that could potentially be a mailing address). Following
is an example of its intended use:
<address>
Contributed by Jennifer Robbins,

0'Reilly Media
</address>

Document Outlines

Behind the scenes, browsers look at the markup in a document dialog, details, and td) as sectioning roots, which means
and generate a hierarchical outline based on the headings in headings in those elements do not become part of the overall
the content. A new section gets added to the outline whenever document outline.

the browser encounters a new heading level. It's a nice idea because it allows content to be repurposed and

In past versions of HTML, that was the only way the outline merged without breaking the outline, but unfortunately, no
was created. HTML5 introduced a new outline algorithm that browsers to date have implemented it and they are unlikely
enables authors to explicitly add a new section to the outline to do so. The W3C has kept the sectioning elements and their
by inserting a sectioning element: article, section, aside, intended behavior in the spec (which is why | mention this at
and nav. In addition to the four sectioning elements, the spec all), but now precede it with a banner recommending sticking
defines some elements (blockquote, fieldset, figure, with the old hierarchical heading method.

. J

5. Marking Up Text 87

The Inline Element Roundup

Stressed emphasis

Strong importance

THE INLINE ELEMENT ROUNDUP

Now that we've identified the larger chunks of content, we can provide
semantic meaning to phrases within the chunks by using what the HTML5
specification calls text-level semantic elements. On the street, you are likely to
hear them called inline elements because they display in the flow of text by
default and do not cause any line breaks. That’s also how they were referred
to in HTML versions prior to HTMLDS.

Text-Level (Inline) Elements

Despite all the types of information you could add to a document, there are
only a couple dozen text-level semantic elements. TABLE 5-1 lists all of them.

Although it may be handy seeing all of the text-level elements listed together
in a table, they certainly deserve more detailed explanations.

Emphasized text

Use the em element to indicate which part of a sentence should be stressed or
emphasized. The placement of em elements affects how a sentence’s meaning
is interpreted. Consider the following sentences that are identical, except for
which words are stressed:

<p>Arlo is very smart.</p>
<p>Arlo is very smart.</p>

The first sentence indicates who is very smart. The second example is about
how smart he is. Notice that the em element has an effect on the meaning of
the sentence.

Emphasized text (em) elements nearly always display in italics by default
(FIGURE 5-9), but of course you can make them display any way you like
with a style sheet. Screen readers may use a different tone of voice to convey
stressed content, which is why you should use an em element only when it
makes sense semantically, not just to achieve italic text.

Important text

The strong element indicates that a word or phrase is important, serious,
or urgent. In the following example, the strong element identifies the por-
tion of instructions that requires extra attention. The strong element does
not change the meaning of the sentence; it merely draws attention to the
important parts:

<p>When returning the car, drop the keys in the red box by the
front desk.</p>

Visual browsers typically display strong text elements in bold text by default.
Screen readers may use a distinct tone of voice for important content, so

88

Part Il. HTML for Structure

Text-level semantic elements

The Inline Element Roundup

Element Description

a An anchor or hypertext link (see Chapter 6 for details)

abbr Abbreviation

b Added visual attention, such as keywords (bold)

bdi Indicates text that may have directional requirements

bdo Bidirectional override; explicitly indicates text direction (left to
right, 1tr, or right to left, rtl)

br Line break

cite Citation; a reference to the title of a work, such as a book title

code Computer code sample

data Machine-readable equivalent dates, time, weights, and other
measurable values

del Deleted text; indicates an edit made to a document

dfn The defining instance or first occurrence of a term

em Emphasized text

i Alternative voice (italic) or alternate language

ins Inserted text; indicates an insertion in a document

kbd Keyboard; text entered by a user (for technical documents)

mark Contextually relevant text

q Short, inline quotation

ruby, rt, rp

Provides annotations or pronunciation guides under East Asian
typography and ideographs

The Inline Elements
Backstory

Many of the inline elements that have
been around since the dawn of the
web were introduced to change the
visual formatting of text selections
because of the lack of a style sheet
system. If you wanted bolded text,
you marked it as b. Italics? Use the

i element. In fact, there was once a
font element used solely to change
the font, color, and size of text (the
horror!). Not surprisingly, HTML5
kicked the purely presentational font
element to the curb. However, many
of the old-school presentational
inline elements (for example, u for
underline and s for strike-through)
have been kept in HTML5 and given
new semantic definitions (b is now for
“keywords,” s for “inaccurate text”).

Many inline elements have the
expected style rendering (bold for the
b element, for example). Other inline
elements are purely semantic (such
as abbr or time) and don’t have
default renderings. For any inline
elements, you can use CSS rules if
you want to change the way they
display.

s Incorrect text (strike-through)

samp Sample output from programs

small Small print, such as a copyright or legal notice (displayed in a
smaller type size)

span Generic phrase content

strong Content of strong importance

sub Subscript

sup Superscript

time Machine-readable time data

u Indicates a formal name, misspelled word, or text that would
be underlined

var A variable or program argument (for technical documents)

wbr Word break

Obsolete HTML 4.01
Text Elements

Here are some old text elements
that were made obsolete in HTMLS5:
acronym, applet, basefont, big,
center, dir (directory), font,
isindex (search box), menu, strike,
tt (teletype). mention them here in
case you run across them in an old
document when viewing its source
or if you are using an older web
authoring tool. There is no reason to
use them today.

5. MarkingUp Text 89

The Inline Element Roundup

Keywords or visually
emphasized text (bold)

Alternative voice (italic)

Incorrect text (strike-through)

Annotated text (underline)

Legal text; small print (smaller type size)

NOTE

It helps me to think about how a screen
reader would read the text. If don’t want
the word read in a loud, emphatic tone of
voice, but it really should be bold, then b
may be more appropriate than strong.

mark text as strong only when it makes sense semantically, not just to make

text bold.

The following is a brief example of our em and strong text examples. FIGURE
5-9 should hold no surprises.

Arlo is very smart.

Arlo is very smart.

‘When returning the car, drop the keys in the red box by the front desk.

The default rendering of emphasized and strong text.

Elements originally named for their presentational properties

As long as weTe talking about bold and italic text, let’s see what the old b
and i elements are up to now. The elements b, i, u, s, and small were intro-
duced in the old days of the web as a way to provide typesetting instructions
(bold, italic, underline, strike-through, and smaller text, respectively). Despite
their original presentational purposes, these elements have been included
in HTMLS5 and given updated, semantic definitions based on patterns of
how they’ve been used. Browsers still render them by default as you’d expect
(FIGURE 5-10). However, if a type style change is all you'e after, using a style
sheet rule is the appropriate solution. Save these for when they are semanti-
cally appropriate.

Let’s look at these elements and their correct usage, as well as the style sheet
alternatives.

b

Keywords, product names, and other phrases that need to stand out from
the surrounding text without conveying added importance or emphasis (see
Note). [Old definition: Bold]

CSS Property: For bold text, use font-weight. Example: font-weight: bold;

Example: <p>The slabs at the ends of letter strokes are called
serifs.</p>

Indicates text that is in a different voice or mood than the surrounding text,
such as a phrase from another language, a technical term, or a thought. [Old
definition: Ttalic]

CSS Property: For italic text, use font-style. Example: font-style: italic;

90 PartIl. HTML for Structure

The Inline Element Roundup

Example: <p>Simply change the font and <i>Voilal</i>, a new
personality!</p>

S

Indicates text that is incorrect. [Old definition: Strike-through text]

CSS Property: To draw a line through a selection of text, use text-decoration.
Example: text-decoration: line-through

Example: <p>Scala Sans was designed by <s>Eric Gill</s> Martin
Majoor.</p>

u

There are a few instances when underlining has semantic significance,
such as underlining a formal name in Chinese or indicating a misspelled
word after a spell check, such as the misspelled “Helvitica” in the following
example. Note that underlined text is easily confused with a link and should
generally be avoided except for a few niche cases. [Old definition: Underline]

CSS Property: For underlined text, use text-decoration. Example: text-
decoration: underline

Example: <p>New York subway signage is set in <u>Helviteca</u>.</p>

small

Indicates an addendum or side note to the main text, such as the legal “small
print” at the bottom of a document. [Old definition: Renders in font smaller
than the surrounding text]

CSS Property: To make text smaller, use font-size. Example: font-size: 80%

Example: <p><small>(This font is free for personal and commercial
use.)</small></p>

b ———— The slabs at the ends of letter strokes are called serifs.
i ———— Simply change the font and Voila!, a new personality!
S — Scala Sans was designed by Erie-Gilt Martin Majoor.
u ———— New York subway signage is set in Helviteca.

small ——— (This font is free for personal and commercial use.)

The default rendering of b, i, s, u, and small elements.

5.MarkingUp Text 91

The Inline Element Roundup

Short inline quotation

Abbreviation or acronym

NOTE

In HTML 4.01, there was an acronym ele-
ment especially for acronyms, but HTML5
has made it obsolete in favor of using the
abbr for both.

Short quotations

Use the quotation (q) element to mark up short quotations, such as “To be or
not to be,” in the flow of text, as shown in this example (FIGURE 5-11):

Matthew Carter says, <g>Our alphabet hasn't changed in eons.</q>

According to the HTML spec, browsers should add quotation marks around
q elements automatically, so you don’t need to include them in the source
document. Some browsers, like Firefox, render curly quotes, which is prefer-
able. Others (Safari and Chrome, which I used for my examples) render them
as straight quotes as shown in the figure.

Matthew Carter says, "Our alphabet hasn't changed in eons."

Browsers add quotation marks automatically around q elements.

Abbreviations and acronyms

Marking up acronyms and abbreviations with the abbr element provides
useful information for search engines, screen readers, and other devices.
Abbreviations are shortened versions of a word ending in a period (“Conn.”
for “Connecticut,” for example). Acronyms are abbreviations formed by the
first letters of the words in a phrase (such as NASA or USA). The title
attribute provides the long version of the shortened term, as shown in this
example:

<abbr title="Points">pts.</abbr>
<abbr title="American Type Founders">ATF</abbr>

Nesting Elements

You can apply two elements to a string of text (for example, a phrase that is both a
quote and in another language), but be sure they are nested properly. That means
the inner element, including its closing tag, must be completely contained within
the outer element, and not overlap:

<g><i>Je ne sais pas.</i></g>

Here is an example of elements that are nested incorrectly. Notice that the inner i
element is not closed within the containing q element:

<q><i>Je ne sais pas.</q></i>

It is easy to spot the nesting error in an example that is this short, but when you're
nesting long passages or nesting multiple levels deep, it is easy to end up with
overlaps. One advantage to using an HTML code editor is that it can automatically
close elements for you correctly or point out when you’ve made a mistake.

92 PartIl. HTML for Structure

Citations

The cite element is used to identify a reference to another document, such
as a book, magazine, article title, and so on. Citations are typically rendered
in italic text by default. Here’s an example:

<p>Passages of this article were inspired by <cite>The Complete Manual
of Typography</cite> by James Felici.</p>

Defining terms

It is common to point out the first and defining instance of a word in a docu-
ment in some fashion. In this book, defining terms are set in blue text. In
HTML, you can identify them with the dfn element and format them visually
using style sheets.

<p><dfn>Script typefaces</dfn> are based on handwriting.</p>

Program code elements

A number of inline elements are used for describing the parts of technical
documents, such as code (code), variables (var), program samples (samp), and
user-entered keyboard strokes (kbd). For me, it’s a quaint reminder of HTML’s
origins in the scientific world (Tim Berners-Lee developed HTML to share
documents at the CERN particle physics lab in 1989).

Code, sample, and keyboard elements typically render in a constant-width
(also called monospace) font such as Courier by default. Variables usually
render in italics.

Subscript and superscript

The subscript (sub) and superscript (sup) elements cause the selected text to
display in a smaller size, positioned slightly below (sub) or above (sup) the
baseline. These elements may be helpful for indicating chemical formulas or
mathematical equations.

FIGURE 5-12 shows how these examples of subscript and superscript typi-
cally render in a browser.

<p>H₂0</p>

<p>E=MC²</p>

H,0 E=MC2

Subscript and superscript

The Inline Element Roundup

Citation

Defining term

Code

Variable

Program sample

User-entered keyboard strokes

Subscript

Superscript

5. Marking Up Text

93

The Inline Element Roundup

Contextually relevant text

Time data

NOTE

The time element is not intended for
marking up times for which a precise
time or date cannot be established, such
as “the end of last year” or “the turn of
the century.”

For more information on the intricate
ins and outs of specifying dates and
times, with examples, check out the
time element entry in the HTML5
specification: www.w3.0rg/TR/2014/
REC-html5-20141028/text-level-
semantics.html#the-time-element.

Highlighted text

The mark element indicates a word that may be considered especially relevant
to the reader. One might use it to dynamically highlight a search term in a
page of results, to manually call attention to a passage of text, or to indicate
the current page in a series. Some designers (and browsers) give marked text
a light colored background as though it were marked with a highlighter
marker, as shown in FIGURE 5-13.

<p> ... PART I. ADMINISTRATION OF THE GOVERNMENT. TITLE IX.

TAXATION. CHAPTER 65C. MASS. <mark>ESTATE TAX</mark>. Chapter 65C:
Sect. 2. Computation of <mark>estate tax</mark>.</p>

... PART I. ADMINISTRATION OF THE GOVERNMENT. TITLE IX.
TAXATION. CHAPTER 65C. MASS. ESTATE TAX. Chapter 65C: Sect. 2.
Computation of estate tax.

In this example, search terms are identified with mark elements and
given a yellow background with a style sheet so they are easier for the reader to find.

Dates and times

When we look at the phrase “noon on November 4,” we know that it is a
date and a time. But the context might not be so obvious to a computer pro-
gram. The time element allows us to mark up dates and times in a way that
is comfortable for a human to read, but also encoded in a standardized way
that computers can use. The content of the element presents the information
to people, and the datetime attribute presents the same information in a
machine-readable way.

The time element indicates dates, times, or date-time combos. It might be
used to pass the date and time information to an application, such as saving
an event to a personal calendar. It might be used by search engines to find the
most recently published articles. Or it could be used to restyle time informa-
tion into an alternate format (e.g., changing 18:00 to 6 p.m.).

The datetime attribute specifies the date and/or time information in a stan-
dardized time format illustrated in FIGURE 5-14. The full time format begins
with the date (year—-month—day). The time section begins with a letter “T”
and lists hours (on the 24-hour clock), minutes, seconds (optional), and mil-
liseconds (also optional). Finally, the time zone is indicated by the number of
hours behind (-) or ahead (+) of Greenwich Mean Time (GMT). For example,
“-05:00” indicates the Eastern Standard time zone, which is five hours behind
GMT. When identifying dates and times alone, you can omit the other sections.

94 PartIl. HTML for Structure

A“T” always precedes +or - hours ahead or behind
time information Greenwich Mean Time
DATE TIME TIME ZONE

YYYY-MM-DDThh:mm:ss.dddthh:mm

Year Month Day Hour Minute Second Hour Minute
(optional)
Fraction of second
(optional)
Example:
3pm PST on December 25,2016 2016-12-25T15:00-8:00

Standardized date and time syntax.

Here are a few examples of valid values for datetime:
* Time only: 9:30 p.m.
<time datetime="21:30">9:30p.m.</time>

* Date only: June 19, 2016

<time datetime="2016-06-19">June 19, 2016</time>

* Date and time: Sept. 5,1970, 1:11a.m.

<time datetime="1970-09-05T01:11:00">Sept. 5, 1970, 1:11a.m.</time>

* Date and time, with time zone information: 8:00am on July 19, 2015, in
Providence, RI

<time datetime="2015-07-19T08:00:00-05:00">July 19, 2015, 8am,
Providence RI</time>

Machine-readable information

The data element is another tool for helping computers make sense of con-
tent. It can be used for all sorts of data, including dates, times, measurements,
weights, microdata, and so on. The required value attribute provides the
machine-readable information. Here are a couple of examples:

<data value="12">Twelve</data>
<data value="978-1-449-39319-9">CSS: The Definitive Guide</data>

I'm not going to go into more detail on the data element, because as a begin-
ner, you are unlikely to be dealing with machine-readable data quite yet. But
it is interesting to see how markup can be used to provide usable information
to computer programs and scripts as well as to your fellow humans.

The Inline Element Roundup

NOTE

You can also use the time element with-
out the datetime attribute, but its con-
tent must be a valid date/time string:

<time>2016-06-19</time>

Machine-readable data

5.Marking Up Text 95

The Inline Element Roundup

Inserted text

Deleted text

Line break

Inserted and deleted text

The ins and del elements are used to mark up edits indicating parts of a doc-
ument that have been inserted or deleted (respectively). These elements rely
on style rules for presentation (i.e., there is no dependable browser default).
Both the ins and del elements can contain either inline or block elements,
depending on what type of content they contain:

Chief Executive Officer: <del title="retired">Peter Pan<ins>Pippi
Longstocking</ins>

Adding Breaks

Line breaks

Occasionally, you may need to add a line break within the flow of text. We've
seen how browsers ignore line breaks in the source document, so we need a
specific directive to tell the browser to “add a line break here.”

The inline line break element (br) does exactly that. The br element could be
used to break up lines of addresses or poetry. It is an empty element, which
means it does not have content. Just add the br element in the flow of text
where you want a break to occur, as shown here and in FIGURE 5-15:

<p>So much depends
upon

a red wheel
barrow</p>
So much depends
upon

a red wheel
barrow

Line breaks are inserted at each br element. (Example extracted from
“The Red Wheelbarrow” by William Carlos Williams.)

Unfortunately, the br element is easily abused. Be careful that you aren’t using
br elements to force breaks into text that really ought to be a list. For example,
don'’t do this:

<p>Times

Georgia

Garamond
</p>

If it’s a list, use the semantically correct unordered list element instead, and
turn off the bullets with style sheets:

Times</1i>
Georgia</1i>
Garamond</1i>

96

Part Il. HTML for Structure

The Inline Element Roundup

Word breaks

The word break (wbr) element lets you mark the place where a word should
break (a “line break opportunity” according to the spec) should there not be
enough room for the whole word (FIGURE 5-16). It takes some of the guess-
work away from the browser and allows authors to control the best spot for
the word to be split over two lines. If there is enough room, the word stays in
one piece. Without word breaks, the word stays together, and if there is not
enough room, the whole word wraps to the next line. Note that the browser
does not add a hyphen when the word breaks over two lines. The wbr behaves
as though it were a character space in the middle of the word:

Word break

BROWSER SUPPORT NOTE

The wbx element is not supported by any
version of Internet Explorer as of this writ-
ing. It is supported in MS Edge.

<p>The biggest word you've ever heard and this is how it goes:
supercali<wbr>fragilistic<wbr>expialidocious!</p>

The biggest word you've ever heard and this is how it goes: supercalifragilistic
expialidocious!

When there is not enough room for a word to fit on a line, it will break
at the location of the wbr element.

You've been introduced to 32 new elements since your last exercise. I'd say it’s
time to give some of the inline elements a try in EXERCISE 5-2.

Accommodating Non-Western Languages

If the web is to reach a truly worldwide audience, it needs

to be able to support the display of all the languages of the
world, with all their unique alphabets, symbols, directionality,
and specialized punctuation. The W3C’s efforts for
internationalization (often referred to as “i18n” —an i, then 18
letters, then an n) ensure that the formats and protocols defined
in web technologies are usable worldwide.

Internationalization efforts include the following:

* Using the Unicode character encoding that contains the
characters, glyph, symbols, ideographs, and the like from all
active, modern languages. Unicode is discussed in Chapter
4, Creating a Simple Page.

* Declaring the primary language of a document by using a two-
letter language code from the ISO 639-1 standard (available
at www.loc.gov/standards/is0639-2/php/code_list.php). For
example, English is “EN,” Czech is “CS, “and German is “DE.
Use the 1ang attribute in the html element to declare the
language for the whole document, or in individual elements
that require clarification.

* Accommodating the various writing directions of languages.
In HTML, the dir attribute explicitly sets the direction for the

document or an element to 1tr (left-to-right) or rt1 (right-to-
left). On phrase-level elements, it also creates a bidirectional
isolation, preventing text within the element from influencing
the ordering of text outside it. (This can be an important
consideration when you are embedding user-generated text.)

For example, to include a passage of Hebrew in an English
document, use the dir attribute to indicate that the phrase
should be displayed right-to-left:

<p>This is how you write Shalom:
wHn</p>
* Providing a system that allows for ruby annotation, notes
that typically appear above ideographs from East Asian
languages to give pronunciation clues or translations (ruby,
rt, and rp elements). See the spec for details if this is
something you need to do.

The W3C Internationalization Activity site provides a
thorough collection of HTML and CSS authoring techniques
and resources to help with your internationalization efforts:
www.w3.org/International/techniques/authoring-html.

5. Marking Up Text 97

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.w3.org/International/techniques/authoring-html

Generic Elements (div and span)

EXERCISE 5-2. ldentifying inline elements

This little post for the Black Goose Bistro News page will give <article>

you an opportunity to identify and mark up a variety of inline
elements. See if you can find phrases to mark up accurately with

the following elements:

b

i
Because markup is always somewhat subjective, your resulting
markup may not look exactly like my final markup, but there
is an opportunity to use all of the preceding elements in the
article. For extra credit, there is a phrase that could have two
elements applied to it. (Hint: look for a term in another language.)
Remember to nest them properly by closing the inner element
before you close the outer one. Also, be sure that all text-level
elements are contained within block elements.

You can write the tags right on this page. Or, if you want to use a
text editor and see the results in a browser, this text file is available

br cite dfn em

q small time

<header>
<p>posted by BGB, November 15, 2016</p>
</header>

<h2>Low and Slow</h2>

<p>This week I am extremely excited about a new
cooking technique called sous vide. In sous vide
cooking, you submerge the food (usually vacuum-sealed
in plastic) into a water bath that is precisely

set to the target temperature you want the food

to be cooked to. In his book, Cooking for Geeks,
Jeff Potter describes it as ultra-low-temperature
poaching.</p>

<p>Next month, we will be serving Sous Vide Salmon
with Dill Hollandaise. To reserve a seat at the chef
table, contact us before November 30.</p>

online at learningwebdesign.com/5e/materials along with the <p>blackgoose@example.com
resulting code.

Generic block-level element

Generic inline element

555-336-1800</p>

<p>Warning: Sous vide cooked salmon is not
pasteurized. Avoid it if you are pregnant or have
immunity issues.</p>

</article>

GENERIC ELEMENTS (DIV AND SPAN)

What if none of the elements we’ve talked about so far accurately describes
your content? After all, there are endless types of information in the world,
but as you've seen, not all that many semantic elements. Fortunately, HTML
provides two generic elements that can be customized to describe your
content perfectly. The div element indicates a division of content, and span
indicates a word or phrase for which no text-level element currently exists.
The generic elements are given meaning and context with the id and class
attributes, which we’ll discuss in a moment.

The div and span elements have no inherent presentation qualities of their
own, but you can use style sheets to format them however you like. In fact,
generic elements are a primary tool in standards-based web design because
they enable authors to accurately describe content and offer plenty of
“hooks” for adding style rules. They also allow elements on the page to be
accessed and manipulated by JavaScript.

We're going to spend a little time on div and span elements, as well as the
id and class attributes, to learn how authors use them to structure content.

98

Part Il. HTML for Structure

mailto:blackgoose@example.com

Divide It Up with a div

Use the div element to create a logical grouping of content or elements on the
page. It indicates that they belong together in a conceptual unit or should be
treated as a unit by CSS or JavaScript. By marking related content as a div and
giving it a unique id or indicating that it is part of a class, you give context
to the elements in the grouping. Let’s look at a few examples of div elements.

In this example, a div element is used as a container to group an image and
two paragraphs into a product “listing”:
<div class="listing">

<p><cite>The Complete Manual of Typography</cite>, James Felici</p>
<p>A combination of type history and examples of good and bad type
design.</p>
</div>

By putting those elements in a div, I've made it clear that they are conceptu-
ally related. It also allows me to style p elements within listings differently
than other p elements in the document.

Here is another common use of a div used to break a page into sections
for layout purposes. In this example, a heading and several paragraphs are
enclosed in a div and identified as the “news” division:
<div id="news">
<hi>New This Week</h1>
<p>We've been working on...</p>

<p>And last but not least,... </p>
</div>

Now I have a custom element that I've given the name “news.” You might be
thinking, “Hey Jen, couldn’t you use a section element for that?” You could!
In fact, authors may turn to generic divs less often now that we have better
semantic sectioning elements in HTMLS.

Define a Phrase with span

A span offers the same benefits as the div element, except it is used for phrase
elements and does not introduce line breaks. Because spans are inline ele-
ments, they may contain only text and other inline elements (in other words,
you cannot put headings, lists, content-grouping elements, and so on, in a
span). Let’s get right to some examples.

There is no telephone element, but we can use a span to give meaning to
telephone numbers. In this example, each telephone number is marked up as
a span and classified as “tel”:

John: 999.8282</1i>
Paul: 888.4889</1i>
George: 888.1628</1i>
Ringo: 999.3220</1i>

Generic Elements (div and span)

Itis possible to nest div elements
within other div elements, but don’t
go overboard. You should always
strive to keep your markup as simple
as possible, so add a div element
only if it is necessary for logical
structure, styling, or scripting.

5. Marking Up Text

99

Generic Elements (div and span)

id and class Values

In HTMLS5, the values for id and
class attributes must contain one
character (that is, they may not be
empty) and may not contain any
character spaces. You can use pretty
much any character in the value.

Earlier versions of HTML had
restrictions on id values (for example,
they needed to start with a letter),

but those restrictions were removed
in HTMLS5.

You can see how the classified spans add meaning to what otherwise might
be a random string of digits. As a bonus, the span element enables us to apply
the same style to phone numbers throughout the site (for example, ensuring
line breaks never happen within them, using a CSS white-space: nowrap dec-
laration). It makes the information recognizable not only to humans but also
to computer programs that know that “tel” is telephone number information.
In fact, some values—including “te]”—have been standardized in a markup
system known as Microformats that makes web content more useful to soft-
ware (see the upcoming sidebar “Structured Data in a Nutshell”).

id and class Attributes

In the previous examples, we saw the id and class attributes used to provide
context to generic div and span elements. id and class have different pur-
poses, however, and it’s important to know the difference.

Identification with id

The id attribute is used to assign a unique identifier to an element in the
document. In other words, the value of id must be used only once in the
document. This makes it useful for assigning a name to a particular element,
as though it were a piece of data. See the sidebar “id and class Values” for
information on providing values for the id attribute.

This example uses the books’ ISBNs (International Standard Book Numbers)
to uniquely identify each listing. No two book listings may share the same id.

<div id="ISBN0321127307">

<p><cite>The Complete Manual of Typography</cite>, James Felici</p>
<p>A combination of type history and examples of good and bad type.
</p>

</div>

<div id="ISBN0881792063">

<p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
</p>
<p>This lovely, well-written book is concerned foremost with creating
beautiful typography.</p>
</div>

Web authors also use id when identifying the various sections of a page. In
the following example, there may not be more than one element with the id
of “links” or “news” in the document:

<section id="news">

<!-- news items here -->
</section>

<aside id="links">
<!l-- 1list of links here -->
</aside>

100 PartIl. HTML for Structure

Classification with class

The class attribute classifies elements into conceptual groups; therefore,
unlike the id attribute, a class name may be shared by multiple elements.
By making elements part of the same class, you can apply styles to all of the
labeled elements at once with a single style rule or manipulate them all with a
script. Let’s start by classifying some elements in the earlier book example. In
this first example, 've added class attributes to classify each div as a “listing”
and to classify paragraphs as “descriptions”:

<div id="ISBN0321127307" class="listing">
<header>

<p><cite>The Complete Manual of Typography</cite>, James Felici</p>
</header>
<p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing">
<header>

<p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
</p>
</header>
<p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

Notice how the same element may have both a class and an id. It is also
possible for elements to belong to multiple classes. When there is a list of
class values, simply separate them with character spaces. In this example, I've
classified each div as a “book” to set them apart from possible “cd” or “dvd”
listings elsewhere in the document:

<div id="ISBN0321127307" class="listing book">

<p><cite>The Complete Manual of Typography</cite>, James Felici</p>
<p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing book">

<p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
</p>
<p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>

</div>

Identify and Classify All Elements

The id and class attributes are not limited to just div and span—they are
two of the global attributes (see the “Global Attributes” sidebar) in HTML,

Generic Elements (divand s

pan)

Use the id attribute to identify.
Use the class attribute to classify.

Global Attributes

HTMLS5 defines a set of attributes
that can be used with every HTML
element. They are called the global
attributes:

accesskey
class
contenteditable
dir
draggable
hidden

id

lang
spellcheck
style
tabindex
title
translate

Appendix B lists all of the global
attributes, their values, and
definitions.

5. Marking Up Text

101

Improving Accessibility with ARIA

NOTE

AJAX (Asynchronous JavaScript and XML)
is explained in a sidebar in Chapter 22,
Using JavaScript.

which means you may use them with all HTML elements. For example, you
could identify an ordered list as “directions” instead of wrapping it in a div:
<ol id="directions">
...</1i>
...</1i>
...</1i>

This should have given you a good introduction to how to use the class and
id attributes to add meaning and organization to documents. We'll work with
them even more in the style sheet chapters in Part Ill. The sidebar “Structured
Data in a Nutshell” discusses more advanced ways of adding meaning and
machine-readable data to documents.

IMPROVING ACCESSIBILITY WITH ARIA

As web designers, we must always consider the experience of users with assis-
tive technologies for navigating pages and interacting with web applications.
Your users may be listening to the content on the page read aloud by a screen
reader and using keyboards, joysticks, voice commands, or other non-mouse
input devices to navigate through the page.

Many HTML elements are plainly understood when you look at (or read)
only the HTML source. Elements like the title, headings, lists, images, and
tables have implicit meanings in the context of a page, but generic elements
like div and span lack the semantics necessary to be interpreted by an assis-
tive device. In rich web applications, especially those that rely heavily on
JavaScript and AJAX (see Note), the markup alone does not provide enough
clues as to how elements are being used or whether a form control is cur-
rently selected, required, or in some other state.

Fortunately, we have ARIA (Accessible Rich Internet Applications), a stan-
dardized set of attributes for making pages easier to navigate and interactive
features easier to use. The specification was created and is maintained by a
Working Group of the Web Accessibility Initiative (WAI), which is why you
also hear it referred to as WAI-ARIA. ARIA defines roles, states, and proper-
ties that developers can add to markup and scripts to provide richer semantic
information.

Roles

Roles describe an element’s function or purpose in the context of the docu-
ment. Some roles include alert, button, dialog, slider, and menubar, to name
only a few. For example, as we saw earlier, you can turn an unordered list into
a tabbed menu of options using style sheets, but what if you can't see that it
is styled that way? Adding role="toolbar" to the list makes its purpose clear:

102 Part Il. HTML for Structure

Improving Accessibility with ARIA

Structured Data in a Nutshell

It is pretty easy for us humans to tell the difference between

a recipe and a movie review. For search engines and other
computer programs, however, it’s not so obvious. When we
use HTML alone, all browsers see is paragraphs, headings,
and other semantic elements of a document. Enter structured
data! Structured data allows content to be machine-readable
as well, which helps search engines provide smarter, user-
friendly results and can provide a better user experience—for
example, by extracting event information from a page and
adding it to the user’s calendar app.

There are several standards for structured data, but they share
a similar approach. First, they identify and name the “thing”
being presented. Then they point out the properties of that
thing. The “thing” might be a person, an event, a product,

a movie...pretty much anything you can imagine seeing

on a web page. Properties consist of name/value pairs. For
example, “actor,” “director,” and “duration” are properties of a
movie. The values of those properties appear as the content
of an HTML element. A collection of the standardized terms
assigned to “things,” as well as their respective properties,
form what is called a vocabulary.

The most popular standards for adding structured data are
Microformats, Microdata, RDFa (and RDFa Lite), and JSON-LD.
They differ in the syntax they use to add information about
objects and their properties.

Microformats
microformats.org

This early effort to make web content more useful created
standardized values for the existing id, class, and rel
HTML attributes. It is not a documented standard, but
itis a convention that is in widespread use because it

is very simple to implement. There are about a dozen
stable Microformat vocabularies for defining people,
organizations, events, products, and more. Here is a short
example of how a person might be marked up using
Microformats:

<div class="h-card">
<p class="p-name">Cindy Sherman</p>
<p class="p-tel">555.999-2456</p>
</div>

Microdata
html.spec.whatwg.org/multipage/microdata.html

Microdata is a WHATWG (Web Hypertext Application
Technology Working Group) HTML standard that uses
microdata-specific attributes (itemscope, itemtype,
itemprop, itemid, and itemref) to define objects and
their properties. Here is an example of a person defined
using Microdata.

<div itemscope itemtype="http://schema.org/Person">
<p itemprop="name">Cindy Sherman</p>
<p itemprop="telephone">555.999-2456</p>
</div>
For more information on the WHATWG, see Appendix D,
From HTML+ to HTMLS.

RDFa and RDFa Lite
www.w3.0rg/TR/xhtml-rdfa-primer/

The W3C dropped Microdata from the HTML5 spec in
2013, putting all of its structured data efforts behind RDFa
(Resource Description Framework in Attributes) and its
simplified subset, RDFa Lite. It uses specified attributes
(vocab, typeof, property, resource, and prefix) to
enhance HTML content. Here is that same person marked
up with RDFa:

<div vocab="http://schema.org" typeof="Person">
<p property="name">Cindy Sherman</p>
<p property="telephone">555.999-2456</p>
</div>

JSON-LD
json-ld.org

JSON-LD (JavaScript Object Notation to serialize Linked
Data) is a different animal in that it puts the object types
and their properties in a script removed from the HTML
markup. Here is the JSON-LD version of the same person:

<script type="application/ld+json">
{

"@context": "http://schema.org/",
"@type": "Person",

"name": "Cindy Sherman"
"telephone": "555.999-2456"

</script>

Itis possible to make up your own vocabulary for use on

your sites, but it is more powerful to use a standardized
vocabulary. The big search engines have created Schema.org,
a mega-vocabulary that includes standardized properties for
hundreds of “things” like blog posts, movies, books, products,
reviews, people, organizations, and so on. Schema.org
vocabularies may be used with Microdata, RDFa, and JSON-LD
(Microformats maintain their own separate vocabularies). You
can see pointers to the Schema.org “Person” vocabulary in the
preceding examples. For more information, the Schema.org
“Getting Started” page provides an easy-to-read introduction:
schema.org/docs/gs.html.

There is a lot more to say about structured data than I can fit

in this book, but once you get the basic semantics of HTML
down, it is definitely a topic worthy of further exploration.

J

5. Marking Up Text 103

http://schema.org/Person

Improving Accessibility with ARIA

NOTE

The banner role is used when the header
applies to only the whole page, not just a
section or article.

<ul id="tabs" role="toolbar">
A-G</1i>
H-0</1i>
P-T</1i>
U-z</1i>

Here’s another example that reveals that the “status” div is used as an alert
message:

<div id="status" role="alert">You are no longer connected to the
server.</div>

Some roles describe “landmarks” that help readers find their way through
the document, such as navigation, banner, contentinfo, complementary, and
main. You may notice that some of these sound similar to the page-structuring
elements that were added in HTMLJ3, and that’s no coincidence. One of the
benefits of having improved semantic section elements is that they can be
used as landmarks, replacing <div id="main" role="main"> with main.

Most current browsers already recognize the implicit roles of the new ele-
ments, but some developers explicitly add ARIA roles until all browsers
comply. The sectioning elements pair with the ARIA landmark roles in the
following way:

<nav role="navigation">

<header role="banner"> (see Note)

<main role="main">

<aside role="complementary">

<footer role="contentinfo">

States and Properties

ARIA also defines a long list of states and properties that apply to interactive
elements such as form widgets and dynamic content. States and properties
are indicated with attributes prefixed with aria-, such as aria-disabled,
aria-describedby, and many more.

The difference between a state and property is subtle. For properties, the
value of the attribute is more likely to be stable, such as aria-labelledby,
which associates labels with their respective form controls, or aria-haspopup,
which indicates the element has a related pop-up menu. States have values
that are more likely to be changed as the user interacts with the element, such
as aria-selected.

For Further Reading

Obviously, this is not enough ARIA coaching to allow you to start confi-
dently using it today, but it should give you a good feel for how it works and

104 PartIl. HTML for Structure

its potential value. When you are ready to dig in and take your skills to a
professional level, here is some recommended reading:

The WAI-ARIA Working Draft (www.w3.o0rg/TR/wai-aria-1.1/)

This is the current Working Draft of the specification as of this writing.

ARIA in HTML (www.w3.0rg/TR/html-aria/)

This W3C Working Draft helps developers use ARIA attributes with
HTML correctly. It features a great list of every HTML element, whether
it has an implicit role (in which ARIA should not be used), and what roles,
states, and properties apply.

ARIA Resources at MDN Web Docs
(developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA)

This site features lots of links to ARIA-related and up-to-date resources. It
is a good starting point for exploration.

HTMLS Accessibility (www.html5accessibility.com)

This site tests which new HTMLS features are accessibly supported by
major browsers.

CHARACTER ESCAPES

There’s just one more text-related topic before we close out this chapter. The
section title makes it sound like someone left the gate open and all the char-
acters got out. The real meaning is more mundane, albeit useful to know.

You already know that as a browser parses an HTML document, when it
runs into a < symbol, it interprets it as the beginning of a tag. But what if you
just need a less-than symbol in your text? Characters that might be misinter-
preted as code need to be escaped in the source document. Escaping means
that instead of typing in the character itself, you represent it by its numeric
or named character entity reference. When the browser sees the character
reference, it substitutes the proper character in that spot when the page is
displayed.

There are two ways of referring to (escaping) a specific character:

* Using a predefined abbreviated name for the character (called a named
entity; see Note).

* Using an assigned numeric value that corresponds to its position in a
coded character set (numeric entity). Numeric values may be in decimal
or hexadecimal format.

All character references begin with an & (ampersand) and end with a ; (semi-
colon).

Character Escapes

The W3C HTML specification now
lists which ARIA roles and properties
apply in the descriptions of every
HTML element (www.w3.0rg/TR/
html52/).

NOTE

HTML defines hundreds of named enti-
ties as part of the markup language,
which is to say you can’t make up your
own entity.

5. Marking Up Text 105

https://www.w3.org/TR/wai-aria-1.1/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
http://www.html5accessibility.com

Character Escapes

These character entities are
useful when you need to show an
example of HTML markup on a
web page.

An example should make this clear. I'd like to use a less-than symbol in my
text, so I must use the named entity (81t;) or its numeric equivalent (8#060;)
where I want the symbol to appear (FIGURE 5-17):

<p>3 tsp. < 3 Tsp.</p>

or:

<p>3 tsp. < 3 Tsp.</p>

3 tsp. < 3 Tsp.

The special character is substituted for the character reference when
the document is displayed in the browser.

When to Escape Characters

There are a few instances in which you may need or want to use a character
reference.

HTML syntax characters

The <, >, &, ", and ' characters have special syntax meaning in HTML, and
may be misinterpreted as code. Therefore, the W3C recommends that you
escape <, >, and & characters in content. If attribute values contain single or
double quotes, escaping the quote characters in the values is advised. Quote
marks are fine in the content and do not need to be escaped. (See TABLE 5-2.)

Syntax characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.
< Less-than symbol < < <
> Greater-than symbol dgt; 8#062; &ttx3E;
" Quotation mark 3quot; " &itx22;
' Apostrophe 8apos; 3#039; 3tx27;
& Ampersand & & &x26;

106 Part Il. HTML for Structure

Invisible or ambiguous characters

Some characters have no graphic display and are difficult to see in the
markup (TABLE 5-3). These include the non-breaking space (), which
is used to ensure that a line doesn’t break between two words. So, for instance,
if I mark up my name like this:

Jennifer Robbins

[can be sure that my first and last names will always stay together on a line.
Another use for non-breaking spaces is to separate digits in a long number,
such as 32 000 000.

Zero-width space can be placed in languages that do not use spaces between
words to indicate where the line should break. A zero-width joiner is a
non-printing space that causes neighboring characters to display in their
connected forms (common in Arabic and Indic languages). Zero-width non-
joiners prevent neighboring characters from joining to form ligatures or other
connected forms.

Invisible characters and their character references

Character Escapes

Character Description Entity name Decimal no. Hexadecimal no.
(non-printing) | Non-breaking space &#txA0;
(non-printing) | En space   8#8194;  
(non-printing) | Em space      
(non-printing) | Zero-width space (none) ​ ​
(non-printing) | Zero-width non-joiner 8zwnj; ‌ ‌
(non-printing) | Zero-width joiner ‍ ‍ &itx200D;

Input limitations

If your keyboard or editing software does not include the character you need
(or if you simply can’t find it), you can use a character entity to make sure you
get the character you want. The W3C doesn’t endorse this practice, so use the
proper character in your source if you are able. TABLE 5-4 lists some special
characters that may be less straightforward to type into the source.

5. Marking Up Text 107

Putting It All Together

Special characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.
‘ Left curly single quote 81squo; 3#8216; ‘
’ Right curly single quote 3rsquo; 3#8217; 3#tx2019;
« Left curly double quote 81dquo; 3#8220; 3#tx201C;
7 Right curly double quote 8rdquo; 3#8221; 3#tx201D;
Horizontal ellipsis … … …
© Copyright © 3169; &#txA9;
® Registered trademark dreg; ® ® ;
™ Trademark ™ &18482; …
£ Pound £ £ &fxA3;
¥ Yen ¥ ¥
S5;
€ Euro 8euro; 848364 ; 8#x20AC;
- En dash – &18211; –
— Em dash — &18212; &ttx2014;

A complete list of HTML named entities and their Unicode code-points can
be found as part of the HTMLS5 specification at www.w3.0rg/TR/html5/syntax.
html#named-character-references. For a more user-friendly listing of named
and numerical entities, I recommend this archived page at the Web Standards
Project: www.webstandards.org/learn/reference/charts/entities.

PUTTING IT ALL TOGETHER

So far, you've learned how to mark up elements, and you've met all of the
HTML elements for adding structure and meaning to text content. Now
it’s just a matter of practice. EXERCISE 5-3 gives you an opportunity to try
out everything we’ve covered so far: document structure elements, grouping
(block) elements, phrasing (inline) elements, sectioning elements, and char-
acter entities. Have fun!

108 PartIl. HTML for Structure

EXERCISE 5-3. The Black Goose Bistro News page

Now that you’ve been introduced to all of the text elements, you can put them to work
by marking up the News page for the Black Goose Bistro site. Get the starter text and
finished markup files at learningwebdesign.com/5e/materials. Once you have the text,
follow the instructions listed after it. The resulting page is shown in FIGURE 5-18.

The Black Goose Bistro News

Home
Menu
News
Contact

Summer Menu Items

posted by BGB, June 18, 2017

Our chef has been busy putting together the perfect menu for the summer
months. Stop by to try these appetizers and main courses while the days
are still long.

Appetizers

Black bean purses

Spicy black bean and a blend of Mexican cheeses wrapped in sheets of
phyllo and baked until golden. $3.95

Southwestern napoleons with lump crab -- new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade
flour tortillas. $7.95

Main courses

Shrimp sate kebabs with peanut sauce

Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then
grilled to perfection. Served with spicy peanut sauce and jasmine rice.
$12.95

Jerk rotisserie chicken with fried plantains -- new item!

Tender chicken slow-roasted on the rotisserie, flavored with spicy and
fragrant jerk sauce and served with fried plantains and fresh mango.
$12.95

Low and Slow

posted by BGB, November 15, 2016

<p>This week I am extremely excited about a new cooking
technique called <dfn><i>sous vide</i></dfn>. In <i>sous vide</i>
cooking, you submerge the food (usually vacuum-sealed in plastic) into a
water bath that is precisely set to the target temperature you want the
food to be cooked to. In his book, <cite>Cooking for Geeks</cite>, Jeff
Potter describes it as <g>ultra-low-temperature poaching.</q></p>

<p>Next month, we will be serving <i>Sous Vide</i> Salmon with Dill
Hollandaise. To reserve a seat at the chef table, contact us before
<time datetime="20161130">November 30</time>.</p>

Location: Baker’s Corner, Seekonk, MA
Hours: Tuesday to Saturday, 1iam to 11pm

All content copyright 2017, Black Goose Bistro and Jennifer Robbins

Putting It All Together

Remember that indenting each
hierarchical level in your HTML
source consistently makes the
document easijer to scan and
update later.

NOTE

The “Low and Slow” paragraph is
already marked up with the inline
elements from EXERCISE 5-2).

©

5. Marking Up Text 109

Putting It All Together

EXERCISE 5-3. Continued

The Black Goose Bistro News

+ Contact
Summer Menu Items

posted by BGB, June 18,2017

Our chef has been busy putting together the perfect menu for the summer months. Stop by to try these appetizers and main courses while the
days are still long.

Appetizers

Black bean purses
Spicy black bean and a blend of Mexican cheeses wrapped in sheets of phyl-lo and baked until golden. $3.95
Southwestern napoleons with lump crab — new item!
Layers of light lump crab meat, bean and com salsa, and our handmade flour tortillas. $7.95

Main courses

Shrimp sate kehabs with peanut sauce
Skewess of shrimp marinated in lemongrass, garlic, and fish sauce then grilled o perfection. Served with spicy peanut sauce and jasmine
rice. $12.95

Jerk rotisserie chicken with fried plantains — new item!

Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce and served with fried plantains and fresh mango
$12.95

Low and Slow

posted by BGB, November 15,2016

cited about a new cooking technique called sous vide. In sous vide cooking, you submerge the food (usually
aled in plastic) ino a water bath that is precisely set to the target temperature you want the food to be cooked (. In his book, Cooking
 JefI Potter deseribes it as "ultra-low-lemperature poaching."

Next month, we will be serving Sous Vide Salmon with Dill Hollandaise. To reserve a seat at the chef table, contact us before November 30.

Location:
Baker's Comner, Seekonk, MA.

Hours:
Tuesday to Saturday, 11am to 11pm

Al content copyright © 2017, Black Goose Bistro and Jennifer Robbins

The finished menu page.

1. Start by adding the DOCTYPE declaration to tell browsers this is
an HTML5 document.

2. Add all the document structure elements first (html, head,
meta, title, and body). Give the document the title “The Black
Goose Bistro News.”

3. Thefirst thing we’ll do is identify the top-level heading and
the list of links as the header for the document by wrapping
them in a header element (don’t forget the closing tag). Within
the header, the headline should be an h1 and the list of links
should be an unordered list (ul). Don’t worry about making the
list items links; we’'ll get to linking in the next chapter. Give the
list more meaning by identifying it as the primary navigation for
the site (nav).

4. The News page has two posts titled “Summer Menu Items” and
“Low and Slow.” Mark up each one as an article.

5. Now we’ll get the first article into shape. Let’s create a header
for this article that contains the heading (h2 this time because
we’ve moved down in the document hierarchy) and the
publication information (p). Identify the publication date for the
article with the time element, just as in EXERCISE 5-2.

6. The content after the header is a simple paragraph. However,
the menu has some interesting things going on. It is divided
into two conceptual sections (Appetizers and Main Courses),
so mark those up as section elements. Be careful that the final
closing section tag (</section>) appears before the closing
article tag (</article>) so the elements are nested correctly

and don’t overlap. Finally, let’s identify the sections with id
attributes. Name the first one “appetizers” and the second
“maincourses.”

7. With our sections in place, now we can mark up the content.
We're down to h3 for the headings in each section. Choose
the most appropriate list elements to describe the menu item
names and their descriptions. Mark up the lists and each item
within the lists.

8. Now we can add a few fine details. Classify each price as “price”
using span elements.

9. Two of the dishes are new items. Change the double hyphens
to an em dash character and mark up “new item!” as “strongly
important.” Classify the title of each new dish as “newitem” (use
the existing dt element; there is no need to add a span this
time). This allows us to target menu titles with the “newitem”
class and style them differently than other menu items.

10. That takes care of the first article. The second article is
already mostly marked up from the previous exercise, but you
should mark up the header with the appropriate heading and
publication date information.

11. So far, so good, right? Now make the remaining content that
applies to the whole page a footer. Mark each line of content
within the footer as a paragraph.

12. Let’s give the location and hours information some context
by putting them in a div named “about.” Make the labels
“Location” and “Hours” appear on a line by themselves by
adding line breaks after them. Mark up the hours with the time
element (you don’t need the date or time zone portions).

13. Finally, copyright information is typically “small print” on a
document, so mark it up accordingly. As the final touch, add a
copyright symbol after the word “copyright” using the keyboard
or the © character entity.

Save the as bistro_news.html, and check your page in a modern

browser. You can also upload it to validator.nu and make sure it is

valid (it’s a great way to spot mistakes). How did you do?

* Choose the element that best fits the meaning of the
selected text.

* Don't forget to close elements with closing tags.
* Put all attribute values in quotation marks for clarity.

* “Copy and paste” is your friend when adding the same
markup to multiple elements. Just be sure what you
copied is correct before you paste it throughout the
document.

110 Part|l. HTML for Structure

http://validator.nu

Test Yourself

TEST YOURSELF

Were you paying attention? Here is a rapid-fire set of questions to find out.
Find the answers in Appendix A. Want More Practice?

1. Add the markup to insert a thematic break between these paragraphs: Try marking up your own résume.
Start with the raw text and add

document structure elements,
content grouping elements, and
inline elements as we’ve done in
2. What the difference between a blockquote and a q element? EXERCISE 5-3. If you don’t see
an element that matches your
information just right, try creating
one using a div or a span.

<p>People who know me know that I love to cook.</p>

<p>I've created this site to share some of my favorite recipes.</p>

3. Which element displays whitespace exactly as it is typed into the source
document?

4. What is the difference between a ul and an ol element?

5. How do you remove the bullets from an unordered list? (Be general, not
specific.)

6. What element would you use to mark up “W3C” and provide its full
name (World Wide Web Consortium)? Can you write out the complete
markup?

7. What is the difference between d1 and dt?

8. What is the difference between id and class?

9. What is the difference between an article and a section?

5. Marking Up Text 111

Element Review: Text Elements

ELEMENT REVIEW: TEXT ELEMENTS

The global attributes apply to all text elements. Additional attributes are listed under their respective elements.

Page sections Breaks
address Author contact information br Line break
article Self-contained content wbr Word break
aside Tangential content (sidebar)
footer Related content Phrasing elements and attributes
header Introductory content abbr Abbreviation
nav Primary navigation b Added visual attention (bold)
section Conceptually related group of content bdi Bidirectional isolation
bdo Bidirectional override
cite Citation
Heading content code Code sample
hi...h6 Headings, levels 1 through 6 data Machine-readable equivalent
del Deleted text
cite The URL of cited content.
Grouping content elements and attributes datetime Specifies the date and time of a change
blockquote Blockquote dfn Defining term
cite The URL of the cited content em Stress emphasis
div Generic division i Alternate voice (italic)
figure Related image or resource ins Inserted text
figcaption Text description of a figure cite The URL of cited content
hr Paragraph-level thematic break datetime Specifies the date and time of a change
(horizontal rule) kbd Keyboard input
main Primary content area of page or app mark Highlighted text
P Paragraph q Short inline quotation
pre Preformatted text cite The URL of the cited content
ruby Section containing ruby text
p Parentheses in ruby text
List elements and attributes rt Ruby annotation
dd Definition S Strike-through; incorrect text
dl Definition list samp Sample output
dt Term small Annotation; “small print”
1i List item (for ul and o1) span Generic phrase of text
value Provides a number for an 11 in an ol strong Strong importance
ol Ordered list sub Subscript
reversed Numbers the list in reverse order °uP Superscript
start Provides the starting number for the time Machine-readable time data
list datetime Provides machine readable date/time
ul Unordered list pubdate Indicates the time refers to publication
u Added attention (underline)

112 Part Il. HTML for Structure

ADDING LINKS

If you'e creating a page for the web, chances are you'll want to link to other
web pages and resources, whether on your own site or someone else’s. Linking,
after all, is what the web is all about. In this chapter, we’ll look at the markup
that makes links work—Ilinks to other sites, to your own site, and within a
page. There is one element that makes linking possible: the anchor (a).

<a>.
Anchor element (hypertext link)

To make a selection of text a link, simply wrap it in opening and closing
<a>... tags and use the href attribute to provide the URL of the target
page. The content of the anchor element becomes the hypertext link. Here is
an example that creates a link to the O'Reilly Media site:

Go to the 0'Reilly Media site

To make an image a link, simply put the img element in the anchor element:

<img src="tarsierlogo.gif"
alt="0'Reilly Media site">

By the way, you can put any HTML content element in an anchor to make it
a link, not just images.

Nearly all graphical browsers display linked text as blue and underlined by
default. Some older browsers put a blue border around linked images, but
most current ones do not. Visited links generally display in purple. Users
can change these colors in their browser preferences, and, of course, you can
change the appearance of links for your sites using style sheets. 'll show you
how in Chapter 13, Colors and Backgrounds.

When a user clicks or taps the linked text or image, the page you specify in
the anchor element loads in the browser window. The linked image markup
sample shown previously might look like FIGURE 6-1.

CHAPTER

6

IN THIS CHAPTER
Linking to external pages

Linking to documents on
your own server

Linking to a specific point
in a page

Targeting new windows

B USABILITY TIP

One word of caution: if you choose to
change your link colors, keep them
consistent throughout your site so as
not to confuse your users.

113

The href Attribute

Anchor Structure

The simplified structure of the anchor
element is as follows:

linked content

URL Wrangling

If you're linking to a page with a long
URL, it’s helpful to copy the URL from
the location toolbar in your browser
and paste it into your document. That
way, you avoid mistyping a single
character and breaking the whole
link.

[] [] D Link Sample x]] EO‘ReiIIy Media - Technoloc x

Go to the O'Reilly Media site

C [wwworeill.com
OREILLY® Ideas

ON OUR RADAR I Al

Learning Ew

I BUSINESS I DATA I

NEW LEARNING PATH

When a user clicks or taps the linked text or image, the page specified in
the anchor element loads in the browser window.

THE HREF ATTRIBUTE

You'll need to tell the browser which document to link to, right? The href
(hypertext reference) attribute provides the address of the page or resource
(its URL) to the browser. The URL must always appear in quotation marks.
Most of the time you'll point to other HTML documents; however, you can
also point to other web resources, such as images, audio, and video files.

Because there’s not much to slapping anchor tags around some content, the
real trick to linking comes in getting the URL correct. There are two ways to
specify the URL:

Absolute URLs

Absolute URLs provide the full URL for the document, including the
protocol (http:// or https://), the domain name, and the pathname as
necessary. You need to use an absolute URL when pointing to a document
out on the web (i.e,, not on your own server):

href="http://www.oreilly.com/"

Sometimes, when the page you'e linking to has a long URL pathname, the
link can end up looking pretty confusing (FIGURE 6-2). Just keep in mind
that the structure is still a simple container element with one attribute.
Dont let the long pathname intimidate you.

Relative URLs

Relative URLs describe the pathname to a file relative to the current
document. Relative URLs can be used when you are linking to another
document on your own site (i.e., on the same server). It doesn’t require the
protocol or domain name—just the pathname:

href="recipes/index.html"
In this chapter, we’ll add links using absolute and relative URLs to my cook-

ing website, Jen’s Kitchen (see FIGURE 6-3). Absolute URLs are easy, so let’s
get them out of the way first.

114 PartIl. HTML for Structure

Opening anchor tag

<a href="https://www.amazon.com/Bequet-Gourmet-Caramel-240z
-Celtic/dp/BO0OGZEUL0Y/ref=sr 1 1 a it?ie=UTF88qid=1467055107&s

r=8-18keywords=bequet">Bequet Caramels

Linking to Pages on the Web

| T :

URL Linked text Closing anchor tag

An example of a long URL. Although it may make the anchor tag look
confusing, the structure is the same.

LINKING TO PAGES ON THE WEB

Many times, you'll want to create a link to a page that you've found on the
web. This is known as an external link because it is going to a page outside of
your own server or site. To make an external link, provide the absolute URL,
beginning with http:// (the protocol). This tells the browser, “Go out on the
web and get the following document.”

[want to add some external links to the Jen’s Kitchen home page (FIGURE 6-3).
First, I'll link the list item “The Food Network” to the www.foodnetwork.com
site. I marked up the link text in an anchor element by adding opening and
closing anchor tags. Notice that I've added the anchor tags inside the list item
(11) element. That’s because only 1i elements are permitted to be children of
a ul element; placing an a element directly inside the ul element would be
invalid HTML.

<a>The Food Network</1i>

Next, I add the href attribute with the complete URL for the site:

The Food Network</1i>

And voila! Now “The Food Network” appears as a link and takes my visitors
to that site when they click or tap it. Give it a try in EXERCISE 6-1.

\

Working Along with
Jen’s Kitchen

w) Jen’s KKitchen)

‘Welcome to Jen’s Kitchen

e a cook. ssite o share some of my favurite

» Tove t
recipes and online food resourees. Bon Appetii!
About the site

The Jen’s Kitchen
page.

All the files for the Jen’s Kitchen
website are available online at
learningwebdesign.com/5e/
materials. Download the entire
directory, making sure not to change
the way its contents are organized.
The pages aren’t much to look at, but
they will give you a chance to develop
your linking skills.

The resulting markup for all of the
exercises is also provided.

EXERCISE 6-1. Make an external link

Open the file index.html from the jenskitchen folder. Make the list item “Epicurious” link to
its web page at www.epicurious.com, following my Food Network link example:

The Food Network</1i>
Epicurious</1i>

When you are done, save index.html and open it in a browser. If you have an internet
connection, you can click your new link and go to the Epicurious site. If the link doesn’t
take you there, go back and make sure that you didn’t miss anything in the markup.

6. Adding Links 115

Linking Within Your Own Site

LINKING WITHIN YOUR OWN SITE

A large portion of the linking you do is between pages of your own site: from
the home page to section pages, from section pages to content pages, and so
on. In these cases, you can use a relative URL—one that calls for a page on
your own server.

Without “http://”, the browser looks on the current server for the linked docu-
ment. A pathname, the notation used to point to a particular file or directory,
NOTE (see Note) tells the browser where to find the file. Web pathnames follow the
On PCs and Macs, files are organized into Unix con\.fention of separating directory and filenames with forward slashes
“folders,” but in the web development (/). A relative pathname describes how to get to the linked document starting
world, it is more common to refer to from the location of the current document.

the equivalent and more technical term
“directory.” A folder is just a directory with
a cute icon.

Relative pathnames can get a bit tricky. In my teaching experience, nothing
stumps beginners like writing relative pathnames, so we'll take it one step
at a time. I recommend you do EXERCISES 6-2 through 6-8 as we go along.

All of the pathname examples in this section are based on the structure of
the Jen’s Kitchen site shown in FIGURE 6-4. When you diagram the structure
of the directories for a site, it generally ends up looking like an inverted tree
with the root directory at the top of the hierarchy. For the Jen’s Kitchen site,
the root directory is named jenskitchen. For another way to look at it, there
Important Pathname is also a view of the directory and subdirectories as they appear in the Finder
Don’ts on my Mac.

When writing relative pathnames,

follow these rules to avoid common

errors: (jenskitchen)

¢ Don’t use backslashes (\). Web URL ECERSE
pathnames use forward slashes (/)
only.

¢ Don’t start with the drive name images/ recipes/

(D, C:, etc.). Although your pages .
. about.html index.html
will link to each other successfully

while they are on your own B . : .
computer, once they are uploaded , :

to the web server, the drive name b S = : - pasta/
is irrelevant and will break your jenskitchen.gif spoon.gif -

salmon.html tapenade.html

links.

¥ [jenskitchen

e Don't start with file://. This also o/ about.ntml

¥ [images

indicates that the file is local and Jansicitchen.gif
causes the link to break when it is - spoon.gif
o index.html|
on the server. ¥ [recipes couscous.html linguine.html
¥ |] pasta
@ couscous.html
@ linguine.html
@ salmon.htm|
@ tapenade.html

A diagram of the jenskitchen site structure.

116 Part Il. HTML for Structure

Linking Within a Directory

The most straightforward relative URL points to another file within the same
directory. When linking to a file in the same directory, you need to provide
only the name of the file (its filename). When the URL is just a filename, the
server looks in the current directory (that is, the directory that contains the
document with the link) for the file.

In this example, I want to make a link from my home page (index.html) to
a general information page (about.html). Both files are in the same directory
(jenskitchen). So, from my home page, I can make a link to the information
page by simply providing its filename in the URL (FIGURE 6-5):

About the site...

EXERCISE 6-2 gives you a chance to mark up a simple link yourself.

The documents index.html
and about.html are in the (jenskitchen)
same directory. .

images/ recipes/

about.html index.html

) \ u Jlen ’ - S : -
@" R = pasta/
Jjenskitchen.gif spoon.gif

salmon.html tapenade.html

From index.html: é é
About this page...

The server looks in the same directory for the file. couscous.html linguine.html

Writing a relative URL to another document in the same directory.

EXERCISE 6-2. Link in the same directory

Open the file about.html from the jenskitchen folder. Make the paragraph “Back to the
home page” at the bottom of the page link back to index.html. The anchor element should

be contained in the p element:

<p>Back to the home page</p>

When you are done, save about.html and open it in a browser. You don’t need an internet
connection to test links locally (that is, on your own computer). Clicking the link should
take you back to the home page.

Linking Within Your Own Site

6. Adding Links

117

Linking Within Your Own Site

Linking to a Lower Directory

But what if the files aren't in the same directory? You have to give the browser
directions by including the pathname in the URL. Let’s see how this works.

Getting back to our example, my recipe files are stored in a subdirectory
called recipes. I want to make a link from index.html to a file in the recipes
directory called salmon.html. The pathname in the URL tells the browser to
look in the current directory for a directory called recipes, and then look for
the file salmon.html (FIGURE 6-6):

Garlic Salmon</1i>

salmon.html is one
directory lower than (jenskitchen)

index.html.
images/ recipes/

about.html index.html

ﬁ Fen = Eitoh &5 pasta/
Jjenskitchen.gif spoon.gif

salmon.html tapenade.html :
From index.html:
Garlic Salmon
The server looks in the same directory as the current

document for the recipes directory. There it finds salmon.html. couscous.html linguine.html

Writing a relative URL to a document that is one directory level lower
than the current document.

Have a try at linking to a file in a directory in EXERCISE 6-3.

EXERCISE 6-3. Link to a file in a directory

Open the file index.html from the jenskitchen folder. Make the list item “Tapenade (Olive
Spread)” link to the file tapenade.html in the recipes directory. Remember to nest the
elements correctly:

Tapenade (Olive Spread)

When you are done, save index.html and open it in a browser. You should be able to click
your new link and see the recipe page for tapenade. If not, make sure that your markup is
correct and that the directory structure for jenskitchen matches the examples.

118 PartIl. HTML for Structure

Now let’s link down to the file called couscous.html, which is located in the
pasta subdirectory. All we need to do is provide the directions through two
subdirectories (recipes, then pasta) to couscous.html (FIGURE 6-7):

Couscous...</1i>

Directories are separated by forward slashes. The resulting anchor tag tells the
browser, “Look in the current directory for a directory called recipes. There
you'll find a directory called pasta, and in there is the file couscous.html.”

Now that we’'ve done two directory levels, you should get the idea of how
pathnames are assembled. This same method applies for relative pathnames
that drill down through any number of directories. Just start with the name
of the directory that is in the same location as the current file, and follow each
directory name with a slash until you get to the linked filename.

couscous.html is two directories
lower than index.html. (jenskitchen)

images/ recipes/

about.html index.html

&"‘ — = pasta/
Jjenskitchen.gif spoon.gif

salmon.html tapenade.html

From index.html:

Couscous 2 -

The server looks in the same directory as the current
document for the recipes directory, then looks for the o

pasta directory. couscous.html linguine.html

Writing a relative URL to a document that is two directory levels lower
than the current document. You can try it yourself in EXERCISE 6-4.

EXERCISE 6-4. Link two directories down

Open the file index.html from the jenskitchen folder. Make the list item “Linguine with Clam
Sauce” link to the file linguine.html in the pasta directory:
Linguine with Clam Sauce</1i>

When you are done, save index.html and open it in a browser. Click the new link to get the
delicious recipe.

Linking Within Your Own Site

6. Adding Links

119

Linking Within Your Own Site

Linking to a Higher Directory

So far, so good, right? Now it gets more interesting. This time we're going to
go in the other direction and make a link from the salmon recipe page back
to the home page, which is one directory level up.

In Unix, there is a pathname convention just for this purpose, the “dot-dot-
slash” (../). When you begin a pathname with ../, it’s the same as telling the
browser “back up one directory level” and then follow the path to the speci-
fied file. If you are familiar with browsing files on your desktop, it is helpful to
know thata “../” has the same effect as clicking the Up button in Windows
Explorer or the left-arrow button in the Finder on macOS.

Let’s start by making a link from salmon.html back to the home page (index.
html). Because salmon.html is in the recipes subdirectory, we need to go back
up to the jenskitchen directory to find index.html. This pathname tells the
browser to “back up one level,” then look in that directory for index.html
(FIGURE 6-8):

<p>[Back to home page]</p>

Note that the ../ stands in for the name of the higher directory, and we don’t
need to write out jenskitchen in the pathname.

index.html is one directory
higher than salmon.html. (jenskitchen)

jenskitchen

images/ recipes/

about.html index.html

.ol

recipes R 5

;5 Fon's Eiton &5 pasta/
jenskitchen.gif spoon.gif

salmon.html tapenade.html

From salmon.html: pasta .

[Back to the home page]
The ../ tells the server to back up one level (to the jenskitchen

directory) to look for the document index.html. couscous.html linguine.html

Writing a relative URL to a document that is one directory level higher
than the current document.

Try adding a dot-dot-slash pathname to a higher directory in EXERCISE 6-5.

But how about linking back to the home page from couscous.html? Can you
guess how youd back your way out of two directory levels? Simple: just use
the dot-dot-slash twice (FIGURE 6-9).

120 Part Il. HTML for Structure

A link on the couscous.html page back to the home page (index.html) would
look like this:

<p>[Back to home page]</p>

The first ../ backs up to the recipes directory; the second ../ backs up to the
top-level directory (jenskitchen), where index.html can be found. Again, there
is no need to write out the directory names; the ../ does it all.

Now you try (EXERCISE 6-6).

index.html is two directories

higher than couscous.html. (jenskitchen)
jenskitchen
images/ . . recipes/
about.html index.html
recipes . :
@W —= . . Pa;ta/
Jjenskitchen.gif spoon.gif —
salmon.html
From couscous.html: JEBE

[Back to the home page] . .

couscous.html linguine.html

The ../../ tells the server to back up two levels (to recipes
then jenskitchen) to look for the document index.html.

Writing a relative URL to a document that is two directory levels higher
than the current document.

EXERCISE 6-5. Link to a higher directory

Open the file tapenade.html from the recipes directory. At the bottom of the page, you'll
find this paragraph:

<p>[Back to the home page]</p>

Using the notation described in this section, make this text link back to the home page
(index.html), located one directory level up.

EXERCISE 6-6. Link up two directory levels

OK, now it’s your turn to give it a try. Open the file linguine.html and make the last
paragraph link back to the home page by using ../../ as | have done:

<p>[Back to the home page]</p>

When you are done, save the file and open it in a browser. You should be able to link to the
home page.

Linking Within Your Own Site

NOTE

I confess to still sometimes silently chant-
ing “go-up-a-level, go-up-a-level” for
each ../ when trying to decipher a com-
plicated relative URL. It helps me sort
things out.

6. Adding Links 121

Linking Within Your Own Site

WARNING

Site root relative pathnames won’t work
on your local computer unless it is set up
as a server.

Linking with Site Root Relative Pathnames

All sites have a root directory, the directory that contains all the directories
and files for the site. So far, all of the pathnames we’ve looked at are relative
to the document with the link. Another way to write a relative pathname is to
start at the root directory and list the subdirectory names to the file you want
to link to. This type of pathname is known as site root relative.

In the Unix pathname convention, a forward slash (/) at the start of the
pathname indicates that the path begins at the root directory. The site root
relative pathname in the following link reads, “Go to the very top-level direc-
tory for this site, open the recipes directory, and then find the salmon.html
file” (FIGURE 6-10):

Garlic Salmon

[\

In pathnames, the root directory
is always identified by a slash (/), (jenskitchen)

not its directory name. s ..
-"' S/ * ~"~.
. . . D
e . Y O
. . A ...
’ . .
s N

mases] receess

-—- . - -
S AN about.html index.html ~ _.* .

. .
. Iy o~
. Iy P

;5 Fon s Eitoh 45 pasta/
jenskitchen.gif spoon.gif

salmon.html tapenade.html ! ‘\

.

. S

From any document on the site: / -,
Garlic Salmon
The / at the beginning of the pathname tells the browser

to start at the root directory (jenskitchen). couscous.html linguine.html

Writing a relative URL starting at the root directory.

Note that you don't need to (and you shouldn’t) write the name of the root
directory (jenskitchen) in the path—the forward slash (/) at the beginning
represents the top-level directory in the pathname. From there, just specify
the directories the browser should look in.

Because this type of link starts at the root to describe the pathname, it works
from any document on the server, regardless of which subdirectory it may be
located in. Site root relative links are useful for content that might not always
be in the same directory, or for dynamically generated material. They also
make it easy to copy and paste links between documents.

On the downside, however, the links won't work on your local machine,
because they will be relative to your hard drive. You'll have to wait until the
site is on the final server to check that links are working,

122 Part Il. HTML for Structure

Writing Pathnames to Images

The src attribute in the img element works the same as the href attribute in
anchors. Because you'll most likely be using images from your own server, the
src attributes within your image elements will be set to relative URLs.

Let’s look at a few examples from the Jen’s Kitchen site. First, to add an image
to the index.html page, youd use the following markup:

The URL says, “Look in the current directory (jenskitchen) for the images
directory; in there you will find jenskitchen.gif.”
Now for the piéce de résistance. Let’s add an image to the file couscous.html:

This is a little more complicated than what we’ve seen so far. This pathname

tells the browser to go up two directory levels to the top-level directory and,
once there, look in the images directory for an image called spoon.gif. Whew!

Of course, you could simplify that path by going the site root relative route, in
which case the pathname to spoon.gif (and any other file in the images direc-
tory) could be accessed like this:

The trade-off is that you won't see the image in place until the site is uploaded
to the server, but it does make maintenance easier once it’s there.

EXERCISE 6-7. Try a few more

Before we move on, you may want to try your hand at writing a few more relative URLs

to make sure you've really gotten it. You can write your answers here in the book, or if
you want to test your markup to see whether it works, make changes in the actual files.
Note that the text shown here isn’t included on the exercise pages—you’ll need to add it
before you can create the link (for example, type in “Go to the Tapenade recipe” for the
first question). The final code is in the finished exercise files in the materials folder for this
chapter. I also included them in Appendix A.

1. Create a link on salmon.html to tapenade.html:
Go to the Tapenade recipe
2. Create a link on couscous.html to salmon.html:

Try this with Garlic Salmon.
3. Create a link on tapenade.html to linguine.html:
Try the Linguine with Clam Sauce
4. Create a link on linguine.html to about.html:
About Jen's Kitchen
5. Create a link on tapenade.htm! to www.allrecipes.com:

Go to Allrecipes.com

Linking Within Your Own Site

NOTE

Most of the pathnames in EXERCISE
6-7 could be site root relative, but write
them relative to the listed document for
the practice.

6. Adding Links 123

Linking Within Your Own Site

NOTE

Linking to another spot on the same
page works well for long, scrolling pages,
but the effect may be lost on a short web

page.

Linking to a Specific Point in a Page

Did you know you can link to a specific point in a web page? This is useful
for providing shortcuts to information at the bottom of a long, scrolling page
or for getting back to the top of a page with just one click or tap. Linking to a
specific point in the page is also known as linking to a document fragment.

Linking to a particular spot within a page is a two-part process. First, identify
the destination, and then make a link to it. In the following example, I create
an alphabetical index at the top of the page that links down to each alpha-
betical section of a glossary page (FIGURE 6-11). When users click the letter H,
they’ll jump to the “H” heading lower on the page.

Step 1: Identifying the destination

I like to think of this step as planting a flag in the document so I can get back
to it easily. To create a destination, use the id attribute to give the target ele-
ment in the document a unique name (that’s “unique” as in the name may
appear only once in the document, not “unique” as in funky and interesting).
In web lingo, this is the fragment identifier.

You may remember the id attribute from Chapter 5, Marking Up Text, where
we used it to name generic div and span elements. Here, we're going to use it
to name an element so that it can serve as a fragment identifier—that is, the
destination of a link.

Here is a sample of the source for the glossary page. Because I want users to
be able to link directly to the “H” heading, I'll add the id attribute to it and
give it the value “startH” (FIGURE 6-11 @):

<h2 id="startH">H</h2>

Step 2: Linking to the destination
With the identifier in place, now I can make a link to it.

At the top of the page, I'll create a link down to the “startH” fragment @. As for
any link, I use the a element with the href attribute to provide the location of
the link. To indicate that I'm linking to a fragment, I use the octothorpe symbol
(#), also called a hash, pound, or number symbol, before the fragment name:

<p>... F | G| H | T | I ...</p>
And that’s it. Now when someone clicks the H from the listing at the top of

the page, the browser will jump down and display the section starting with
the “H” heading ©.

124 Part Il. HTML for Structure

@ Identify the destination by using the id attribute.
<h2 id="startH">H</h2>

Linking Within Your Own Site

<dl>
<dt>hexadecimal</dt>

@ Create alink to the destination. The # before the name is necessary to
identify this as a fragment and not a filename.

To the Top!

It is common practice to add a link
back up to the top of the page when
linking into a long page of text. This
alleviates the need for users to scroll
back after every link.

<p>... | F | G| H | I | I ...</p>
D Glossary X Jennifer L
Q]
Glossary
AIBICIDIEIFIGIHITITILIMINIOIPIQIRISITIUIVIWIX
A
aliasing
The jagged stair ped edges that can appear between colors in a bitmapped graphic.
anchor
The HTML elen responsible for making hyperlinks.
~nolet
* ~2lf-containec 1i-executable program. siot
[Glossar x Jennifer
Q PO,
H
hexadecimal
A base-16 numbering system that uses the characters 0-9 and A-F. It is used in CSS and HTML for specifying color
values
host

Another term for the server. Hosting services are companies that provide server space for web sites.
HTML
HyperText Markup Language: the tagging language used to identify the structure of web documents.
HTTP
Hypertext Transfer Protocol; the system that defines how web pages and media are requested and transferred
between servers and browsers.

Linking to a specific destination (a fragment) within a single web page.

Linking to a Fragment in Another Document

You can link to a fragment in another document by adding the fragment
name to the end of the URL (absolute or relative). For example, to make a
link to the “H” heading of the glossary page from another document in that
directory, the URL would look like this:

See the Glossary, letter H
You can even link to specific destinations in pages on other sites by putting
the fragment identifier at the end of an absolute URL, like so:

See the Glossary,
letter H

NOTE

Some developers help their brothers and
sisters out by proactively adding ids as
anchors at the beginning of any thematic
section of content (within a reasonable
level, and depending on the site). That
way, other people can link back to any
section in their content.

6. Adding Links 125

Targeting a New Browser Window

EXERCISE 6-8.
Linking to a fragment

Want some practice linking to specific
destinations? Open glossary.html in
the materials folder for this chapter.

It looks just like the document in
FIGURE 6-11.

1. Identify the h2 “A” as a destination for
a link by naming it “startA” with an id
attribute:

<h2 id="startA">A</h2>

2. Make the letter A at the top of the
page a link to the identified fragment.
Don'’t forget the #:

A

Repeat Steps 1 and 2 for every letter
across the top of the page until you
really know what you’re doing (or
until you can’t stand it anymore). You
can help users get back to the top of
the page, too.

3. Make the heading “Glossary” a
destination named “top”:

<h1 id="top">Glossary</h1>

4. Add a paragraph element containing
“TOP” at the end of each lettered
section. Make “TOP” a link to the
identifier that you just made at the
top of the page:

<p>TOP</p>

Copy and paste this code to the end of
every letter section. Now your readers
can get back to the top of the page
easily throughout the document.

Of course, you don't have any control over the named fragments in other
people’s web pages. The destination points must be inserted by the author of
those documents in order for them to be available to you. The only way to
know whether they are there and where they are is to “View Source” for the
page and look for them in the markup. If the fragments in external documents
move or go away, the page will still load; the browser will just go to the top of
the page as it does for regular links.

EXERCISE 6-8 gives you an opportunity to add links to fragments in the
example glossary page.

TARGETING A NEW BROWSER WINDOW

One problem with putting links on your page is that when people click them,
they may never come back to your content. The traditional solution to this
dilemma has been to make the linked page open in a new browser window.
That way, your visitors can check out the link and still have your content
available where they left it.

Be aware that opening new browser windows can cause hiccups in the user
experience of your site. Opening new windows is problematic for accessibil-
ity, and may be confusing to some users. They might not be able to tell that a
new window has opened or they may never find their way back to the origi-
nal page. At the very least, new windows may be perceived as an annoyance
rather than a convenience. So consider carefully whether you need a new
window and whether the benefits outweigh the potential drawbacks.

The method you use to open a link in a new browser window depends on
whether you want to control its size. If the size of the window doesn’t matter,
you can use HTML markup alone. However, if you want to open the new
window with particular pixel dimensions, then you need to use JavaScript
(see the “Pop-up Windows” sidebar).

s 7

Pop-up Windows

It is possible to open a browser window to specific dimensions and with parts of the
browser chrome (toolbars, scrollbars, etc.) turned on or off, but you know what...I'm
not going to go into that here. First of all, it requires JavaScript. Second, in the era
of mobile devices, opening a new browser window at a particular pixel size is an
antiquated technique. People often turn off pop-up windows anyway.

For what it’s worth, the little interstitial panels you see popping up on every web page
asking you to sign up for a mailing list or showing you an ad are done with HTML
elements and JavaScript, not a whole new browser window, so that is an entirely
different beast.

That said, if you have a legitimate reason for opening a browser window to a
specific size, | will refer you to this tutorial by Peter-Paul Koch at Quirksmode:
www.quirksmode.org/js/popup.html.

126 Part Il. HTML for Structure

To open a new window with markup, use the target attribute in the anchor
(a) element to tell the browser the name of the window in which you want
the linked document to open. Set the value of target to _blank or to any name
of your choosing. Remember that with this method, you have no control
over the size of the window, but it will generally open as a new tab or in a
new window the same size as the most recently opened window in the user’s
browser. The new window may or may not be brought to the front depending
on the browser and device used.

Setting target="_blank" always causes the browser to open a fresh window.
For example:

0'Reilly

If you include target="_blank" for every link, every link will launch a new
window, potentially leaving your user with a mess of open windows. There’s
nothing wrong with it, per se, as long as it is not overused.

Another method is to give the target window a specific name, which can then
be used by subsequent links. You can give the window any name you like
(“new,” “sample,” whatever), as long as it doesn’t start with an underscore. The
following link will open a new window called “display”:

0'Reilly

If you target the “display” window from every link on the page, each linked
document will open in the same second window. Unfortunately, if that sec-
ond window stays hidden behind the user’s current window, it may look as
though the link simply didn’t work.

You can decide which method (a new window for every link or reusing
named windows) is most appropriate for your content and interface.

MAIL LINKS

Here’s a nifty little linking trick: the mailto link. By using the mailto protocol
in a link, you can link to an email address. When the user clicks a mailto
link, the browser opens a new mail message preaddressed to that address in
a designated mail program (see the “Spam-Bots” sidebar).

A sample mailto link is shown here:
Contact Al Klecker

As you can see, it’s a standard anchor element with the href attribute. But the
value is set to mailto:name@address . com.

The browser has to be configured to launch a mail program, so the effect
won't work for 100% of your audience. If you use the email address itself as
the linked text, nobody will be left out if the mailto function does not work
(a nice little example of progressive enhancement).

Mail Links

Spam-Bots

Be aware that putting an email
address in your document source
makes it susceptible to receiving
unsolicited junk email (known as
spam). People who generate spam
lists sometimes use automated
search programs (called bots) to
scour the web for email addresses.

If you want your email address to
display on the page so that humans
can figure it out but robots can’t,
you can deconstruct the address in
a way that is still understandable

to people—for example, “you [-at-]
example [dot] com.”

That trick won’t work in a mailto
link, because the accurate email
address must be provided as an
attribute value. One solution is to
encrypt the email address by using
JavaScript. The Enkoder Form at
Hivelogic (hivelogic.com/enkodery/)
does this for you. Simply enter the
link text and the email address, and
Enkoder generates code that you can
copy and paste into your document.

Otherwise, if you don’t want to risk
getting spammed, keep your email
address out of your HTML document.
Using a contact form is a good
alternative (web forms are coming up
in Chapter 9, Forms).

6. Adding Links 127

Telephone Links

TELEPHONE LINKS

Keep in mind that the smartphones people are using to access your site can
also be used to make phone calls! Why not save your visitors a step by letting
them dial a phone number on your site simply by tapping on it on the page?
The syntax uses the tel: protocol and is very simple:

Call us free at (800) 555-1212

When mobile users tap the link, what happens depends on the device:
Android launches the phone app; BlackBerry and IE1l Mobile initiate the
call immediately; and iOS launches a dialog box giving the option to call,
message, or add the number to Contacts. Desktop browsers may launch a
dialog box to switch apps (for example, to FaceTime on Safari) or they may
ignore the link.

If you don’t want any interruption on desktop browsers, you could use a CSS
rule that hides the link for non-mobile devices (unfortunately, that is beyond
the scope of this discussion).

There are a few best practices for using telephone links:

* Itis recommended that you include the full international dialing number,
including the country code, for the tel: value because there is no way of
knowing where the user will be accessing your site.

* Also include the telephone number in the content of the link so that if the
link doesn’t work, the telephone number is still available.

* Android and iPhone have a feature that detects phone numbers and
automatically turns them into links. Unfortunately, some 10-digit num-
bers that are not telephone numbers might get turned into links, too. If
your document has strings of numbers that might get confused as phone
numbers, you can turn auto-detection off by including the following meta
element in the head of your document. This will also prevent them from
overriding any styles you've applied to telephone links.

<meta name="format-detection" content="telephone=no">

TEST YOURSELF

The most important lesson in this chapter is how to write URLs for links and
images. Here’s another chance to brush up on your pathname skills.

Using the directory hierarchy shown in FIGURE 6-12, write out the markup
for the following links and graphics.

This diagram should provide you with enough information to answer the
questions. If you need hands-on work to figure them out, the directory struc-
ture is available in the test directory in the materials for this chapter. The

128 Part Il. HTML for Structure

(somesite)

rootdirectory (/) ...t o T

index.html tutorial.html

|mages examples

D D . . peOPIE/ p[aceS/

arrow.gif bullet.gif instructions.html intro.html

people places

—_ - o
images/ examples/

Test Yourself

things/

thmgs

fnends.html faml[y.html canada.html usa.html

The directory structure for the “Test Yourself” questions.

documents are just dummy files and contain no content. I filled in the first
one for you as an example. The answers are located in Appendix A.

1

In index.html (the site’s home page), write the markup for a link to the
tutorial. html page.

...

In index.html, write the anchor element for a link to instructions.html.

Create a link to family.html from the page tutorial. html.

Create a link to boot.html from the family.html page, but this time, start
with the root directory.

Create a link back to the home page (index.html) from instructions.html.

acorn.html boot.html coatrack.html

The ../ (or multiples of them) always
appears at the beginning of the
pathname and never in the middle. If
the pathnames you write have ../ in
the middle, you’ve done something
wrong.

6. Adding Links 129

Element Review: Links

6. Create a link to the website for this book (learningwebdesign.com) in the
file intro.html.

7. Create a link to instructions.html from the page usa.html.

8. Create a link back to the home page (index.html) from acorn.html.

We haven't covered the image (img) element in detail yet, but you should be
able to fill in the relative URLs after the src attribute to specify the location
of the image files for these examples.

9. To place the graphic arrow.gif on the page index.html, use this URL:

10. To place the graphic arrow.gif on the page intro.html, use this URL:

11. To place the graphic bullet.gif on the friends.html page, use this URL:

ELEMENT REVIEW: LINKS

There’ really only one element relevant to creating hypertext links.

Element and attributes Description

a Anchor (hypertext link) element
href="URL" Location of the target file
target="text string" Targets a browser window by name

130 PartIl. HTML for Structure

http://www.learningwebdesign.com

ADDING IMAGES

The webs explosion into mass popularity was due in part to the fact that
there were images on the page. Before images, the internet was a text-only tundra.

Images appear on web pages in two ways: embedded in the inline content or
as background images. If the image is part of the editorial content, such as
product shots, gallery images, ads, illustrations, and so on, then it should be
placed in the flow of the HTML document. If the image is purely decorative,
such as a stunning image in the background of the header or a patterned
border around an element, then it should be added through Cascading Style
Sheets. Not only does it make sense to put images that affect presentation
in a style sheet, but it makes the document cleaner and more accessible and
makes the design much easier to update later. I will talk about CSS back-
ground images at length in Chapter 13, Colors and Backgrounds.

This chapter focuses on embedding image content into the flow of the docu-
ment, and it is divided into three parts. First, we’ll look at the tried-and-true
img element for adding basic images to a page the way we've been doing it
since 1992. It has worked just fine for over 25 years, and as a beginner, you'll
find it meets most of your needs as well.

The second part of this chapter introduces some of the methods available
for embedding SVG images (Scalable Vector Graphics) in HTML documents.
SVGs are a special case and demand special attention.

Finally, we’ll look at the way image markup has had to adapt to the wide
variety of mobile devices with an introduction to new responsive image ele-
ments (picture and source) and attributes (srcset and sizes). As the number
of types of devices used to view the web began to skyrocket, we realized that
a single image may not meet the needs of all viewing environments, from
palm-sized screens on slow cellular networks to high-density cinema dis-
plays. We needed a way to make images “responsive”—that is, to serve images

CHAPTER

7

IN THIS CHAPTER

Adding images with the
img element

Image accessibility
Adding SVG images

Responsive images

131

First, a Word on Image Formats

appropriate for their browsing environments. After a few years of back and
forth between the W3C and the development community, responsive image
features were added to the HTML 5.1 specification and are beginning to see
widespread browser support.

[want to point out up front that responsive image markup is not as straight-
forward as the examples we've seen so far in this book. It'’s based on more
advanced web development concepts, and the syntax may be tricky for
someone just getting started writing HTML (heck, it’s a challenge for sea-
soned professionals!). I've included it in this chapter because it is relevant to
adding inline images, but frankly, I wouldn’t blame you if youd like to skip
the “Responsive Image Markup” section and come back to it after we've done
more work with Responsive Web Design and you have more HTML and CSS
experience under your belt.

FIRST, A WORD ON IMAGE FORMATS

We'll get to the img element and other markup examples in a moment, but
first it’s important to know that you can’t put just any image on a web page;
it needs to be in one of the web-supported formats.

In general, images that are made up of a grid of colored pixels (called bit-
mapped or raster images, as shown in FIGURE 7-1, top) must be saved in the
PNG, JPEG, or GIF file formats in order to be placed inline in the content.
Newer, more optimized WebP and JPEG-XR bitmapped image formats are
slowly gaining in popularity, particularly now that we have markup to make
them available to browsers that support them.

For vector images (FIGURE 7-1, bottom), such as the kind of icons and illus-
trations you create with drawing tools such as Adobe Illustrator, we have the
SVG format. There is so much to say about SVGs and their features that I've
given them their own chapter (Chapter 25, SVG), but we’ll look at how to add
them to HTML documents later in this chapter.

If you have a source image that is in another popular format, such as TIFF,
BMP, or EPS, you'll need to convert it to a web format before you can add it
to the page. If, for some reason, you must keep your graphic file in its original
format (for example, a file for a CAD program), you can make it available as
an external image by making a link directly to the image file, like this:

Get the drawing

You should name your image files with the proper suffixes—.png, .jpg (or
.jpeg), .gif, .webp, and .jxr, respectively. In addition, your server must be con-
figured to recognize and serve these various image types properly. All web
server software today is configured to handle PNG, JPEG, and GIF out of the
box, but if you are using SVG or one of the newer formats, you may need to
deliberately add that media type to the server’s official list.

132 Part Il. HTML for Structure

Bitmapped images
are made up of a grid
of colored pixels.

Vector images
contain paths that
are defined
mathematically.

A comparison of circles saved in bitmapped and vector formats.

A little background information may be useful here. Image files, and indeed
any media files that may reside on a server, have an official media type (also
called a MIME type) and suffixes. For example, SVG has the MIME type
image/svg+xml and the suffixes .svg and .svgz.

Server packages have different ways of handling MIME information. The
popular Apache server software uses a file in the root directory called htaccess
that contains a list of all the file types and their acceptable suffixes. Be sure to
add (or ask your server administrator to add) the MIME types of new image
formats so they may be served correctly. The server looks up the suffix (.webp,
for example) of requested files in the list and matches it with the Content-
Type (image/webp) that it includes in its HTTP response to the browser. That
tells the browser what kind of data is coming and how to parse it.

Browsers use helper applications to display media they can’t handle alone.
The browser matches the suffix of the file in the link to the appropriate
helper application. The external image may open in a separate application
window or within the browser window if the helper application is a browser
plug-in. The browser may also ask the user to save the file or open an appli-
cation manually. It is also possible that it won't be able to be opened at all.

Without further ado, let’s take a look at the img element and its required and
recommended attributes.

First,a Word on Image Formats

7. Adding Images

133

The img Element

Adds an inline image

THE IMG ELEMENT

The img element tells the browser, “Place an image here.” You've already got-
ten a glimpse of it used to place banner graphics in the examples in Chapter
4, Creating a Simple Page. You can also place an image element right in the
flow of the text at the point where you want the image to appear, as in the
following example. Images stay in the flow of text, aligned with the baseline
of the text, and do not cause any line breaks (HTMLS5 calls this a phrasing
element), as shown in FIGURE 7-2:

<p>This summer, try making pizza
on your grill.</p>

This summer, try making pizza \Ww’ on your grill.

By default, images are aligned with the baseline of the surrounding text
and do not cause a line break.

When the browser sees the img element, it makes a request to the server and
retrieves the image file before displaying it on the page. On a fast network
with a fast computer or device, even though a separate request is made for
each image file, the page usually appears to arrive instantaneously. On mobile
devices with slow network connections, we may be well aware of the wait
for images to be fetched one at a time. The same is true for users using dial-
up internet connections or other slow networks, like the expensive WiFi at
luxury hotels.

The src and alt attributes shown in the sample are required. The src
(source) attribute provides the location of the image file (its URL). The alt
attribute provides alternative text that displays if the image is not available.
We'll talk about src and alt a little more in upcoming sections.

There are a few other things of note about the img element:

* It is an empty element, which means it doesn’t have any content. You just
place it in the flow of text where the image should go.

* Itis an inline element, so it behaves like any other inline element in the
text flow. FIGURE 7-3 demonstrates the inline nature of image elements.
When the browser window is resized, a line of images reflows to fill the
new width.

134 Part Il. HTML for Structure

Iy

Gt e -

Inline images are part of the normal document flow. They reflow when
the browser window is resized.

* The img element is what’s known as a replaced element because it is
replaced by an external file when the page is displayed. This makes it dif-
ferent from text elements that have their content right there in the source
(and thus are non-replaced).

* By default, the bottom edge of an image aligns with the baseline of text, as
shown in FIGURE 7-2. Using CSS, you can float the image to the right or
left margin and allow text to flow around it, crop it to a shape, control the
space and borders around the image, and change its vertical alignment.
We'll talk about those styles in Part Il1.

Providing the Location with src

The value of the src attribute is the URL of the image file. In most cases, the
images you use on your pages will reside on your own server, so you will use
relative URLs to point to them.

If you just read Chapter 6, Adding Links, you should be pretty handy with
writing relative URLs. In short, if the image is in the same directory as the
HTML document, you can refer to the image by name in the src attribute:

Developers usually organize the images for a site into a directory called
images or img (in fact, it helps search engines when you do it that way). There
may even be separate image directories for each section of the site. If an image

is not in the same directory as the document, you need to provide the path-
name to the image file:

Of course, you could place images from other websites by using a full URL,
like this, but it is not recommended (see Warning):

The img Element

Source (location) of the image

WARNING

Before you use any image on your web
page, be sure that you own the image,
that you have explicit written permis-
sion by the copyright holder, or that it
is in the public domain. Linking to an
image on another server (called hotlink-
ing) is considered seriously uncool, so
don’t do it unless there is a specific use
case in which you have permission. Even
then, be aware that you cannot control
the image and risk having it moved or
renamed, which would break your link.

7.Adding Images 135

The img Element

<p>If you're
and you know it clap your hands.</p>

With image displayed
-~

If you're and you know it clap your hands.

Firefox

If you're happy and you know it clap your hands.

Chrome (Mac & Windows)

If you're #-12PPY and you know it clap your hands.

MS Edge (Windows)
happy

If you're and vou know it clap your hands.

Safari (i0S)

If you're h#ppy and you know it clap your hands.

Safari (Mac)

If you're and you know it clap your hands.

Most browsers display
alternative text in place of the image
if the image is not available. Safari for
macOS is a notable exception. Firefox’s
substitution is the most seamless.

Take Advantage of Caching

When a browser downloads an image, it stores the file in the disk cache (a space for
temporarily storing files on the hard disk). That way, if it needs to redisplay the page,
it can just pull up a local copy of the image without making a new server request.

If you use the same image repeatedly, be sure that the src attribute for each img
element points to the same URL on the server. The image downloads once, then gets
called from cache for subsequent uses. That means less traffic for the server and
faster display for the user.

Providing Alternative Text with alt

Alternative text

Every img element must also contain an alt attribute that provides a text
alternative to the image for those who are not able to see it. Alternative text
(also called alt text) should serve as a substitute for the image content—con-
veying the same information and function. Alternative text is used by screen
readers, search engines, and graphical browsers when the image doesn’t load
(FIGURE 7-4).

In this example, a PDF icon indicates that the linked text downloads a file in
PDF format. In this case, the image is conveying valuable content that would
be missing if the image cannot be seen. Providing the alt text “PDF file” rep-
licates the purpose of the image:

High school application
pdflogo.png alt="PDF file">

A screen reader might indicate the image by reading its alt value this way:
“High school application. Image: PDF file”

Sometimes images function as links, in which case providing alternative text
is critical because the screen reader needs something to read for the link. In
the next example, an image of a book cover is used as a link to the book’s
website. Its alt text does not describe the cover itself, but rather performs the
same function as the cover image on the page (indicating a link to the site):

<img src="/images/LWD_ cover.png"
alt="Learning Web Design site">

If an image does not add anything meaningful to the text content of the page,
it is recommended that you leave the value of the alt attribute empty (null).
In the following example, a decorative floral accent is not contributing to the
content of the page, so its alt value is null. (You may also consider whether it
is more appropriately handled as a background image in CSS, but I digress.)
Note that there is no character space between the quotation marks:

136 Part Il. HTML for Structure

For each inline image on your page, consider what the alternative text would
sound like when read aloud and whether that enhances the experience or
might be obtrusive to a user with assistive technology.

Alternative text may benefit users with graphical browsers as well. If the user
has opted to turn images off in the browser preferences or if the image sim-
ply fails to load, the browser may display the alternative text to give the user
an idea of what is missing. The handling of alternative text is inconsistent
among modern browsers, however, as shown in FIGURE 7-4.

Providing the Dimensions with width and height

The width and height attributes indicate the dimensions of the image in
number of pixels. Browsers use the specified dimensions to hold the right
amount of space in the layout while the images are loading rather than
reconstructing the page each time a new image arrives, resulting in faster
page display. If only one dimension is set, the image will scale proportionally.

These attributes have become less useful in the age of modern web develop-
ment. They should never be used to resize an image (use your image-editing
program or CSS for that), and they should be omitted entirely when youre
using one of the responsive image techniques introduced later in this chapter.
They may be used with images that will appear at the same fixed size across
all devices, such as a logo or an icon, to give the browser a layout hint.

Be sure that the pixel dimensions you specify are the actual dimensions of
the image. If the pixel values differ from the actual dimensions of your image,
the browser resizes the image to match the specified values (FIGURE 7-5). If
you are using width and height attributes and your image looks distorted or
even slightly blurry, check to make sure that the values are in sync.

‘ Fresh tomatoes.

Browsers resize images to match the provided width and height
values, but you should not resize images this way.

width="72" height="72"
(actual size of image)

Fresh tomatoes. width="144" height="72"

Now that you know the basics of the img element, you should be ready to add
a few photos to the Black Goose Bistro Gallery site in EXERCISE 7-1.

The img Element

Avoid using “image of” or “graphic
of” in alt text values. It will be clear
that it is an image. If the medium

of the image, for example painting,
photograph, orillustration, is relevant
to the content, then it is fine to
include the descriptive term.

Image width in pixels

Image height in pixels

Image Accessibility

Some types of images, such as data
charts and diagrams, require long
descriptions that aren’t practical

as alt values. These cases require
alternate accessibility strategies,
which you will find in these resources:

o “Accessible Images” at WebAIM
(webaim.org/techniques/
images/)

* “Alternative Text” at WebAIM
(webaim.org/techniques/alttext/)

* The Web Content Accessibility
Guidelines (WCAG 2.0) at the
W3C (www.w3.0rg/TR/WCAG20-
TECHS/) include techniques for
improving accessibility across all
web content. Warning: this one is
pretty dense.

7.Adding Images 137

http://webaim.org/techniques/alttext/
http://www.w3.org/TR/WCAG20-TECHS/
http://www.w3.org/TR/WCAG20-TECHS/

The img Element

BLACK GOOSE BISTRO GALLERY

it e 7o o ety s et oo st s Lo 1

EXERCISE 7-1. Adding and linking images

Photo gallery pages.

Like more practice?

If you'd like more practice, you'll find
three additional images (chicken-800.
Jjpg, fries-800.jpg, and tabouleh-800.
Jjpg) with their thumbnail versions
(chicken-200.jpg, fries-200.jpg, and
tabouleh-200.jpg) in their appropriate
directories. This time, you’ll need to
add your own descriptions to the
home page and create the HTML
documents for the full-size images
from scratch.

-

In this exercise, you’ll add images to pages and use them as links. All of the full-size
photos and thumbnails (small versions of the images) you need have been created for you,
and I've given you a head start on the HTML files with basic styles as well. The starter files
and the resulting code are available at learningwebdesign.com/5e/materials. Put a copy
of the gallery folder on your hard drive, making sure to keep it organized as you find it.

This little site is made up of a main page (index.html) and three separate HTML documents
containing each of the larger image views (FIGURE 7-6). First, we’ll add the thumbnails,
and then we’ll add the full-size versions to their respective pages. Finally, we’ll make the
thumbnails link to those pages. Let’s get started.

Open the file index.html, and add the small thumbnail images to this page to accompany
the text. I've done the first one for you:

<p><img src="thumbnails/bread-200.jpg" alt="close-up of sliced rustic
bread" width="200" height="200">
We start our day at the..

I've put the image at the beginning of the paragraph, just after the opening <p> tag.
Because all of the thumbnail images are located in the thumbnails directory, | provided
the pathname in the URL. | added a description of the image with the alt attribute, and
because | know these thumbnails will appear at exactly 200 pixels wide and high on all
devices, I've included the width and height attributes as well to tell the browser how
much space to leave in the layout. Now it’s your turn.

1. Add the thumbnail images burgers-200.jpg and fish-200.jpg at the beginning of the
paragraphs in their respective sections, following my example. Be sure to include the
pathnames and thoughtful alternative text descriptions. Finally, add a line break (
)
after the img element.

When you are done, save the file and open it in the browser to be sure that the images
are visible and appear at the right size.
2. Next, add the images to the individual HTML documents. I've done bread.html for you:

<h1>Gallery: Baked Goods</h1>
<p><img src="photos/bread-800.jpg" alt="close-up of sliced rustic
bread" width="800" height="600"></p>

Notice that the full-size images are in a directory called photos, so that needs to be

reflected in the pathnames. Notice also that because this page is not designed to

be responsive, and the images will be a fixed size across devices, | went ahead and

included the width and height attributes here as well.

Add images to burgers.html and fish.html, following my example. Hint: all of the images
are 800 pixels wide and 600 pixels high.
Save each file, and check your work by opening them in the browser window.

3. Back in index.html, link the thumbnails to their respective files. I've done the first one:

<p><img src="thumbnails/bread-200.jpg" alt="close-
up of sliced rustic bread" width="200" height="200">
We start
our day at the crack of dawn..

Notice that the URL is relative to the current document (index.html), not to the location
of the image (the thumbnails directory).

Make the remaining thumbnail images link to each of the documents. If all the images
are visible and you are able to link to each page and back to the home page again, then
congratulations, you're donel!

138 PartIl. HTML for Structure

http://www.learningwebdesign.com/

That takes care of the basics of adding images to a page. Next we'll take on
adding SVG images, which are a special case, both in terms of the underlying
format and the ways they can be added to HTML.

ADDING SVG IMAGES

No lesson on adding images to web pages would be complete without an
introduction to adding SVGs (Scalable Vector Graphics). After all, the popu-
larity of SVG images has been gaining momentum thanks to nearly ubiqui-
tous browser support and the need for images that can resize without loss of
quality. For illustration-style images, they are a responsive dream come true.
I'm saving my deep-dive into all things SVG for Chapter 25, but for now T'll
give you a quick peek at what theyre made of so that the embedding markup
makes sense.

As I mentioned at the beginning of this chapter, SVGs are an appropriate for-
mat for storing vector images (FIGURE 7-1). Instead of a grid of pixels, vectors
are made up of shapes and paths that are defined mathematically. And even
more interesting, in SVGs those shapes and paths are specified by instruc-
tions written out in a text file. Let that sink in: they are images that are written
out in text! All of the shapes and paths as well as their properties are written
out in the standardized SVG markup language (see Note). As HTML has ele-
ments for paragraphs (p) and tables (table), SVG has elements that define
shapes like rectangle (rect), circle (circle), and paths (path).

A simple example will give you the general idea. Here is the SVG code that
describes a rectangle (rect) with rounded corners (rx and ry, for x-radius
and y-radius) and the word “hello” set as text with attributes for the font
and color (FIGURE 7-7). Browsers that support SVG read the instructions and
draw the image exactly as I designed it:

<svg xmlns="http://www.w3.0rg/2000/svg" viewBox="0 0 300 180">
<rect width="300" height="180" fill="purple" rx="20" ry="20"/>
<text x="40" y="114" fill="yellow" font-family=""'Verdana-Bold"'"
font-size="72">
hello!
</text>
</svg>

A simple SVG made up of a rectangle and text.

Adding SVG Images

NOTE

SVG is an example, or application, of
XML (Extensible Markup Language),
which provides the rules and standards
for how markup languages should be
written and work together. As a result,
SVG plays well alongside HTML content.

7.Adding Images 139

Adding SVG Images

SVGs offer some significant advantages over their bitmapped counterparts
for certain image types:

* Because they save only instructions for what to draw, they generally
require less data than an image saved in a bitmapped format. That means
faster downloads and better performance.

* Because they are vectors, they can resize as needed in a responsive layout
without loss of quality. An SVG is always nice and crisp. No fuzzy edges.

* Because they are text, they integrate well with HTML/XML and can be
compressed with tools like Gzip and Brotli, just like HTML files.

* They can be animated.
* You can change how they look with Cascading Style Sheets.

* You can add interactivity with JavaScript so things happen when users
hover their mouse over or click the image.

Again, all of the ins and outs of creating SVGs, as well as their many features,
are discussed in detail in Chapter 25. For now, Id like to focus on the HTML
required to place them in the flow of a web page. You have a few options:
embedded with the img element, written out in code as an inline svg element,
embedded with object, and used as a background image with CSS.

Embedded with the img Element

SVG text files saved with the .svg suffix (sometimes referred to as a stand-
alone SVG) can be treated as any other image, including placing it in the
document by using the img element. Youre an expert on the img element by
now, so the following example should be clear:

Pros and cons

The advantage to embedding an SVG with img is that it is universally sup-
ported in browsers that support SVG.

This approach works fine when you are using a standalone SVG as a simple
substitute for a GIF or a PNG, but there are a few disadvantages to embed-
ding SVGs with img:

* You cannot apply styles to the items within the SVG by using an external
style sheet, such as a .css file applied to the whole page. The .svg file may
include its own internal style sheet using the style element, however, for
styling the elements within it. You can also apply styles to the img element
itself.

* You cannot manipulate the elements within the SVG with JavaScript, so
you lose the option for interactivity. Scripts in your web document can't

140 Part Il. HTML for Structure

see the content of the SVG, and scripts in the SVG file do not run at all.
Other interactive effects, like links or :hover styles, are never triggered
inside an SVG embedded with img as well.

* You can't use any external files, such as embedded images or web fonts,
within the SVG.

In other words, standalone SVGs behave as though they are in their own little,
self-contained bubble. But for static illustrations, that is just fine.

Browser support for SVG with img

The good news is that all modern browsers support SVGs embedded with the
img element. The two notable exceptions are Internet Explorer versions 8 and
earlier, and the Android browser prior to version 3. As of this writing, users
with those browsers may still show up in small but significant numbers in
your user logs. If you see a reason for your site to support these older brows-
ers, there are workarounds, which I address briefly in the upcoming “SVG
Fallbacks” section.

Inline in the HTML Source

Another option for putting an SVG on a web page is to copy the content of
the SVG file and paste it directly into the HTML document. This is called
using the SVG inline. Here is an example that looks a lot like the inline img
example that we saw way back in FIGURE 7-2, only this time our pizza is a
vector image drawn with circles and inserted with the svg element (FIGURE
7-8). Each circle element has attributes that describe the fill color, the posi-
tion of its center point (cx and cy), and the length of its radius (r):

<p>This summer, try making pizza

<svg xmlns="http://www.w3.0rg/2000/svg" viewBox="0 0 72 72" width="100"
height="100">

<circle fill="#D4AB00" cx="36" cy="36" r="36"/>

<circle opacity=".7" fill="#FFF" stroke="#8A291C" cx="36.1" cy="35.9"
r="31.2"/>

<circle fill="#A52C1B" cx="38.8" cy="13.5" r="4.8"/>
<circle fill="#A52C1B" cx="22.4" cy="20.9" r="4.8"/>
<circle fill="#A52C1B" cx="32" cy="37.2" r="4.8"/

<circle fill="#A52C1B" cx="16.6" cy="39.9" r="4.8"/>
<circle fill="#A52C1B" cx="26.2" cy="53.3" r="4.8"/>
<circle fill="#A52C1B" cx="42.5" cy="27.3" r="4.8"/>
<circle fill="#A52C1B" cx="44.3" cy="55.2" r="4.8"/>
<circle fill="#A52C1B" cx="54.7" cy="42.9" r="4.8"/>
<circle fill="#A52C1B" cx="56" cy="28.3" r="4.8"/>

</svg>

on your grill.</p>

Adding SVG Images

SVG Server Configuration

If you are using SVGs and they are
not showing up correctly when your
site is uploaded, you may need to
configure the server to recognize
the SVG image type, as discussed at
the beginning of this chapter. Here’s
how to do it on the Apache server,
but similar configurations can be
done in other server languages:

AddType image/svg+xml .svg

An inline SVG image

7. Adding Images 141

Adding SVG Images

This summer, try making pizza on your grill.

This pizza image is an SVG made up of 11 circle elements. Instead
of an img element, the SVG source code is placed right in the HTML document with an
svg element.

This code was generated by Adobe Illustrator, where I created the illustration
and saved it in SVG format. I also optimized it to strip out a lot of cruft that
Mlustrator adds in there. We'll discuss SVG optimization in Chapter 25.

Pros and cons

Inline SVGs allow developers to take full advantage of SVG features. When
the SVG markup is alongside the HTML markup, all of its elements are part
of the main DOM tree. That means you can access and manipulate SVG
objects with JavaScript, making them respond to user interaction or input.
There are similar benefits for style sheets because the elements in the SVG
can inherit styles from HTML elements. That makes it easy to apply the same
styles to elements on the page and within the SVG graphic.

On the downside, the code for SVG illustrations can get extremely long and
unwieldy, resulting in bloated HTML documents that are difficult to read.
Even that little pepperoni pizza requires a serious block of code. It also makes
the images for a site more difficult to maintain, since they are tucked away
in the HTML documents. Another disadvantage is that inline SVGs are not
cached by the browser separate from the HTML file, so avoid this method for
large images that are reused across many HTML pages.

Browser support

The good news is that all modern browsers support SVG images placed
inline with the svg element. The following older browser versions lack sup-
port: Internet Explorer versions 8 and earlier, Safari versions 5 and earlier,
Android mobile browser prior to version 3, and iOS prior to version 5.

Embedded with the object Element

HTML has an all-purpose media embedding element called object. We'll
talk about it more in Chapter 10, Embedded Media, but for now, know that
object is another option for embedding an SVG in a web page. It is a good

142 Part Il. HTML for Structure

compromise between img and inline SVG, allowing a fully functional SVG
that is still encapsulated in a separate, cacheable file.

The opening object tag specifies the media type (an svg+xml image) and
points to the file to be used with the data attribute. The object element
comes with its own fallback mechanism—any content within the object gets
rendered if the media specified with data cant be displayed. In this case, a
PNG version of the image will be placed with an img if the .svg is not sup-
ported or fails to load:
<object type="image/svg+xml" data="pizza.svg">

</object>
There is one catch, however. Some browsers download the fallback image
even if they support SVG and don't need it. Useless downloads are not ideal.
The workaround is to make the fallback image a CSS background image in an
empty div container. Unfortunately, it is not as flexible for scaling and sizing,
but it does solve the extra download issue.
<object type="image/svg+xml" data="pizza.svg">
<div style="background-image: url(pizza.png); width 100px; height:

100px;" role="img" aria-label="pizza">
</object>

Pros and cons

The main advantage to embedding SVGs with the object element is that they
can be scripted and load external files. They can also use scripts to access
the parent HTML document (with some security restrictions). However,
because they are separate files and not part of the DOM for the page, you
can't use a style sheet in the HTML document to style elements within the
SVG. Embedded SVGs may also have some buggy behaviors in browsers, so
be sure to test thoroughly.

Used as a Background Image with CSS

[know that this is an HTML chapter, but I'd be remiss if I didn’t at least men-
tion that SVGs can be used as background images with CSS. This style rule
example puts a decorative image in the background of a header:

header {
background-image: url(/images/decorative.svg);

}

SVG Fallbacks

As mentioned earlier, all modern browsers support SVGs either embedded as
an img, embedded as an object, or included inline, which is very good news.
However, if your server logs show significant traffic from Internet Explorer
8 and earlier, Android version 3 and earlier, or Safari 5 and earlier, or if your

Adding SVG Images

Other Embedding
Options

Older techniques for adding SVGs
involve using two other HTML
elements for embedding media:
embed and iframe (we’'ll talk about
them in Chapter 10). You may still
see these in use with SVGs out there,
and they work fine for browsers that
support SVG, but most developers
consider them to be outdated
methods. Stick with img, inline svg,
object, and CSS background-
image.

7.Adding Images 143

Adding SVG Images

client just requires support for those browsers, you may need to use a fallback
technique. One option is to use the object element to embed the SVG on the
page and take advantage of its fallback content feature shown earlier.

If you are using SVG as an image with the img element, another option is
to use the picture element (it’s discussed as part of the “Responsive Image
Markup” section later in this chapter). The picture element can be used to
provide several versions of an image in different formats. Each version is
suggested with the source element, which in the following example points to
the pizza.svg image and defines its media type. The picture element also has
a built-in fallback mechanism. If the browser doesn’t support the suggested
source files, or if it does not support the picture element, users will see the
PNG image provided with the good old img element instead:
<picture>
<source type="image/svg+xml" srcset="pizza.svg">

</picture>

If you Google for “SVG fallbacks,” you'll likely get quite a few hits, many
of which use JavaScript to detect support. For more detailed information
on SVG fallbacks, I recommend reading Amelia Bellamy-Royd’s article, ‘A
Complete Guide to SVG Fallbacks” (css-tricks.com/a-complete-guide-to-svg-
fallbacks/) or Chris Coyier’s book, Practical SVG (A Book Apart) when you
are ready. Ideally, you will be reading this in a world where old Internet
Explorer and Android versions are no longer an issue.

Are you ready to give SVGs a spin? Try out some of the embedding tech-
niques we discussed in EXERCISE 7-2.

EXERCISE 7-2. Adding an SVG to a page

In this exercise, we’ll add some SVG images to the Black Goose Bistro page that we worked
on in Chapter 4. The materials for this exercise are available online at learningwebdesign.
com/5e/materials. You will find everything in a directory called svg. The resulting code is
provided with the materials.

This exercise has two parts: first, we’ll replace the logo with an SVG version, and second,
we’ll add a row of social media icons at the bottom of the page (FIGURE 7-9).

Part I: Replacing the logo
1. Open blackgoosebistro.html in a text editor. It should look just like we left it in Chapter 4.
2. Just for fun, let’s see what happens when you make the current PNG logo really large.

Add width="500" height="500" to the img tag. Save the file and open it in the
browser to see how blurry bitmapped images get when you size them larger. Yuck.

3. Let’s replace it with an SVG version of the same logo by using the inline SVG method.
In the svg folder, you will find a file called blackgoose-logo.svg. Open it in your text
editor and copy all of the text (from <svg> to </svg>).

144 Part Il. HTML for Structure

BLACK GOOSE BISTRO

The Restaurant

Adding SVG Images

The Black Goose Bistro offers casual lunch and dinner fare in a relaxed atmosphere. The menu changes regularly to

highlight the freshest local ingredients.

Catering

You have fun. We'l handle the cooking. Black Goose Catering can handle events from snacks for a meetup to elegant

corporate fundraisers.
Location and Hours
Seekonk, Massachusetts;

Monday through Thursday 11am to 9pm;
Friday and Saturday, 11am to midnight

Please visit our social media pages

The Black Goose Bistro page with SVG images.

. Go back to the blackgoosebistro.html file and delete the entire
img element (be careful not to delete the surrounding markup).
Paste the SVG text in its place. If you look closely, you will see
that the SVG contains two circles, a gradient definition, and two
paths (one for the starburst shape and one for the goose).

. Next, set the size the SVG should appear on the page. In the
opening svg tag, add width and height attributes set to
200px each.

<h1><svg width="200px" height="200px" ..

Save the file and open the page in the browser. You should see
the SVG logo in place, looking a lot like the old one.

. Try seeing what happens when you make the SVG logo really
big! Change the width and height to 500 pixels, save the file, and
reload the page in the browser. It should be big and sharp! No
blurry edges like the PNG. OK, now put the size back to 200 x
200 or whatever looks good to you.

Part Il: Adding icons

7. Next we're going to create a footer at the bottom of the page for
social media icons. Below the Location & Hours section, add the
following (the empty paragraph is where we'll add the logos):

<footer>
<p>Please visit our social media pages</p>
<p> </p>

</footer>

. Use the img element to place three SVG icons: twitter.svg,

facebook.svg, and instagram.svg. Note that they are located in
the icons directory. There are also icons for Tumblr and GitHub if
you'd like extra practice. Here’s a head start on the first one:

<p></p>

. Save the file and open it in the browser. The icons should be

there, but they are huge. Let’s write a couple of style rules to
make the footer look nice. We haven’'t done much with style
rules yet, so just copy exactly what you see here inside the
style element in the head of the document:

footer {
border-top: 1px solid #57bldc;
text-align: center;
padding-top: 1em;

footer img {
width: 40px;
height: 40px;
margin-left: .5em;
margin-right: .5em;

}

10. Save the file again and open it in the browser (you should see

a page that looks like FIGURE 7-9). Go ahead and play around
with the style settings, or even the code in the inline SVG, if
you'd like to get a feel for how they affect the appearance of the
images. It's kinda fun.

7. Adding Images 145

Responsive Image Markup

RESPONSIVE IMAGE MARKUP

Pretty quickly after smartphones, tablets, “phablets,” and other devices hit the
scene, it became clear that large images that look great on a large screen were
overkill on smaller screens. All that image data...downloaded and wasted.
Forcing huge images onto small devices slows down page display and may
cost real money too, depending on the user’s data plan (and your server
costs). Conversely, small images that download quickly may be blurry on
large, high-resolution screens. Just as we need a way to make whole web pages
respond and adapt to various screen sizes, we need a way to make images on
those page “responsive” as well. Our trusty img element with its single src
attribute just doesn't cut it in most cases.

It took a couple of years of proposals, experimentation, and discussion
between browser makers and the web development community, but we now
have a way to suggest alternate images by using HTML markup alone. No
complicated JavaScript or server-side hacks. The resulting responsive image
features (srcset and sizes attributes as well as the picture element) have
been incorporated into the HTML 5.1 specification, and browser support is
growing steadily, led by the Chrome browser in September 2014.

Thanks to a foolproof fallback and scripts that add support to older browsers,
you can start using these techniques right away. That said, none of this is set
in stone. Responsive image solutions are likely to be tweaked and improved,
or perhaps one day even made obsolete. If you are going to include them
in your sites, a good starting place for getting up-to-speed is the Responsive
Images Community Group (responsiveimages.org). RICG is a group of devel-
opers who worked together to hammer out the current spec with the browser
creators. They are on top of this stuff. You should also look for recent articles
and perhaps even crack open the spec.

How It Works

When we say “responsive images,” we are talking about providing images that
are tailored to the user’s viewing environment. First and foremost, responsive
image techniques prevent browsers on small screens from downloading more
image data than they need. They also include a mechanism to give high-reso-
lution displays on fast networks images large enough to look extra-gorgeous.
In addition, they provide a way for developers to take advantage of new, more
efficient image formats.

In short, responsive images work this way: you provide multiple images,
sized or cropped for different screen sizes, and the browser picks the most
appropriate one based on what it knows about the current viewing environ-
ment. Screen dimensions are one factor, but resolution, network speed, what’s
already in its cache, user preferences, and other considerations may also be
involved.

146 Part Il. HTML for Structure

The responsive image attributes and elements address the following four
basic scenarios:

* Providing extra-large images that look crisp on high-resolution screens

* Providing a set of images of various dimensions for use on different
screen sizes

* Providing versions of the image with varying amount of detail based on
the device size and orientation (known as the art direction use case)

* Providing alternative image formats that store the same image at much
smaller file sizes

Let’s take a look at each of these common use cases.

High-Density Displays (x-descriptor)

Everything that you see on a screen display is made up of little squares of
colored light called pixels. We call the pixels that make up the screen itself
device pixels (you'll also sometimes see them referred to as hardware pixels
or physical pixels). Until recently, screens commonly fit 72 or 96 device pixels
in an inch (now 109 to 160 is the norm). The number of pixels per inch (ppi)
is the resolution of the screen.

Bitmapped images, like JPEG, PNG, and GIF, are made up of a grid of pixels
too. It used to be that the pixels in images as well as pixel dimensions speci-
fied in our style sheets mapped one-to-one with the device pixels. An image
or box element that was 100 pixels wide would be laid out across 100 device
pixels. Nice and straightforward.

Device-pixel-ratios

It should come as no surprise that its not so straightforward today.
Manufacturers have been pushing screen resolutions higher and higher in an
effort to improve image quality. The result is that device pixels have been get-
ting smaller and smaller, so small that our images and text would be illegibly
tiny if they were mapped one-to-one.

To compensate, devices use a measurement called a reference pixel for lay-
out purposes. Reference pixels are also known as points (PT) in iOS, Device
Independent Pixels (DP or DiP) in Android, or CSS pixels because they are
the unit of measurement we use in style sheets. The iPhone 8 has a screen
that is made up of 750 x 1334 device pixels, but it uses a layout grid of 375 x
667 points or CSS pixels (a ratio of 2 device pixels to 1 layout pixel—2:1 or
2x). A box sized to 100 pixels wide in CSS would be laid out across 200 device
pixels on the iPhone8. The iPhone X has a screen that is made up of 1125 x
2436 pixels, but it uses a layout grid of 375 x 812 points (a ratio of 3 device
pixels to one point—or 3x). A box sized to 100 pixels is laid out across 300
device pixels on the iPhone X.

Responsive Image Markup

7. Adding Images

147

Responsive Image Markup

The ratio of the number of device pixels to CSS pixels is called the device-
pixel-ratio (FIGURE 7-10). Common device-pixel-ratios on handheld devices
are 1.325x, 1.5x, 1.7x, 2x, 24x, 3x, and even 4x (the “x” is the convention for
indicating a device-pixel-ratio). Even large desktop displays are featuring
ratios of 2x, 3x, and 4x.

Image or object = 1:1 device-pixel-ratio (1x)

3 x 3 reference or CSS pixels 3 x 3 device pixels, indicated by grid
2:1 device-pixel-ratio (2x) 3:1 device-pixel-ratio (3x)

6 x 6 device pixels 9 x 9 device pixels

Device pixels compared to CSS/reference pixels.

Let’s say you have an image that you want to appear 200 pixels wide on all
displays. You can make the image exactly 200px wide (px is short for pixels),
and it will look fine on standard-resolution displays, but it might be a little
blurry on high-resolution displays. To get that image to look sharp on a
display with a device-pixel-ratio of 2x, you’d need to make that same image
400 pixels wide. It would need to be 600 pixels wide to look sharp on a 3x
display. Unfortunately, the larger images may have file sizes that are four or
more times the size of the original. Who wants to send all that extra data to
a 1x device that really only needs the smaller image?

Introducing srcset

We now have a way to serve larger images just to the browsers on displays
that benefit from them. We do it using the new srcset attribute with our old
friend the img element. srcset allows developers to specify a list of image
source options for the browser to choose from.

The value of srcset is a comma-separated list of options. Each item in that
list has two parts: the URL of an image and an x-descriptor that specifies the
target device-pixel-ratio. Note that the whole list is the value of srcset and

148 Part Il. HTML for Structure

goes inside a single set of quotation marks. This sample shows the structure
of a srcset value:

srcset="image-URL #x, image-URL #x"

The src attribute is still required, and is generally used to specify the default
1x image for browsers that don’t support srcset. Make sure there is an alt
attribute as well:

Let’s look at an example. I have an image of a turkey that Id like to appear 200
pixels wide. For standard resolution, I created the image at 200 pixels wide
and named it turkey-200px.jpg. Id also like it to look crisp in high-resolution
displays, so I have two more versions: turkey-400px.jpg (for 2x) and turkey-
600px.jpg (for 3x). Here is the markup for adding the image and indicating
its high-density equivalents with x-descriptors:

<img src="/images/turkey-200px.jpg" alt=""
srcset="/images/turkey-400px.jpg 2x, /images/turkey-600px.jpg 3x" >

Because browsers ignore line returns and spaces in the source document, I
can also write that same element stacked in this way to make it a little easier
to read, as I will be doing throughout this chapter:
<img
src="/images/turkey-200px.jpg" alt=""

srcset="/images/turkey-400px.jpg 2x,
/images/turkey-600px.jpg 3x" >

That makes the options and structure more clear at a glance, don’t you think?

Browsers that recognize the srcset attribute check the screen resolution and
download what they believe to be the most appropriate image. If the browser
is on a Mac with a 2x Retina display, it may download image-400px.jpg. If the
device-pixel-ratio is 1.5x, 24x, or something else, it checks the overall viewing
environment and makes the best selection. It is important to know that when
we use srcset with the img element, we are handing the keys to the browser
to make the final image selection.

When to use x-descriptors

X-descriptors tell the browser to make a selection based on screen resolution
only, with no regard for the dimensions of the screen or viewport. For this
reason, x-selectors are best used for images that stay the same pixel dimen-
sions regardless of the screen size, such as logos, social media badges, or other
fixed-width images.

It is much more likely that you'll want images to resize based on the size of
the screen and to be able to serve small images to small handheld devices,
and large images to desktops (that’s kind of the crux of this responsive image
thing, after all). Now that you are familiar with using the srcset attribute,
let’s see how it can be used to deliver images targeted to various screen sizes.
Here’s where srcset really shines.

Responsive Image Markup

7. Adding Images

149

Responsive Image Markup

NOTE

On a mobile device, the viewport fills
the whole screen. On a desktop browser,
the viewport is the area where the page
displays, not including the scrollbars and
other browser “‘chrome.”

Variable-Width Images (w-descriptor)

When you're designing a responsive web page, chances are you'll want image
sizes to change based on the size of the browser viewport (see Note). This is
known as a viewport-based selection. And because you are the type of web
developer who cares about how fast pages display, you'll want to limit unnec-
essary data downloads by providing appropriately sized images.

To achieve this goal, use the srcset and sizes attributes with the img element.
As we saw in previous examples, the srcset gives the browser a set of image
file options, but this time, it uses a w-descriptor (width descriptor) that pro-
vides the actual pixel width of each image. Using srcset with a w-descriptor
is appropriate when the images are identical except for their dimensions (in
other words, they differ only in scale). Here’s an example of a srcset attribute
that provides four image options and specifies their respective pixel widths
via w-descriptors. Note again that the whole list is in a single set of quota-
tion marks:
srcset="strawberries-480.jpg 480w,
strawberries-960.jpg 960w,

strawberries-1280.jpg 1280w,
strawberries-2400.jpg 2400w"

Using the sizes attribute

That’s a good start, but whenever you use w-descriptors, you also need to use
the sizes attribute to tell the browser the approximate size that the image will
appear in the page’s layout. There is a very good reason (in addition to being
required in the spec), and it is worth understanding,.

When a browser downloads the HTML document for a web page, the first
thing it does is look through the whole document and establish its outline
structure (its Document Object Model, or DOM). Then, almost immediately,
a preloader goes out to get all the images from the server so they are ready
to go. Finally, the CSS and the JavaScript are downloaded. It is likely that the
style sheet has instructions for layout and image sizes, but by the time the
browser sees the styles, the images are already downloaded. For that reason,
we have to give the browser a good hint with the sizes attribute whether the
image will fill the whole viewport width or only a portion of it. That allows
the preloader to pick the correct image file from the srcset list.

We'll start with the simplest scenario in which the image is a banner and
always appears at 100% of the viewport width, regardless of the device
(FIGURE 7-11). Here’s the complete img element:

<img src="strawberries-640.]jpg"
alt="baskets of ripe strawberries"
srcset="strawberries-480.jpg 480w,
strawberries-960.jpg 960w,
strawberries-1280.jpg 1280w,
strawberries-2400.jpg 2400w"
sizes="100vw">

150 PartIl. HTML for Structure

itlechaircom)

FIGURE 7-11. Theimage fills 100% of the viewport width, regardless of its size.

In this example, the sizes attribute tells the browser that the image fills the
full viewport by using viewport width units (vw), the most common unit for
the sizes attribute, so the browser can pick the best image for the job. For
example, 100vw translates to 100% of the viewport width, 50vw would be 50%,
and so on. You can also use em, px, and a few other CSS units, but you cannot
use percentages. Browsers that do not support srcset and sizes simply use
the image specified in the src attribute.

Sizing an image to fill the whole width of the browser is a pretty specific case.
More likely, your images will be one component in a responsive page layout
that resizes and rearranges to make best use of the available screen width.
FIGURE 7-12 shows a sidebar of food photos that take up the full width of the
screen on small devices, take up a portion of the width on larger devices, and
appear three across in a layout for large browser windows.

e arer s0zom 4 T00%

littlechair.com <

© 58 D) musruive mages
esa e €

Farmers’ Market Picks Farmers' Market Picks

Responsive Image Markup

FIGURE 7-12. The width of the images changes based on the width of the viewport.

Browsers that do not
support srcset and sizes
use the image specified in
the src attribute.

7.Adding Images 151

Responsive Image Markup

WARNING

The sizes attribute will resize an image
even if there is no CSS applied to it. If
there is a CSS rule specifying image size
that conflicts with the value of the sizes
attribute, the style rule wins (i.e., it over-
rides the sizes value).

For cases like these, use the sizes attribute to tell the browser something
about how the image will be sized for each layout. The sizes value is a
comma-separated list in which each item has two parts. The first part in
parentheses is a media condition that describes a parameter such as the
width of the viewport. The second part is a length that indicates the width
that image will occupy in the layout if the media condition is met. Here’s how
that syntax looks:
sizes="(media-feature: condition) length,

(media-feature: condition) length,
(media-feature: condition) length"

I've added some media conditions to the previous example, and now we have
a complete valid img element for one of the photo images in FIGURE 7-12:
<img src="strawberries-640.jpg" alt="baskets of ripe strawberries"
srcset="strawberries-240.jpg 240w,
strawberries-480.jpg 480w,
strawberries-672.jpg 672w"
sizes="(max-width: 480px) 100vw,
(max-width: 960px) 70vw,
240px">

The sizes attribute tells the browser the following:

* If the viewport is 480 pixels wide or smaller (maximum width is 480
pixels), the image fills 100% of the viewport width.

* If the viewport is wider than 480 pixels but no larger than 960 pixels
(max-width: 960px), then the image will appear at 70% of the viewport.
(This layout has 15% margins on the left and the right of the images, or
30% total.)

* If the viewport is larger than 960 pixels and doesn’t meet any of the prior
media conditions, the image gets sized to exactly 240 pixels.

Now that the browser knows the width of the viewport and how big the
image will appear within it, it can select the most appropriate image from the
srcset list to download.

There’s a bit more to using sizes than shown here—other media conditions,
additional length units, even the ability to ask the browser to calculate widths
for you. If you plan on using viewport-width-based images in your designs, [
recommend reading the spec to take full advantage of the possibilities.

NOTE

Strategies and tools for producing the image sets for responsive layouts are introduced in
Chapter 24, Image Asset Production.

152 Part Il. HTML for Structure

Responsive Image Markup

Art Direction (picture Element)

So far, we've looked at image selection based on the resolution of the screen
and the size of the viewport. In both of these scenarios, the content of the Specifies a number of image options
image does not change but merely resizes.

But sometimes, resizing isn't enough. You might want to crop into important
details of an image when it is displayed on a small screen. You may want to
change or remove text from the image if it gets too small to be legible. Or you
might want to provide both landscape (wide) and portrait (tall) versions of
the same image for different layouts.

Specifies alternate image sources

For example, in FIGURE 7-13, the whole image of the table as well as the dish
reads fine on larger screens, but at smartphone size, it gets difficult to see the
delicious detail. It would be nice to provide alternate versions of the image
that make sense for the browsing conditions.

That dinner looks delicious on desktop browsers.
(1280px wide)

Detail is lost when the full image is Cropping to the most important detail
shrunk down on small devices. may make better sense.
(300px wide) (300px wide)

Some images are illegible when resized smaller for mobile devices.

This scenario is known as an art-direction-based selection and it is accom-
plished with the picture element. The picture element has no attributes; it
is just a wrapper for some number of source elements and an img element.
The img element is required and must be the last element in the list. If the img
is left out, no image will display at all because it is the piece that is actually

7.Adding Images 153

Responsive Image Markup

iPhone iPad

Savor the summer.

placing the image on the page. Let’s look at a sample picture element and
then pick it apart:
<picture>
<source media="(min-width: 1024px)" srcset="icecream-large.jpg">
<source media="(min-width: 760px)" srcset="icecream-medium.jpg">
<img src="icecream-small.jpg" alt="hand holding ice cream cone and
text that reads Savor the Summer">
</picture>

This example tells the browser that if the viewport is 1024 pixels wide or
larger, use the large version of the ice cream cone image. If it is wider than
760 pixels (but smaller than 1024, such as on a tablet), use the medium ver-
sion. Finally, for viewports that are smaller than 760 pixels and therefore
don’t match any of the media queries in the previous source elements, the
small version should be used (FIGURE 7-14). The small version, as specified
in the img element, will be used for browsers that do not recognize picture
and source.

Each source element includes a media attribute and a srcset attribute. It
can also use the sizes attribute, although that is not shown in the previous
example. The media attribute supplies a media query for checking the cur-
rent browsing conditions. It is similar to the media conditions we saw in the
earlier srcset example, but the media attribute specifies a full-featured CSS
media query (we’ll talk more about media queries in Chapter 17, Responsive
Web Design). The srcset attribute supplies the URL for the image to use if
the media query is a match. In the previous example, there is just one image
specified, but it could also be a comma-separated list if you wanted to pro-
vide several options using x- or w-descriptors.

Browsers download the image from the first source that matches the cur-
rent conditions, so the order of the source elements is important. The URL
provided in the srcset attribute gets passed to the src attribute in the img

Chrome browser on desktop

[ArtDirecred mages

Savor the summer.

FIGURE 7-14. The picture element provides different image versions to be sourced
at various screen sizes.

154 Part Il. HTML for Structure

element. Again, it’s the img that places the image on the page, so don't omit
it. The alt attribute for the img element is required, but alt is not permitted
in the source element.

Art direction is the primary use of the picture element, but let’s look at one
more thing it can do to round out our discussion on responsive images.

Alternative Image Formats (type Attribute)

Once upon a time, in the early 1990s, the only image type you could put on a
web page was a GIE. JPEGs came along not long after, and we waited nearly
a decade for reliable browser support for the more feature-rich PNG format.
It takes a notoriously long time for new image formats to become universally
supported. In the past, that meant simply avoiding newer formats.

In an effort to reduce image file sizes, more efficient image formats have been
developed—such as WebP, JPEG 2000, and JPEG XR—that can compress
images significantly smaller than their JPEG and PNG counterparts (see
Note). And once again, some browsers support them and some don’t. The dif-
ference is that today we can use the picture element to serve the newer image
formats to browsers that can handle them, and a standard image format to
browsers that cant. We no longer have to wait for universal browser support.

In the following example, the picture element specifies two image alterna-
tives before the fallback JPEG listed in the img element:
<picture>
<source type="image/webp" srcset="pizza.webp">
<source type="image/jxr" srcset="pizza.jxr">

</picture>
For image-format-based selections, each source element has two attributes:
the srcset attribute that we’ve seen before, and the type attribute for specify-
ing the type of file (also known as its MIME type, see the “File (MIME) Types”
sidebar). In this example, the first source points to an image that is in the
WebP format, and the second specifies a JPEG XR. Again, the browser uses
the image from the first source that matches the browser’s image support, so
it makes sense to put them in order from smallest to largest file size.

Browser Support

As I'write this section, it seems like a new browser is adding support for pic-
ture, srcset, and sizes every day, but of course, old browser versions have
a bad habit of sticking around for years. This is not a reason to avoid using
responsive images, however. First of all, all of these features are designed to
include the img element as a built-in fallback for browsers that don’t recognize
the newer markup. In the worst case, the browser grabs the image specified
in the img element.

Responsive Image Markup

NOTE

The bitmapped image formats, includ-
ing WebF, JPEG 2000, and JPEG XR, are
discussed in more detail in Chapter 23,
Web Image Basics.

File (MIME) Types

The web uses a standardized

system to communicate the type

of media files being transferred
between the server and browser.

It is based on MIME (Multipurpose
Internet Mail Extension), which was
originally developed for sending
attachments via email. Every file
format has a standardized type
(such as image, application,
audio, or video), subtype that
identifies the specific format, and
one or more file extensions. In our
example, the type attribute specifies
the WebP option with its type/
subtype (image/webp) and uses the
proper file extension (.webp). Other
examples of media MIME types are
image/jpeg (extensions .jpg, .jpeg),
video/mpeg (extensions.mpg,
.mpe,.mpeg, .m1lv,.mp2,.mp3, and
.mpa), and application/pdf (pdf).
The complete listing of registered
MIME types is published by the

IANA (Internet Assigned Numbers
Authority) at www.iana.org/
assignments/media-types.

7. Adding Images 155

Responsive Image Markup

The site CanlUse.com is a great tool
for checking on the browser support
for HTML, CSS, and other frontend
web technologies. Type in picture,
srcset, or sizes to see where
browser support stands.

If that isn't good enough, try including Picturefill with your web pages.
Picturefill is an example of a polyfill, a script that makes older browsers
behave as though they support a new technology—in this case, responsive
images. It was created by Scott Jehl of Filament Group, creators of many fine
responsive design and frontend development tools. Go to scottjehl.github.io/
picturefill/ to download the script and read the very thorough tutorial on how
it works and how to use it.

Responsive Images Summary

This has been a long discussion about responsive images, and we’ve really
only scratched the surface. We've looked at how to use the img element with
srcset and sizes to make pixel-ratio-based and viewport-size-based selections
(you can try them yourself in EXERCISE 7-3). We also saw how the picture
element can be used for art-direction-based and image-type-based selections.

I've kept my examples short and sweet, but know that it is possible to com-
bine techniques in different ways, often resulting in a tower of code for each
image. To see some examples of how these responsive image techniques
might be combined to target more than one condition, I recommend Andreas
Bovenss article “Responsive Images: Use Cases and Documented Code
Snippets to Get You Started” on the Dev.Opera site (dev.opera.com/articles/
responsive-images/).

I also recommend the 10-part “Responsive Images 101” tutorial by Jason
Grigsby at Cloud Four. He goes into a bit more detail than I was able to here
and provides links to other good resources. Start with “Part 1: Definitions”
(cloudfour.com/thinks/responsive-images-101-definitions/).

EXERCISE 7-3. Adding responsive images

Ready to try out some of this responsive image stuff? | recommend downloading the
latest version of Google Chrome (google.com/chrome/) or Firefox (firefox.com) so you are
certain it supports the responsive image HTML features. The materials for this exercise are
provided at learningwebdesign.com/5e/materials. Use the responsivegallery directory
that contains a starter HTML file and images directory.

We're going to give the Black Goose Bistro Gallery page a makeover using responsive
images. Now, instead of the user clicking a thumbnail and going to a separate page, the
large images appear right on the page and resize to fill the available space. Small devices
and browsers that don’t support picture get a 400-pixel-square version of each image
(FIGURE 7-15).

1. Open the file index.html located in the responsivegallery directory in a text or HTML
editor. I've added a meta element that sets the viewport to the same size as the device
width, which is required to make this page responsive. | also added a style for img
elements that sets their maximum width to 100% of the available space. That is the bit
that makes the images scale down for smaller screen widths. We'll talk a lot more about

156 Part Il. HTML for Structure

Responsive Image Markup

woco ATAT ® 2 agem T g

BLACK GOOSE BISTRO GALLERY

Small devices like the iPhone show T~ On viewports larger than 480
the cropped 400-pixel-square image. A S R S A S e D pixels, like the iPad shown here,
OurCaked Soode) the full version of the image is

used. It resizes to fill the available
width of the page between the
margins.

We start our day at the rack of dawn fo
bake our own mulins, bread, and diner
ol Loaves not used thal day are.

ated 10 the local iood shelter.

We start our day at the crack of dawn to bake our own muffins, bread, and dinner rolls.
Loaves not used that day are donated to the local food shelter.

Our Burgers

D Blckatons it Catary
BLACK GOOSE BISTRO GALLERY
BLACK GOOSE BISTRO GALLERY

Not is our food good, pa fare with a quick Instagram beore digaing in. We'vo collected a fow of our
favorite shots here. Our Baksd Goode

Notis our food good., fare with a quick

dng| Our
digging in. Wove collectod a fow of our favorite shots here.

Our Baked Goods [

] brea, that day are
10 the local feod sholter.

Our Burgers

On very large desktop displays, the full version of the Browsers that do not support picture display the
image resizes to fill the available width. 400-pixel-square image specified by the img element.

FIGURE 7-15. The Black Goose Bistro Gallery with responsive images in place.
Smaller devices see a square cropped version of the image. Larger browsers get the full
image that resizes to fill the content width.

responsive design in Chapter 17, so don’t worry about it too much now. I just wanted to
point out changes from our previous exercise.

2. Because we want to change between horizontal and square versions of the image on
this page, we'll need to use the picture element. Start by adding the bare bones of a
picture element in the first paragraph after “Our Baked Goods,” including the picture
wrapper and its required img element. The img element points to the default square
version of the image (bread-400.jpg). Add a line break element after the picture
element to start the text on the next line: e

7.Adding Images 157

Responsive Image Markup

EXERCISE 7-3. Continued

<p>
<picture>

<img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day..

3. That takes care of small devices and the fallback for non-supporting devices. Now add
a source element that tells browser to use a 1200-pixel-wide landscape version of the
image when the viewport is larger than 480 pixels:

<p>
<picture>
<source media="(min-width: 480px)"
srcset="images/bread-1200.jpg">
<img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day..
Note that because there is only one image specified in the source, we could have used
a simple src attribute here, but we have more work to do, so the srcset gets us ready
for the next step.

4. Because we don’t want to force such a large image on everyone, let’s give the browser
an 800-pixel-wide version as well. (Even more versions would be useful, but for the sake
of keeping this exercise manageable, we'll stop at two.) Remember that the srcset
attribute specifies a comma-separated list of images and their respective pixel widths
with w-descriptors. I've added the 1200w descriptor to the original image and added
the 800-pixel option to the srcset. Finally, use the sizes attribute to let the browser
know that the image will occupy 80% of the viewport width (the style sheet adds a 10%
margin on the left and right sides, leaving 80% for the content). Now the browser can
choose the most appropriate size.

<p>
<picture>
<source media="(min-width: 480px)"
srcset="images/bread-1200.jpg 1200w,
images/bread-800.jpg 800w"
sizes="80vw">
<img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day..

5. Save the file. Launch the Chrome or Firefox desktop browser and resize the window to
as narrow as it will go. Open index.html and you should see the square cropped version
of the bread photo. Slowly drag the corner of the browser window to make the window

NOTE wider. When it gets wider than 480 pixels, it should switch to the full version of the
photo. If you see a little “800” in the corner of the image, that means the browser has
Ifyou don’t see the images at all, it downloaded bread-800.jpg for this task. Keep expanding the window, and the image
could be that your pathnames are should keep getting larger. If you see “1200,” it means it is using bread-1200.jpg. Once
incorrect or the images directory hasn't the larger image is in the browser’s cache, you won’t see the 800-pixel version again. Try
copied to your computer. making the window narrow and wide again and watch what changes. Congratulations!

You are now an official responsive web designer! Making windows narrow and wide is
how we spend a good portion of our workday.

6. Add the remaining two images to the page, following my example. Try experimenting
with different min- and max-widths in the media attribute.

158 PartIl. HTML for Structure

WHEW! WE’RE FINISHED

That wraps up our exploration of images. We've seen how to place images
with the img element and its required src and alt attributes. We've talked
about the importance of good alternative text for accessibility. We also looked
at a few ways to embed SVG images into a web page. Finally, we took on the
newly minted responsive image features, including srcset and sizes for the
img element to target high-density displays or to provide a variety of image
sizes for the browser to choose from, and the picture and source elements for
art direction and alternative image formats. Now try answering a few ques-
tions to test your knowledge.

TEST YOURSELF

Images are a big part of the web experience. Answer these questions to see
how well you've absorbed the key concepts of this chapter. The correct
answers can be found in Appendix A.

1. Which attributes must be included in every img element?

2. Write the markup for adding an image called furry.jpg that is in the same
directory as the current document.

3. Name two reasons to include alternative text for an img element.

4. 'What might be going wrong if your images don’t appear when you view
the page in a browser? There are three possible explanations.

5. What is the difference between an x-descriptor and a w-descriptor?

6. What is the difference between a device pixel and a CSS (reference) pixel?

Test Yourself

N

Alternatives to
Responsive Images

Although it is terrific to have an HTML
solution for getting the right images
to the right browsers, the current
system is cumbersome with stacks

of code and the need to produce
multiple images. If you work on an
image-heavy site, it could prove to be
unmanageable. Image processing is a
task that begs to be automated. The
solution: let the server do it!

Fortunately, there are many tools
and services, both open source and
for pay, that let the server do the
work of creating appropriate image
versions on the fly. You upload the
largest available size of the image
and let the server handle the rest—no
need to create and store multiple
versions of every image. In general,
image-generation services address
only resizing, and not art direction or
alternative image types; however, at
least one service (Cloudinary.com)
uses face detection as a basis for
image cropping.

Some content management systems
(CMSs) have image resizing features
built in. Another option is to install
software on your own server. Bear

in mind, however, that requiring
JavaScript to be running is less than
ideal. There are also many third-party
solutions that provide image-resizing
services (like Cloudinary.com and
Kraken.io), usually for a fee. For large,
image-heavy sites, they are worth
looking into.

Jason Grigsby of Cloud Four has
compiled a spreadsheet of image-
resizing software and services that
serves as a good jumping-off point.
You can get to it from his article,
“Image Resizing Services” (cloudfour.
com/thinks/image-resizing-
services/) or at tinyurl.com/pmpbyzj.

7. Adding Images 159

Test Yourself

Match the responsive image scenarios with the HTML solutions:

a.
b.

C.

<picture>
<source type="." srcset="">

</picture>
<picture>

<source media="()" srcset="">

</picture>

You want the image to always fill the width of the browser window.

You want to take advantage of the file savings of the WebP image
format.

You want to remove the text from an image when it is on small
screens.

You want your product images to look as sharp as possible on
high-resolution screens.

You want to show a close-up of the action in a news image on small
screens.

You want the image to resize smaller when it is part of the layout
on a large screen.

Challenge question: Describe what this example tells the browser to do:

<picture>

<source sizes="(min-width: 480px) 80ww,

100vw"
srcset="photo-200.webp 200w
photo-400.webp 400w,
photo-800.webp 800w,
photo-1200.webp 1200w"
type="image/webp">

<img src=" photo-400.jpg" alt=""

sizes="(min-width: 480px) 80ww,
100vw"

srcset="photo-200.jpg 200w,
photo-400.jpg 400w,
photo-800.jpg 800w,
photo-1200.jpg 1200w">

</picture>

160 Part Il. HTML for Structure

10.

1L

12.

13.

14.

What is cache and how does it affect web page performance?

Test Yourself

Name one advantage and one disadvantage of adding an SVG to a page
with the img element.

Name one advantage and one disadvantage of inline SVG.

Many of the images in this chapter
are from the fabulous royalty-free
photo site, Unsplash.com: ravioli
by Davide Ragusa, burgers by
Niklas Rhose, ice cream cone by
Alex Jones, dinner table by Jay
Wennington, strawberries by Priscilla
Fong. From Flickr’s “No Rights
Restrictions” collection: fish dish
by Renata Maia, muffins by Hasma
Kanouni. All others are uncredited
public domain images.

When would it be appropriate to add an SVG to a page as a background
image with CSS?

What is this bit of code describing, and when might you need to use it?

image/svg+xml

What is this bit of code describing, and where would you find it?
http://www.w3.0rg/2000/svg

7.Adding Images 161

Element Review: Images

ELEMENT REVIEW: IMAGES

Following are the elements you learned in your exploration of image markup.

src="url"

srcset="1ist of urls
with descriptors"

sizes="1ist media
conditions and layout
sizes"

width="number"
height="number"

usemap="usemap"

Element and attributes Description
img Inserts an inline image
alt="text" Alternative text

The location of the image file

Images to use in different situations
Image sizes for different layouts
Width of the graphic

Height of the graphic

Indicates the client-side image map to use

sizes="source size
list"

media="media query"

type="media type"

picture Container that provides multiple sources to its con-
tained img element
source Provides alternate sources for the img element
src="URL" Address of the image resource
srcset="URL" Images to use in different situations

Image sizes for different page layouts

Query to determine applicable media

Media (MIME) type of embedded image file

svg

Adds an inline SVG image

162 PartIl. HTML for Structure

TABLE MARKUP

Before we launch into the markup for tables, let’s check in with our progress
so far. We've covered a lot of territory: how to establish the basic structure of
an HTML document, how to mark up text to give it meaning and structure,
how to make links, and how to embed simple images on the page.

This chapter and the next two chapters, Chapter 9, Forms, and Chapter 10,
Embedded Media, describe the markup for specialized content that you might
not have a need for right away. If youe getting antsy to make your pages look
good, skip right to Part Ill and start playing with Cascading Style Sheets. The
tables, forms, and media chapters will be here when you're ready for them.

Are you still with me? Great. Lets talk tables. We'll start out by reviewing
how tables should be used, then learn the elements used to create them.
Remember, this is an HTML chapter, so were going to focus on the markup
that structures the content into tables, and we won’t be concerned with how
the tables look (that will be tackled in various CSS chapters in Part Ill).

HOW TO USE TABLES

HTML tables were created for instances when you need to add tabular mate-
rial (data arranged into rows and columns) to a web page. Tables may be
used to organize schedules, product comparisons, statistics, or other types
of information, as shown in FIGURE 8-1. Note that “data” doesn't necessarily
mean numbers. A table cell may contain any sort of information, including
numbers, text elements, and even images and multimedia objects.

In visual browsers, the arrangement of data in rows and columns gives read-
ers an instant understanding of the relationships between data cells and their
respective header labels. Bear in mind when you are creating tables, however,

CHAPTER

8

IN THIS CHAPTER

How tables are used

Basic table structure
Spanning rows and columns
Row and column groups

Making tables accessible

163

How to Use Tables

List ot elements

Element Description Categories Parentst Children Attributes Interface
. Hyperlink flow: phrasing™: phrasing | transparent” Qlobals; nrel; target: reli pwdis; hreflang |ERMLAnchorEloment
abbr Abbreviation flow; phrasing |phuasing | phrasing globals
address Contact information for |flow; formatblock flow flow" globals
a page or section I

anes Hyperlink or dead area |flow; phrasing phrasing® |empty EMChceaElmmenk
on an image map

article Self-contained flow; sectioning; flow flow EME)ensat
syndicatable or formatBlock Candidate
reusable

aside Sidebar for flow: sectionina; flow flow alobals UTHLE Lament
tangentially related formatnlock candidate
content

audio Audio player flow; phrasing; phrasing |source®; globals; src; preload; autoplay} mediagroup; |EIMLAudicElement

embedded; interactive transparent” Loop; controls

b Keywords flow; phrasing |ohrasing | ohrasing globals

base |Base URL and default |metadata hoad empty globals; nrer; targor
target browsing
context for hyperinks
and forms

Bat Toxt dircctionality flow; phrasing phrasing | phrasing globals
isolation

bdo Text directionality flow; phrasing phrasing ~ [phrasing globals HTMLE Lement
formatting

blockquote |A gection quoted from |flow; sectioning root; flow flow globalg; cite ETMLQuotel)ement
another source formatbleck candidate

w3c.org

PM 7:30 8:00 8:30 9:00 9:30 10:00 10:30

The Adventures of The Patty Duke

ABC
Ozzie and Harriet Show

Gidget The Big Valley Amos Burke — Secret Agent*

The Beverly Hillbilies |Green Acres #11 The Dick Van Dyke

CBS | Lostin Space 48 25.9 rating 246 rating Show #16 23.6 raling The Danny Kaye Show
Bob Hope Presents the Chrysler Theatre /

e _ Oty o eseonss e Poh Nopeicpeck) e

wikipedia.org
ﬁ)) Biint this Schedule i i Line Schedule T
Providence/Stoughton Line Senvice Alerts South Station and Back Bay Schedule T
Holiday Schedule Information

Diraction: [Inbound 3] Timing: | Weekday %) | Redisplay Time

PROVIDENCE/STOUGHTON LINE INBOUND : Weekday Effective 11/14/11

800
AM
05:05 06:13 08:52 07:15 09:23 11:45

TF Green Airport

Providence 05:07 05:25 06:07 06:33 o712 07:35 08:10 09:43 12:05 01:30
South Attieboro 05:17 05:35 06:16 06:42 or:22 0745 08:20 09:52 12:15 01:42
Attleboro 05:2T 05:45 08:28 06:52 oT:32 07:55 08:30 09:00 10:02 12:25 01:51
Mansfield 05:36 05:55 06:38 07:04 07:28 07T:44 08:05 08:38 09:08 10:10 12:33 01:58
Sharon 05:44 06:04 06:48 07:13 07:35 08:14 08:47 09:17 10:19 12:42 02:08
Stoughten 06:28 08:56 0748 08:28 08:40 10:40 02:20 03:23
Canton Center 06:36 07:04 o757 08:36 09:49 10:49 ozar 0
Canton Junction 05:51 06:11 06:39 07:08 o741 08:01 08:24 08:40 08:54 09:24 0%:52 10:26 10:52 12:50 02:30 03:33 O
Route 128 05:56 06:16 06:44 06:58 07:14 07:24 07:47 08:07 068:30 08:45 08:59 09:26 09:57 10:31 10:57 12:55 02:16 03:38
Hyde Park 06:01 06:21 06:49 0719 0752 08:13 08:36 08:43 03:04 10:02 10:38 11:02 01:00 02:38 03:43 O
mbta.org

Examples of tables used for tabular information, such as charts,
calendars, and schedules.

that some readers will be hearing your data read aloud with a screen reader
or reading Braille output. Later in this chapter, we’ll discuss measures you
can take to make table content accessible to users who don’t have the benefit
of visual presentation.

In the days before style sheets, tables were the only option for creating mul-
ticolumn layouts or controlling alignment and whitespace. Layout tables,
particularly the complex nested table arrangements that were once standard
web design fare, have gone the way of the dodo. If you need rows and columns
for presentation purposes, there are alternatives that use CSS to achieve the
desired effect. In one approach known as CSS Tables, nested divs provide the
markup, and CSS Table properties make them behave like rows and cells in
the browser. You can also achieve many of the effects that previously required

164 PartIl. HTML for Structure

table markup using Flexbox and Grid Layout techniques (see Chapter 16, CSS
Layout with Flexbox and Grid).

That said, this chapter focuses on HTML table elements used to semantically
mark up rows and columns of data as described in the HTML specification.

MINIMAL TABLE STRUCTURE

Let’s take a look at a simple table to see what it’s made of. Here is a small table
with three rows and three columns that lists nutritional information.

Menu item Calories Fat (g)
Chicken noodle soup 120 2
Caesar salad 400 26

FIGURE 8-2 reveals the structure of this table according to the HTML table
model. All of the table’s content goes into cells that are arranged into rows.
Cells contain either header information (titles for the columns, such as
“Calories”) or data, which may be any sort of content.

wewee 0000000000000 oo
row header cell header cell header cell

IO ey — ey I —rre
cow ([et [0, detmcet] [. detacen] |

FIGURE 8-2. Tables are made up of rows that contain cells. Cells are the containers
for content.

Simple enough, right? Now let’s look at how those parts translate into ele-
ments (FIGURE 8-3).

<table>

<tr> | [<th>Menu item</th> <th>Calories</th> <th>Fat</th> </tr>
<td>Chicken noodle

<tr> SR <td>120</td> <td>2</td> </tr>

<tr> | [«td>Caesar salad</td> <td>400</td> <td>26</td> </tr>

</table>

FIGURE 8-3. The elements that make up the basic structure of a table.

Minimal Table Structure

<table>..</table>

Tabular content (rows and columns)

<tr>.</tr>

Table row

<th>..</th>
Table header

<td>.</td>
Table cell data

8. Table Markup 165

Minimal Table Structure

Stylin’ Tables

Once you build the structure of the
table in the markup, it’s no problem
to add a layer of style to customize its
appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We'll get to all
the formatting tools you'll need in the
following chapters:

Chapter 12, Formatting Text:
e Font settings for cell contents
* Text colorin cells

Chapter 13, Colors and
Backgrounds:

* Background colors

* Tiling background images
Chapter 14, Thinking Inside the
Box:

¢ Table dimensions (width and
height)

¢ Borders

¢ Cell padding (space around cell
contents)

* Margins around the table
Chapter 19, More CSS Techniques:

* Special properties for controlling
borders and spacing between cells

According to the HTML5 spec, a
table element may contain “in this
order: optionally a caption element,
followed by zero or more colgroup
elements, followed optionally by a
thead element, followed by either
zero or more tbody elements or

one or more tr elements, followed
optionally by a tfoot element (but
there can only be one tfoot element
child in total).”

Well, 'm glad we cleared that up!

FIGURE 8-3 shows the elements that identify the table (table), rows (tr, for
“table row”), and cells (th, for “table headers,” and td, for “table data”). Cells
are the heart of the table, because that’s where the actual content goes. The
other elements just hold things together.

What we don't see are column elements. The number of columns in a table
is implied by the number of cells in each row. This is one of the things that
make HTML tables potentially tricky. Rows are easy—if you want the table
to have three rows, just use three tr elements. Columns are different. For a
table with four columns, you need to make sure that every row has four td or
th elements. (There’s more to the column story, which I cover in the section
“Row and Column Groups” later in this chapter.)

Written out in a source document, the markup for the table in FIGURE 8-3
looks like the following sample. It is common to stack the th and td elements
in order to make them easier to find in the source. This does not affect how
the browser renders them.

<tr>
<th>Menu item</th>
<th>Calories</th>
<th>Fat (g)</th>

</tr>

<tr>
<td>Chicken noodle soup</td>
<td>120</td>
<td>2</td>

</tr>

<tr>
<td>Caesar salad</td>
<td>400</td>
<td>26</td>

</tr>

Remember, all the content must go in cells—that is, within td or th elements.
You can put any content in a cell: text, a graphic, or even another table.

Start and end table tags identify the beginning and end of the tabular mate-
rial. The table element may directly contain only some number of tr (row)
elements, a caption and, optionally, the row and column group elements
listed in the “Row and Column Groups” section. The only thing that can go
in the tr element is some number of td or th elements. In other words, there
may be no text content within the table and tr elements that isn't contained
within a td or th.

Finally, FIGURE 8-4 shows how the table would look in a simple web page,
as displayed by default in a browser. I know it’s not exciting. Excitement hap-
pens in the CSS. What is worth noting is that tables always start on new lines
by default in browsers.

166 Part Il. HTML for Structure

Nutritional Information

At the Black Goose Bistro, we know you care about what you eat. We are happy to provide
the nutritional information for our most popular menu items to help you make healthy choices.

Menu item Calories Fat (g)
Chicken noodle soup 120 2
Caesar salad 400 26

We welcome your input and suggestions for our menu. If there are any modifications you need
to meet dietary restrictions, please let us know in advance and we will make every effort to
accommodate you.

The default rendering of our sample table in a browser.

Here is the source for another table. Can you tell how many rows and col-
umns it will have when it is displayed in a browser?
<table>
<tr>
<th>Burgers</th>
<td>Organic Grass-fed Beef</td>
<td>Black Bean Veggie</td>
</tr>
<tr>
<th>Fries</th>
<td>Hand-cut Idaho potato</td>
<td>Seasoned sweet potato</td>
</tr>
</table>

If you guessed that it’s a table with two rows and three columns, you are cor-
rect! Two tr elements create two rows; one th and two td elements in each
row create three columns.

TABLE HEADERS

As you can see in FIGURE 8-4, the text marked up as headers (th elements) is
displayed differently from the other cells in the table (td elements). The dif-
ference, however, is not purely cosmetic. Table headers are important because
they provide information or context about the cells in the row or column they
precede. The th element may be handled differently than tds by alternative
browsing devices. For example, screen readers may read the header aloud
before each data cell (“Menu item: Caesar salad, Calories: 400, Fat-g: 26”).

In this way, headers are a key tool for making table content accessible. Don’t
try to fake them by formatting a row of td elements differently than the rest
of the table. Conversely, don't avoid using th elements because of their default
rendering (bold and centered). Instead, mark up the headers semantically and
change the presentation later with a style rule.

That covers the basics. Before we get fancier, try your hand at EXERCISE 8-1.

Table Headers

EXERCISE 8-1.
Making a simple table

Try writing the markup for the table
shown in FIGURE 8-5. You can open

a text editor or just write it down

on paper. The finished markup is
provided in the materials folder (www.
learningwebdesign.com/5e/materials).

Note that I've added a 1-pixel border
around cells with a style rule just to
make the structure clear. If you would
like borders on your tables, copy this
style element into the head of the
document(s) you create for the exercises
in this chapter:

<style>
td, th {
border: 1px solid gray;

</style>

Be sure to close all table elements.
Technically, you are not required to close
tr, th, and td elements, but | want you
to get in the habit of writing tidy source
code for maximum predictability across
all browsing devices.

| Album | Year|
|Rubbcr Soul H 1965|
|Revolver ‘ ‘ 1 966|
‘S gt. Pepper's H 1967‘

'The White Album| 1968
\Abbey Road 1969

Write the markup for
this table.

8. Table Markup 167

Spanning Cells

EXERCISE 8-2.
Column spans

Try writing the markup for the table
shown in FIGURE 8-7. You can open

a text editor or just write it down on
paper. I've added borders to reveal the
cell structure in the figure, but your table
won’t have them unless you add the
style sheet shown in EXERCISE 8-1.
Again, the final markup is provided in
the materials folder.

Some hints:

e The first and third rows show that the
table has a total of three columns.

* When a cell is spanned over, its td
element does not appear in the table.

SPANNING CELLS

One fundamental feature of table structure is cell spanning, which is the
stretching of a cell to cover several rows or columns. Spanning cells allows
you to create complex table structures, but it has the side effect of making the
markup a little more difficult to keep track of. It can also make it potentially
more difficult for users with screen readers to follow.

You make a header or data cell span by adding the colspan or rowspan attri-
butes, as we’ll discuss next.

Column Spans

Column spans, created with the colspan attribute in the td or th element,
stretch a cell to the right to span over the subsequent columns (FIGURE 8-6).
Here a column span is used to make a header apply to two columns (I've
added a border around the cells to reveal the structure of the table in the
screenshot).

7:00pm | 7:30pm | 8:00pm | <tab%[e>
" . <tr>
The Sunday Night Movie ‘ <th colspan="2">Fat</th>
Perry MasonHCandid Camera ‘What‘s My Line?‘ <Jtr>
Bonanza HThe ‘Wackiest Ship in the Army ‘ <tr>

Practice column spans
by writing the markup for this table.

WARNING

Be careful with colspan values. If you
specify a number that exceeds the num-
ber of columns in the table, browsers
add columns to the existing table, which
typically screws things up.

<td>Saturated Fat (g)</td>
<td>Unsaturated Fat (g)</td>

</tr>

</table>
’ Fat ‘
’Saturated Fat (g) ‘ Unsaturated Fat (g) ‘

The colspan attribute stretches a cell to the right to span the specified
number of columns.

Notice in the first row (tr) that there is only one th element, while the sec-
ond row has two td elements. The th for the column that was spanned over
is no longer in the source; the cell with the colspan stands in for it. Every
row should have the same number of cells or equivalent colspan values. For
example, there are two td elements and the colspan value is 2, so the implied
number of columns in each row is equal.

Try your hand at column spanning in EXERCISE 8-2.

168 PartIl. HTML for Structure

Row Spans

Row spans, created with the rowspan attribute, work just like column spans,
but they cause the cell to span downward over several rows. In this example,
the first cell in the table spans down three rows (FIGURE 8-8).

<table>
<tr>
<th rowspan="3">Serving Size</th>
<td>Small (8o0z.)</td>
</tr>
<tr>
<td>Medium (160z.)</td>
</tr>
<tr>
<td>Large (240z.)</td>
</tr>
</table>

Again, notice that the td elements for the cells that were spanned over (the first
cells in the remaining rows) do not appear in the source. The rowspan="3" implies
cells for the subsequent two rows, so no td elements are needed.

If you loved spanning columns, you'll love spanning rows in EXERCISE 8-3.

Small (80z.)
Serving Size ‘Medium (160z.) ‘
Large (240z.) |

The rowspan attribute stretches a cell downward to span the specified
number of rows.

Space in and Between Cells

By default, tables expand just enough to fit the content of the cells, which
can look a little cramped. Old versions of HTML included cellpadding and
cellspacing attributes for adding space within and between cells, but they
have been kicked out of HTMLS as they are obsolete, presentational markup.
The proper way to adjust table cell spacing is with style sheets, of course.
The “Styling Tables” section in Chapter 19, More CSS Techniques addresses
cell spacing.

TABLE ACCESSIBILITY

As a web designer, it is important that you always keep in mind how your
site’s content is going to be used by visitors with impaired sight. It is especially
challenging to make sense of tabular material by using a screen reader, but
the HTML specification provides measures to improve the experience and
make your content more understandable.

Table Accessibility

EXERCISE 8-3.
Row spans

Try writing the markup for the table
shown in FIGURE 8-9. Remember
that cells that are spanned over do not
appear in the table code.

Some hints:

* Rows always span downward, so the
“oranges” cell is part of the first row
even though its content is vertically
centered.

o Cells that are spanned over do not
appear in the code.

apples ‘ ‘pears
bananas ‘ oranges

i 1
lychees ‘ pricapple

Practice row spans by
writing the markup for this table.

8. Table Markup 169

Table Accessibility

Title or description to be displayed
with the table

Describing Table Content

The most effective way to give sight-impaired users an overview of your table
is to give it a title or description with the caption element. Captions display
next to the table (generally, above it) and can be used to describe the table’s
contents or provide hints on how it is structured.

When used, the caption element must be the first thing within the table ele-
ment, as shown in this example, which adds a caption to the nutritional chart
from earlier in the chapter:

<table>
<caption>Nutritional Information</caption>
<tr>
<th>Menu item</th>
<th>Calories</th>
<th>Fat (g)</th>
</tr>
<!-- table continues -->
</table>

The caption is displayed above the table by default, as shown in FIGURE
8-10, although you can use a style sheet property to move it below the table
(caption-side: bottom).

Nutritional Information

‘ Menu item HCaloriesHFat (g)‘
Chicken noodle soup| 120 |2 |
Caesar salad l400 |26 |

The table caption is displayed above the table by default.

For longer descriptions, you could consider putting the table in a figure
element and using the figcaption element for the description. The HTML5
specification has a number of suggestions for providing table descriptions
(www.w3.0rg/TR/html5/tabular-data.html#table-descriptions-techniques).

Connecting Cells and Headers

We discussed headers briefly as a straightforward method for improving
the accessibility of table content, but sometimes it may be difficult to know
which header applies to which cells. For example, headers may be at the left
or right edge of a row rather than at the top of a column. And although it
may be easy for sighted users to understand a table structure at a glance, for
users hearing the data as text, the overall organization is not as clear. The
scope and headers attributes allow authors to explicitly associate headers and
their respective content.

170 PartIl. HTML for Structure

scope

The scope attribute associates a table header with the row, column, group
of rows (such as tbody), or column group in which it appears by using
the values row, col, rowgroup, or colgroup, respectively. This example uses
the scope attribute to declare that a header cell applies to the current row:
<tr>

<th scope="row">Mars</th>

<td>.95¢/td>

<td>.62¢/td>

<td>o</td>
</tr>

Accessibility experts recommend that every th element contain a scope
attribute to make its associated data explicitly clear.

headers

For really complicated tables in which scope is not sufficient to associ-
ate a table data cell with its respective header (such as when the table
contains multiple spanned cells), the headers attribute is used in the td
element to explicitly tie it to a header’s id value. In this example, the cell
content “38” is tied to the header “Diameter measured in earths”:

<th id="diameter">Diameter measured in earths</th>

<!-- many other cells -->
<td headers="diameter">.38</td>
<!-- many other cells -->

Unfortunately, support of the id/headers feature is unreliable. The rec-
ommended best practice is to create tables in a way that a simple scope
attribute will do the job.

This section is obviously only the tip of the iceberg of table accessibility.
In-depth instruction on authoring accessible tables is beyond the scope of
this beginner book. If you’d like to learn more, I recommend “Creating
Accessible Tables” at WebAIM (webaim.org/techniques/tables/data) as an
excellent starting point.

There is one more important set of elements for helping make the semantic
structure of a table clear: row and column grouping elements.

ROW AND COLUMN GROUPS

The sample tables we've been looking at so far in this chapter have been
stripped down to their bare essentials to make the structure clear while
youre learning how tables work. But tables in the real world are not always
so simple. Check out the beauty in FIGURE 8-11 from the CSS Writing Modes
Level 3 spec. You can identify three groups of columns (one with headers,
two with two columns each), and three groupings of rows (headers, data, and
a footnote).

Row and Column Groups

BROWSER SUPPORT ALERT

Although the advanced table features
intended to improve accessibility have
been in the specs for many years, sup-
port by screen readers and other assis-
tive devices is unreliable at best. It is still
recommended that you mark up your
data semantically within table cells and
that they make sense when read in order
from the source, which is exactly how
some of your visitors may encounter them.

8. Table Markup 171

Row and Column Groups

View the source of the table in
FIGURE 8-11 at www.w3.0rg/TR/
css-writing-modes-3/#unicode-bidi
(you need to scroll down a little).
The source is too long to print here,
but it is clearly marked up and

easy to follow. Note that it uses all
the row group elements, column
groups, and the scope attribute we
saw in the last section to associate
headers with rows. There are several
interesting tables on this page for
your source-viewing pleasure.

Table header row group

Table body row group

Table footer row group

Conceptual table groupings like these are marked up with row group and
column group elements that provide additional semantic structure and more
“hooks” for styling or scripting. For example, the row and column groups in
FIGURE 8-11 were styled with thicker borders to make them stand out visually.

Bidi control codes injected by 'unicode-bidi” at the start/end of ‘display: inline’ boxes
‘direction’ value

‘unicode-bidi’ value ‘Itr’ ‘rt’
start end start end

‘normal’ - - - -
‘embed’ LRE (U+202A) PDF (U+202C) RLE (U+202B) PDF (U+202C)
‘isolate’ LRI (U+2066) PDI (U+2069) RLI (U+2067) PDI (U+2069)
‘bidi-override’ LRO (U+202D) PDF (U+202C) RLO (U+202E) PDF (U+202C)

‘isolate-override™ | FSILRO (U+2068,U+202D) PDF,PDI (U+202C,U+2069) | FSI,RLO (U+2068,U+202E) PDF,PDI (U+202C,U+2069)

‘plaintext’ FSI (U+2068) PDI (U+2069) FSI (U+2068) PDI (U+2069)

* The LRO/RLO+PDF pairs are alse applied to the root inline box of a block container if these values of ‘unicode-bidi’ were specified on the block container.

An example of a table with row and column groups (from the CSS
Writing Modes Level 3 specification).

Row Group Elements

You can describe rows or groups of rows as belonging to a header, footer, or
the body of a table by using the thead, tfoot, and tbody elements, respectively.
Some user agents (another word for a browser) may repeat the header and
footer rows on tables that span multiple pages. For example, the head and
foot rows may print on every page of a multipage table. Authors may also use
these elements to apply styles to various regions of a table.

Row group elements may only contain one or more tr elements. They con-
tain no direct text content. The thead element should appear first, followed
by any number of tbody elements, followed by an optional tfoot.

This is the row group markup for the table in FIGURE 8-11 (td and th ele-
ments are hidden to save space):

<table>

<thead>
<!-- headers in these rows-->
<tr></try>
<tr></tr>
<tr></tr>

<thead>

<tbody>
<!-- data -->
<tr></try>
<tr></tr>
<tr></tr>
<tr></try>
<tr></tr>
<tr></tr>

</tbody>

172 Part Il. HTML for Structure

<tfoot>
<!-- footnote -->
<tr></tr>
</tfoot>
</table>

Column Group Elements

As you've learned, columns are implied by the number of cells (td or th) in
each row. You can semantically group columns (and assign id and class val-
ues) using the colgroup element.

Column groups are identified at the start of the table, just after the caption
if there is one, and they give the browser a little heads-up as to the column
arrangement in the table. The number of columns a colgroup represents is
specified with the span attribute. Here is the column group section at the
beginning of the table in FIGURE 8-11:
<table>
<caption»..</caption>
<colgroup></colgroup>
<colgroup span="2"></colgroup>
<colgroup span="2"></colgroup>
<!-- rest of table... -->
That's all there is to it. If you need to access individual columns within a col-
group for scripting or styling, identify them with col elements. The previous
column group section could also have been written like this:
<colgroup></colgroup>
<colgroup>
<col class="start">
<col class="end">
</colgroup>
<colgroup>
<col class="start">

<col class="end">
</colgroup>

Note that the colgroup elements contain no content—they only provide an
indication of semantically relevant column structure. The empty col ele-
ments are used as handles for scripts or styles, but are not required.

WRAPPING UP TABLES

This chapter gave you a good overview of the components of HTML tables.
EXERCISE 8-4 combines most of what we’ve covered to give you a little more
practice at authoring tables.

Wrapping Up Tables

A semantically related group of columns

One column in a column group

NOTE

When colgroup elements contain col
elements, they must not have a span
attribute.

8. Table Markup 173

Wrapping Up Tables

EXERCISE 8-4. The table challenge

Now it’s time to put together the table writing skills you've

acquired in this chapter. Your challenge is to write out the source

document for the table shown in FIGURE 8-12.

Your Content Here

A common header for two subheads
Header 3
Header 1 Header 2
Thing A data Al data A2 data A3
Thing B data B1 data B2 data B3
Thing C data C1 data C2 data C3

The table challenge.

I'll walk you through it one step at a time.

1. First, open a new document in your text editor and set up
its overall structure (DOCTYPE, html, head, title, and body

elements). Save the document as table.html in the directory of

your choice.

2. Next, in order to make the boundaries of the cells and table
clear when you check your work, I'm going to have you add
some simple style sheet rules to the document. Don’t worry
about understanding exactly what’s happening here (although

it’s fairly intuitive); just insert this style element in the head of

the document exactly as you see it here:

<head>
<title>Table Challenge</title>
<style>
td, th { border: 1px solid #CCC; }
table { border: 1px solid black; }
</style>
</head>

3. Now it’s time to start building the table. I usually start by setting

up the table and adding as many empty row elements as I'll

need for the final table as placeholders, as shown here. You can

tell from the figure that there are five rows in this table:

<body>
<table>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
</table>
</body>

4. Start with the top row, and fill in the th and td elements from

left to right, including any row or column spans as necessary. I'll
help with the first row.

The first cell (the one in the top-left corner) spans down the
height of two rows, so it gets a rowspan attribute. I'll use a th
here to keep it consistent with the rest of the row. This cell has
no content:

<table>
<tr>
<th rowspan="2"></th>
</tr>

The cell in the second column of the first row spans over the
width of two columns, so it gets a colspan attribute:

<table>
<tr>
<th rowspan="2"></th>
<th colspan="2">A common header for two
subheads</th>

</tr>

The cell in the third column has been spanned over by the
colspan we just added, so we don’t need to include it in the
markup. The cell in the fourth column also spans down two
rows:

<table>
<tr>
<th rowspan="2"></th>
<th colspan="2">A common header for two
subheads</th>
<th rowspan="2">Header 3</th>
</tr>

. Now it’s your turn. Continue filling in the th and td elements for

the remaining four rows of the table. Here’s a hint: the first and
last cells in the second row have been spanned over. Also, if it’s
bold in the example, make it a header.

. To complete the content, add the title over the table by using

the caption element.

. Use the scope attribute to make sure that the Thing A, Thing B,

and Thing C headers are associated with their respective rows.

. Finally, give the table row and column groups for greater sematic

clarity. There is no tfoot in this table. There are two column
groups: one column for headers, the rest for data. Use the span
attribute (no need for individual column identification).

. Save your work and open the file in a browser. The table should

look just like the one on this page. If not, go back and adjust
your markup. If you're stumped, the final markup for this
exercise is provided in the materials folder.

174 PartIl. HTML for Structure

TEST YOURSELF

The answers to these questions appear in Appendix A.

1. What are the parts (elements) of a basic HTML table?

2. What elements can a table contain directly (i.e,, first-level children)?

3. What elements can a tr contain?

4. When would you use the col (column) element?

5. Find five errors in this table markup:

<caption>Primetime Television 1965</caption>
<table>
Thursday Night
<try></tr>
<th>7:30</th>
<th>8:00</th>
<th>8:30</th>
<tr>
<td>Shindig</td>
<td>Donna Reed Show</td>
<td>Bewitched</td>
<tr>
<colspan="2">Laredo</colspan>
<td>Daniel Boone</td>
</tr>
</table>

Test Yourself

8. Table Markup 175

Element Review: Tables

ELEMENT REVIEW: TABLES

The following is a summary of the elements we covered in this chapter.

Element and attributes

Description

table

Establishes a table element

tr

Establishes a row within a table

td
colspan="number"
rowspan="number"

headers="header name"

Establishes a cell within a table row
Number of columns the cell should span
Number of rows the cell should span

Associates the data cell with a header

th

abbr="text"

colspan="number"
rowspan="number"
headers="header name"

scope="row|col|
rowgroup|colgroup"

Table header associated with a row or column

Alternative label for when the header cell is ref-
erenced in other contexts

Number of columns the cell should span
Number of rows the cell should span
Associates a header with another header

Associates the header with a row, row group,
column, or column group

caption

Gives the table a title that displays in the browser

colgroup

span="number"

Declares a group of columns

Number of columns the column group spans;
may not be used when the colgroup contains
col elements

col

span="number"

Declares a column

Number of columns the column spans

tbody

Identifies a table body row group

thead

Identifies a table header row group

tfoot

Identifies a table footer row group

176 Part Il. HTML for Structure

FORMS

It didn’t take long for the web to shift from a network of pages to read to a
place where you go to get things done—making purchases, booking plane
tickets, signing petitions, searching a site, posting a tweet...the list goes on!
Web forms handle all of these interactions.

In fact, in response to this shift from page to application, HTMLS5 introduced
a bonanza of new form controls and attributes that make it easier for users to
fill out forms and for developers to create them. Tasks that have traditionally
relied on JavaScript may be handled by markup and native browser behavior
alone. HTMLS5 introduces a number of new form-related elements, 12 new
input types, and many new attributes (they are listed in TABLE 9-1 at the end
of this chapter). Some of these features are waiting for browser implementa-
tion to catch up, so I will be sure to note which controls may not be univer-
sally supported.

This chapter introduces web forms, how they work, and the markup used to
create them. I'll also briefly discuss the importance of web form design.

HOW FORMS WORK

There are two parts to a working form. The first part is the form that you see
on the page itself that is created using HTML markup. Forms are made up
of buttons, input fields, and drop-down menus (collectively known as form
controls) used to collect information from the user. Forms may also contain
text and other elements.

The other component of a web form is an application or script on the server
that processes the information collected by the form and returns an appro-
priate response. It’s what makes the form work. In other words, posting an

CHAPTER

S

IN THIS CHAPTER
How forms work

Elements for adding
form widgets

Making forms accessible

Form design basics

177

How Forms Work

HTML document with form elements isn't enough. Web applications and
scripts require programming know-how that is beyond the scope of this
book, but the “Getting Your Forms to Work” sidebar, later in this chapter, pro-
vides some options for getting the scripts you need.

From Data Entry to Response

If you are going to be creating web forms, it is beneficial to understand what
is happening behind the scenes. This example traces the steps of a transaction
using a simple form that gathers names and email addresses for a mailing list;
however, it is typical of the process for many forms.

1

Your visitor—let’s call her Sally—opens the page with a web form in
the browser window. The browser sees the form control elements in the
markup and renders them with the appropriate form controls on the page,
including two text-entry fields and a Submit button (shown in FIGURE 9-1).

Sally would like to sign up for this mailing list, so she enters her name
and email address into the fields and submits the form by hitting the
Submit button.

The browser collects the information she entered, encodes it (see the
sidebar “A Word About Encoding”), and sends it to the web application on
the server.

The web application accepts the information and processes it (that is,
does whatever it is programmed to do with it). In this example, the name
and email address are added to a mailing list database.

The web application also returns a response. The kind of response sent
back depends on the content and purpose of the form. Here, the response
is a simple web page saying thank you for signing up for the mailing
list. Other applications might respond by reloading the form page with
updated information, by moving the user on to another related form page,
or by issuing an error message if the form is not filled out correctly, to
name only a few examples.

The server sends the web application’s response back to the browser,
where it is displayed. Sally can see that the form worked and that she has
been added to the mailing list.

A Word About Encoding

Form data is encoded via the same method used for URLs. Spaces and other
characters that are not permitted get translated into their hexadecimal equivalents.
For example, each space character in the collected form data is represented by the
character + or %20 and a slash (/) character is replaced with %2F. You don’t need to
worry about this; the browser handles it automatically.

178 PartIl. HTML for Structure

MAILING LIST SIGNUP

Get news about the band such as tour dates and special MP3
releases sent to your own in-box.

Name: |saiy strongarm ‘

Email: strongarm@example.com ‘

Submit |

- O
Name = Sally Strongarm | O
Email = strongarm@example.com O
Data Web application
(stores data in database)

Response
(HTML)

THANKS <

You are now on the band mailing list. Can't wait to see you at
the shows.

Go back to the main page

What happens behind the scenes when a web form is submitted.

THE FORM ELEMENT

Forms are added to web pages with (no surprise here) the form element. The
form element is a container for all the content of the form, including some
number of form controls, such as text-entry fields and buttons. It may also
contain block elements (h1, p, and lists, for example). However, it may not
contain another form element.

This sample source document contains a form similar to the one shown in
FIGURE 9-1:

<!DOCTYPE html>

<html>

<head>
<title>Mailing List Signup</title>
<meta charset="utf-8">

</head>

The form Element

Interactive form

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

9.Forms 179

The form Element

NOTE

It is current best practice to wrap form
controls in semantic HTML elements such
as lists or divs. Ordered lists, as shown in
this example, are a popular solution, but
know that there are often default styles
that you'll need to clear out before styl-
ing them, particularly on mobile brows-
ers. The fieldset, legend, and label
elements used in the example improve
accessibility. They are explained later in
this chapter.

<body>
<h1>Mailing List Signup</h1>

<form action="/mailinglist.php" method="POST">
<fieldset>
<legend>Join our email list</legend>
<p>Get news about the band such as tour dates and special MP3
releases sent to your own in-box.</p>

<label for="firstlast">Name:</label>
<input type="text" name="fullname" id="firstlast"></1i>
<label for="email">Email:</label>
<input type="text" name="email" id="email"></1i>

<input type="submit" value="Submit">
</fieldset>
</form>

</body>
</html>

In addition to being a container for form control elements, the form element
has some attributes that are necessary for interacting with the form processing
program on the server. Let’s take a look at each.

The action Attribute

The action attribute provides the location (URL) of the application or script
that will be used to process the form. The action attribute in this example
sends the data to a script called mailinglist.php:

<form action="/mailinglist.php" method="POST">...</form>

The .php suffix indicates that this form is processed by a script written in
the PHP scripting language, but web forms may be processed by any of the
following technologies:

* PHP (.php) is an open source scripting language most commonly used
with the Apache web server. It is the most popular and widely supported
forms processing option.

* Microsoft ASP (Active Server Pages; .asp) is a programming environment
for the Microsoft Internet Information Server (IIS).

* Microsoft’s ASPNET (Active Server Page; .aspx) is a newer Microsoft lan-
guage that was designed to compete with PHP.

* Ruby on Rails. Ruby is the programming language that is used with the
Rails platform. Many popular web applications are built with it.

* JavaServer Pages (.jsp) is a Java-based technology similar to ASP.
* Python is a popular scripting language for web and server applications.

There are other form-processing options that may have their own suffixes or
none at all (as is the case for the Ruby on Rails platform). Check with your

180 PartIl. HTML for Structure

programmer, server administrator, or script documentation for the proper
name and location of the program to be provided by the action attribute (see
Web Hosting Tip).

Sometimes there is form processing code such as PHP embedded right in the
HTML file. In that case, leave the action empty, and the form will post to the
page itself.

The method Attribute

The method attribute specifies how the information should be sent to the
server. Let’s use this data gathered from the sample form in FIGURE 9-1 as an
example.

fullname = Sally Strongarm
email = strongarm@example.com

When the browser encodes that information for its trip to the server, it looks
like this (see the earlier sidebar if you need a refresher on encoding):

fullname=Sally+Strongarmdemail=strongarm%40example.com

There are only two methods for sending this encoded data to the server:
POST or GET, indicated by the method attribute in the form element. The
method is optional and will default to GET if omitted. We'll look at the dif-
ference between the two methods in the following sections. Our example uses
the POST method, as shown here:

<form action="/mailinglist.php" method="POST">...</form>

The GET method

With the GET method, the encoded form data gets tacked right onto the URL
sent to the server. A question mark character separates the URL from the fol-
lowing data, as shown here:

get http://www.bandname.com/mailinglist.php?name=Sally+Strongarmdemail=->
strongarm%40example.com

GET is inappropriate if the form submission performs an action, such as
deleting something or adding data to a database, because if the user goes
back, it gets submitted again.

The POST method

When the form’s method is set to POST, the browser sends a separate server
request containing some special headers followed by the data. In theory, only
the server sees the content of this request, and thus it is the best method for
sending secure information such as a home address or other personal informa-
tion. In practice, make sure HTTPS is enabled on your server so the user’s data
is encrypted and inaccessible in transit. (HTTPS is discussed in Chapter 2, How
the Web Works.)

The form Element

If you know you want or need to work
with a particular form processing
language, make sure to confirm it is
supported when you are shopping for
a web hosting service.

Getting Your Forms
to Work

If you aren’t a programmer, don’t fret.
You have a few options for getting
your forms operational:

Use hosting plan goodies

Many site hosting plans include
access to scripts for simple
functions such as mailing lists.
More advanced plans may even
provide everything you need to
add a full shopping cart system to
your site as part of your monthly
hosting fee. Documentation or a
technical support person should
be available to help you use them.

Hire a programmer

If you need a custom solution, you
may need to hire a programmer
who has server-side programming
skills. Tell your programmer what
you are looking to accomplish with
your form, and she will suggest a
solution. Again, you need to make
sure you have permission to install
scripts on your server under your
current hosting plan, and that the
server supports the language you
choose.

9.Forms 181

http://www.bandname.com/mailinglist.php?name=Sally%20Strongarm&email=strongarm%40example.com
http://www.bandname.com/mailinglist.php?name=Sally%20Strongarm&email=strongarm%40example.com

Variables and Content

NOTE

POST and GET are not case-sensitive and
are commonly listed in all uppercase by
convention. In XHTML documents, how-
ever, the value of the method attribute
(post or get) must be provided in all
lowercase letters.

The POST method is also preferable for sending a lot of data, such as a
lengthy text entry, because there is no character limit as there is for GET.

The GET method is appropriate if you want users to be able to bookmark
the results of a form submission (such as a list of search results). Because the
content of the form is in plain sight, GET is not appropriate for forms with
private personal or financial information. In addition, GET may not be used
when the form is used to upload a file.

In this chapter, we'll stick with the more prevalent POST method. Now that
we've gotten through the technical aspects of the form element, let’s turn our
attention to form controls.

VARIABLES AND CONTENT

Web forms use a variety of controls that allow users to enter information or
choose between options. Control types include various text-entry fields, but-
tons, menus, and a few controls with special functions. They are added to the
document with a collection of form control elements that we’ll be examining
one by one in the upcoming “The Great Form Control Roundup” section.

As a web designer, you need to be familiar with control options to make your
forms easy and intuitive to use. It is also useful to have an idea of what form
controls are doing behind the scenes.

The name Attribute

The job of each form control is to collect one bit of information from a user.
In the previous form example, text-entry fields collect the visitor’s name and
email address. To use the technical term, “fullname” and “email” are two vari-
ables collected by the form. The data entered by the user (“Sally Strongarm”
and “strongarm@example.com”) is the value or content of the variables.

The name attribute provides the variable name for the control. In this example,
the text gathered by a textarea element is defined as the “comment” variable:

<textarea name="comment" rows="4" cols="45" placeholder="Leave us a
comment. "></textarea>

When a user enters a comment in the field (“This is the best band ever!”), it
would be passed to the server as a name/value (variable/content) pair like this:

comment=This+is+the+best+band+everk21

All form control elements must include a name attribute so the form process-
ing application can sort the information. You may include a name attribute for
submit and reset button elements, but they are not required, because they
have special functions (submitting or resetting the form) not related to data
collection.

182 PartIl. HTML for Structure

Naming Your Variables

You can't just name controls willy-nilly. The web application that processes
the data is programmed to look for specific variable names. If you are design-
ing a form to work with a preexisting application or script, you need to find
out the specific variable names to use in the form so they are speaking the
same language. You can get the variable names from the instructions provided
with a ready-to-use script on your server, your system administrator, or the
programmer you are working with.

If the script or application will be created later, be sure to name your variables
simply and descriptively and to document them well. In addition, to avoid
confusion, you are advised to name each variable uniquely—that is, don’t use
the same name for two variables (however, there may be exceptions for which
it is desirable). You should also avoid putting character spaces in variable
names. Use an underscore or hyphen instead.

We've covered the basics of the form element and how variables are named.
Now we can get to the real meat of form markup: the controls.

THE GREAT FORM CONTROL ROUNDUP

This is the fun part—playing with the markup that adds form controls to
the page. This section introduces the elements used to create the following:

* Text-entry controls

* Specialized text-entry controls

* Submit and reset buttons

* Radio and checkbox buttons

* Pull-down and scrolling menus
* File selection and upload control
* Hidden controls

* Dates and times

* Numerical controls

* Color picker control

We'll pause along the way to allow you to try them out by constructing the
pizza ordering form shown in FIGURE 9-2.

As you will see, the majority of controls are added to a form via the input ele-
ment. The functionality and appearance of the input element changes based
on the value of the type attribute in the tag. In HTML5.2, there are twenty-two
types of input controls. We'll take a look at them all.

The Great Form Control Roundup

NOTE

The attributes associated with each
input type are listed in TABLE 9-1at the
end of this chapter.

9.Forms 183

The Great Form Control Roundup

NOTE

The markup examples throughout this
section include the label element,
which is used to improve accessibility.
We will discuss label in the upcoming
“Form Accessibility Features” section,
but in the meantime, | want you to get
used to seeing proper form markup.

Single-line text-entry control

Black Goose Bistro | Pizza-on-Demand

Qur 12" wood-fired pizzas are available for delivery. Build your custom pizza and we'll deliver it within an hour.

— Your

Name:

Address:

Telephone Number:
Email:

Delivery instructions:

Design Your Dream Pizza:

Pizza specs
Crust (Choose one):

Classic white
Multigrain
Cheese-stuffed crust
Gluten-free

— Toppings (Choose as many as you want):

Red sauce
White sauce
Mozzarella Cheese
Pepperoni
Mushrooms
Peppers
Anchovies

How many pizzas: 1 ;

Bring me a pizzal | Reset

The pizza ordering form we’ll build in the exercises in this chapter.

Text-Entry Controls

One of the most common web form tasks is entering text information. Which
element you use to collect text input depends on whether users are asked to
enter a single line of text (input) or multiple lines (textarea).

Be aware that if your form has text-entry fields, it needs to use the secure
HTTPS protocol to protect the user-entered content while their data is in
transit to the server (see the “HTTPS, the Secure Web Protocol” sidebar in for
more information).

Single-line text field

One of the most straightforward form input types is the text-entry field for
entering a single word or line of text. In fact, it is the default input type,
which means it is what you'll get if you forget to include the type attribute
or include an unrecognized value. Add a text input field to a form by insert-
ing an input element with its type attribute set to text, as shown here and
in FIGURE 9-3:

<label>Favorite color: <input type="text" name="favcolor"
value="Red" maxlength="50"></label></1i>

184 Part Il. HTML for Structure

Text-entry field (input type="text")

Favorite color: Red

Multiline text-entry field with text content (input type="textarea")

Official contest entry:
Tell us why you love the band. Five winners will get backstage passes!
The band is totally awesome!

Multiline text-entry field with placeholder text (input type="textarea")

Official contest entry:
Tell us why you love the band. Five winners will get backstage passes!

Examples of the text-entry control options for web forms.

There are a few attributes in there that Id like to point out:

name

The name attribute is required for indicating the variable name.

value

The value attribute specifies default text that appears in the field when
the form is loaded. When you reset a form, it returns to this value. The
value of the value attribute gets submitted to the server, so in this exam-
ple, the value “Red” will be sent with the form unless the user changes it.
As an alternative, you could use the placeholder attribute to provide a
hint of what to type in the field, such as “My favorite color” The value of
placeholder is not submitted with the form, and is purely a user interface
enhancement. You'll see it in action in the upcoming section.

maxlength, minlength

By default, users can type an unlimited number of characters in a text
field regardless of its size (the display scrolls to the right if the text exceeds
the character width of the box). You can set a maximum character limit
using the maxlength attribute if the form-processing program you are
using requires it. The minlength attribute specifies the minimum number
of characters.

The Great Form Control Roundup

NOTE

The specific rendering style of form con-
trols varies by operating system and
browser version.

BROWSER SUPPORT NOTE

Versions of Internet Explorer prior to ver-
sion 11 and older versions of Android do
not support placeholder.

9.Forms 185

The Great Form Control Roundup

Multiline text-entry control

size
The size attribute specifies the length of the input field in number of
visible characters. It is more common, however, to use style sheets to set
the size of the input area. By default, a text input widget displays at a size
that accommodates 20 characters.

Multiline text-entry field

At times, you'll want your users to be able to enter more than just one line of
text. For these instances, use the textarea element, which is replaced by a mul-
tiline, scrollable text entry box when displayed by the browser (FIGURE 9-3).

Unlike the empty input element, you can put content between the opening
and closing tags in the textarea element. The content of the textarea ele-
ment shows up in the text box when the form is displayed in the browser. It
also gets sent to the server when the form is submitted, so carefully consider
what goes there.

<p><label>0fficial contest entry:

Tell us why you love the band. Five winners will get backstage

passes!

<textarea name="contest entry" rows="5" cols="50">The band is totally
awesome! </textarea></label></p>

The rows and cols attributes provide a way to specify the size of the textarea
with markup. rows specifies the number of lines the text area should display,
and cols specifies the width in number of characters (although it is more
common to use CSS to specify the width of the field). Scrollbars will be pro-
vided if the user types more text than fits in the allotted space.

There are also a few attributes not shown in the example. The wrap attribute
specifies whether the soft line breaks (where the text naturally wraps at the
edge of the box) are preserved when the form is submitted. A value of soft
(the default) does not preserve line breaks. The hard value preserves line
breaks when the cols attribute is used to set the character width of the box.
The maxlength and minlength attributes set the maximum and minimum
number of characters that can be typed into the field.

It is not uncommon for developers to put nothing between the opening and
closing tags, and provide a hint of what should go there with a placeholder
attribute instead. Placeholder text, unlike textarea content, is not sent to the
server when the form is submitted. Examples of textarea content and place-
holder text are shown in FIGURE 9-3.

<p>Official contest entry:

Tell us why you love the band. Five winners will get backstage

passes!

<textarea name="contest_entry" placeholder="50 words or less" rows="5"

cols="50"></textarea>

</p>

186 Part Il. HTML for Structure

disabled and readonly

The disabled and readonly attributes both prevent users from interacting with a
form control, but they work slightly differently.

When a form element is disabled, it cannot be selected. Visual browsers may render
the control as grayed-out by default (which you can change with CSS, of course).
The disabled state can only be changed with a script. This is a useful attribute for
restricting access to some form fields based on data entered earlier in the form and
can be applied to any form control or fieldset.

The readonly attribute prevents the user from changing the value of the form
control (although it can be selected). This enables developers to use scripts to set
values for controls contingent on other data entered earlier in the form. Inputs that
are readonly should have strong visual cues that they are somehow different from
other inputs, or they could be confusing to users who are trying to change their
values. The readonly attribute can be used with textarea and text-based input
controls (see TABLE 9-1 at the very end of this chapter).

The most important difference is that readonly fields are submitted when the form
is submitted, but disabled ones are not.

Specialized Text-Entry Fields

In addition to the generic single-line text entry, there are a number of input
types for entering specific types of information such as passwords, search
terms, email addresses, telephone numbers, and URLs.

Password entry field

A password field works just like a text-entry field, except the characters are
obscured from view by asterisk (*) or bullet (*) characters, or another charac-
ter determined by the browser.

It’s important to note that although the characters entered in the password
field are not visible to casual onlookers, the form does not encrypt the infor-
mation, so it should not be considered a real security measure.

Here is an example of the markup for a password field. FIGURE 9-4 shows
how it might look after the user enters a password in the field.

<label for="form-pswd">Password:</label>

<input type="password" name="pswd" maxlength="12" id="form-pswd"></1i>

Password: sssscssee

Passwords are converted to bullets in the browser display.

The Great Form Control Roundup

Password text control

9. Forms

187

The Great Form Control Roundup

Search field

Email address

Telephone number

Location (URL)

Search, email, telephone numbers, and URLs

Untl HTMLS3, the only way to collect email addresses, telephone numbers,
URLs, or search terms was to insert a generic text input field. In HTMLS, the
email, tel, url, and search input types give the browser a heads-up as to what
type of information to expect in the field. These input types use the same
attributes as the generic text input type described earlier (name, maxlength,
minlength, size, and value), as well as a number of other attributes (see
TABLE 9-1 at the end of the chapter).

All of these input types are typically displayed as single-line text inputs. But
browsers that support them can do some interesting things with the extra
semantic information. For example, Safari on iOS uses the input type to pro-
vide a keyboard well suited to the entry task, such as the keyboard featuring
a Search button for the search input type or a “.com” button when the input
type is set to url (FIGURE 9-5). Browsers usually add a one-click “clear field”
icon (usually a little X) in search fields. A supporting browser could check the
user’s input to see that it is valid—for example, by making sure text entered
in an email input follows the standard email address structure (in the past,
you needed JavaScript for validation). For example, the Opera (FIGURE 9-6)
and Chrome browsers display a warning if the input does not match the
expected format.

Although email, search, telephone, and URL inputs are well supported by up-
to-date browsers, there may be inconsistencies in the way they are handled.
Older browsers, such as Opera Mini and any version of Internet Explorer
prior to 11, do not recognize them at all, but will display the default generic
text input instead, which works perfectly fine.

input type="email" input type="search" input type="tel" input type="url"
#0000 ATRT = 2:03PM T - #0000 ATRT = 2:03PM T - #0000 ATRT = 2:03PM T - #0000 ATRT = 2:03PM T -
litlechair.com litlechair.com littlechair.com littlechair.com
¢ > Passwords Done { > Passwords Done < > Passwords Done < > Passwords Done
gwe T rtyuiop gwer r tyuiop 1 ‘gc D:i gwer rtyuiop
asdfgh kI asdfgh ik I 4 5 6 asdfgh kI
&z X ¢ vbnm& & z X cvbnm& / 8 9 & z X ¢ vbnm&

PQRS TUV wXYzZ

space ot 0 &) 123 @ 5 / .com Go

Safari on iOS provides custom keyboards based on the input type.

188 Part Il. HTML for Structure

jen-learningwepdesign

Please include an '@" in the email
address. 'jen-learningwebdesign' is
missing an '@".

Opera displays a warning when input does not match the expected

email format as part of its client-side validation support.

-

Drop-Down Suggestions

Drop-down menu input

The datalist element allows the author to provide a drop-down menu of suggested
values for any type of text input. It gives the user some shortcuts to select from, but

if none are selected, the user can still type in their own text. Within the datalist
element, suggested values are marked up as option elements. Use the 1ist
attribute in the input element to associate it with the id of its respective datalist.

In the following example (FIGURE 9-7), a datalist suggests several education level
options for a text input:

<p>Education completed: <input type="text" list="edulevel"
name="education">

<datalist id="edulevel">
<option value="High School">
<option value="Bachelors Degree">
<option value="Masters Degree">
<option value="PhD">

</datalist>

As of this writing, browser support for datalists remains spotty. Chrome and Opera
support it, but there is a bug that makes datalists unscrollable (i.e., unusable) if the
listis too long, so it is best used for short lists of options. IE11 and Edge have buggy
implementations, and Safari and iOS don’t support it at all. The good news is if it is
unsupported, browsers present a simple text input, which is a perfectly acceptable
fallback. You could also use a JavaScript polyfill to create datalist functionality.

Education completed: v

High School
Bachelors Degree
Masters Degree
PhD

Adatalist creates a pop-up menu of suggested values for a text-

entry field.

The Great Form Control Roundup

WARNING

The values from form controls should
be checked by the server code (PHR,
ASPNET, etc.), as they can be hacked or
manipulated. So, although they make
controlling and validating user input
easier, it is still vital to perform server-
side checks before updating the data-
base on the server.

9.Forms 189

The Great Form Control Roundup

A Few More Buttons

There are a handful of custom button
elements that are a little off the
beaten path for beginners, but in the
interest of thoroughness, here they
are tucked off in a sidebar.

Image buttons

This type of input control allows you
to replace the submit button with

an image of your choice. The image
will appear flat, not like a 3-D button.
Unfortunately, this type of button

has accessibility issues, so be sure to
include a carefully chosen alt value.

Custom input button

Setting the type of the input element
to “button” creates a button that can
be customized with JavaScript. It has
no predefined function on its own,
unlike submit and reset buttons.

The button element

The button element is a flexible
element for creating custom buttons
similar to those created with the
input element. The content of the
button element (text and/or images)
is what gets displayed on the button.

For more information on what you
can do with the button element,
read “Push My Button” by Aaron
Gustafson at digital-web.com/
articles/push_my_button. “When
to Use the Button Element,” by Chris
Coyier is another helpful read (css-
tricks.com/use-button-element/).

Submit and Reset Buttons

Submits the form data to the server

Resets the form controls to their default settings

There are several kinds of buttons that can be added to web forms. The most
fundamental is the submit button. When clicked or tapped, the submit but-
ton immediately sends the collected form data to the server for processing.
A reset button returns the form controls to the state they were in when the
form initially loaded. In other words, resetting the form doesn’t simply clear
all the fields.

Both submit and reset buttons are added via the input element. As mentioned
earlier, because these buttons have specific functions that do not include the
entry of data, they are the only form control elements that do not require the
name attribute, although it is OK to add one if you need it.

Submit and reset buttons are straightforward to use. Just place them in
the appropriate place in the form, which in most cases is at the very end.
By default, the submit button displays with the label “Submit” or “Submit
Query,” and the reset button is labeled “Reset.” You can change the text on
the button by using the value attribute, as shown in the reset button in this
example (FIGURE 9-8).

<p><input type="submit"> <input type="reset" value="Start over"></p>
First Name:
Last Name:

Submit | Start over

Submit and reset buttons.

The reset button is not used in forms as commonly as it used to be. That is
because in contemporary form development, we use JavaScript to check the
validity of form inputs along the way, so users get feedback as they go along,
With thoughtful design and assistance, fewer users should get to the end of
the form and need to reset the whole thing. Still, it is a good function to be
aware of.

At this point, you know enough about form markup to start building the
questionnaire shown in FIGURE 9-2.

EXERCISE 9-1 walks you through the first steps.

190 PartIl. HTML for Structure

The Great Form Control Roundup

EXERCISE 9-1. Starting the pizza order form

Here’s the scenario. You are the web designer in charge of creating
an online pizza ordering form for Black Goose Bistro. The owner
has handed you a sketch (FIGURE 9-9) of the form’s content.
There are sticky notes from the programmer with information
about the script and variable names you need to use.

Your challenge is to turn the sketch into a functional form. I've
given you a head start by creating a bare-bones document with
text content and minimal markup and styles. This document,
pizza.html, is available online at learningwebdesign.com/5e/
materials. The finished form is also provided.

Your Information

Name: |
Address: |

Email: |

Delivery instructions:

Black Goose Bistro | Pizza-on-Demand

Our 12" wood-fired pizzas are available for delivery. Build your
custom pizza and we'll deliver it within an hour.

This form s
http://prag,
Vig the POS

N
Telephone Number: adzme the text fieyy
ress, tef

lnstrUctic,,,s ®, emg

§ hoy d be sent to
goosebistro.com /oi
Methog — + 2%a-php

i

t
it characters and add placeholder tex
E:ll\?r:)l r:orae than 400 characters long

Design Your Dream Pizza:
Pizza specs
top!

Crust (Choose one):

() Classic white

() Multigrain

() Cheese-stuffed crust

() Gluten-free

[X]Red sauce
[]White sauce

[]1Pepperoni
[1Mushrooms
[1Peppers

[1Anchovies

Number

[Bring_mea pizza!] [Reset]

Name the controls in thi .
pings(], and number, respectively.

Note that the brackets (W)
are required in order for th
process it correctly.

Toppings (Choose as many as you want):

[]Mozzarella Cheese Make syre “red sauce” e
selected when the page loads

Pull down menu for

ordering up to 6 pizzas.
How many pizzas:

Change the Submit button text.

s section crust,

after “toppings”
e script to

A sketch of the Black Goose Bistro pizza ordering form.

9.Forms 191

The Great Form Control Roundup

EXERCISE 9-1. Continued

1. Open the file pizza.html in a text editor.

2. The first thing we'll do is put everything after the intro paragraph
into a form element. The programmer has left a note specifying
the action and the method to use for this form. The resulting
form element should look like this (keep it on one line):

<form action="http://www.blackgoosebistro.com/
pizza.php" method="POST">

</form>

3. In this exercise, we’ll work on the “Your Information” section of
the form. Start with the first four short text-entry form controls
that are marked up appropriately as an unordered list. Here’s
the first one; you insert the other three:

Name: <input type="text" name="customername">
</1i>

HINTS: Choose the most appropriate input type for each entry
field. Be sure to name the input elements as specified in the
programmer’s note.

4. After “Delivery instructions:” add a line break and a multiline
text area. Because we aren’t writing a style sheet for this form,
use markup to make it four rows long and 60 characters wide (in
the real world, CSS is preferable because it gives you more fine-
tuned control):

Delivery instructions:

<textarea name="instructions" rows="4" cols="60"
maxlength="400" placeholder="No more than 400
characters long"></textarea></1i>

buttons at the end, just before the </form> tag. Note that
they’ve asked us to change the text on the submit button.

<p><input type="submit" value="Bring me a
pizza!"><input type="reset"></p>

6. Now, save the document and open it in a browser. The parts
that are finished should generally match FIGURE 9-2. If they
don’t, then you have some more work to do.

Once the document looks right, take it for a spin by entering
some information and submitting the form. You should get a
response like the one shown in FIGURE 9-10. Yes, pizza.php
actually works, but sorry, no pizzas will be delivered.

THANK YOU

Thank you for ordering from Black Goose Bistro. We have received the following
information about your order:

Your Information

Name: Jennifer Robbins

Address: 123 Street

Telephone number: 555-1212

Email Address: jen@example.com
Delivery instructions: Ring the middle buzzer. If nobody answers, text me.
Your pizza

Crust: white

Toppings: red sauce, mozzarella, pepperoni, mushrooms
Number: 1

This site Is for educational purposes only. No pizzas will be delivered.

5. We'll skip the rest of the form for now until we get a few more
controls under our belt, but we can add the submit and reset

NOTE

I have omitted the fieldset and label
elements from the code examples for
radio buttons, checkboxes, and menus
in order to keep the markup structure
as simple and clear as possible. In the
upcoming section “Form Accessibility
Features,” you will learn why it is impor-
tant to include them in your markup for
all form elements.

You should see a response page like this if your
form is working. The pizza description fields will be added in later
exercises, so they will return “empty” for now.

Radio and Checkbox Buttons

Both checkbox and radio buttons make it simple for your visitors to choose
from a number of provided options. They are similar in that they function
like little on/off switches that can be toggled by the user and are added with
the input element. They serve distinct functions, however.

A form control made up of a collection of radio buttons is appropriate when
only one option from the group is permitted—in other words, when the selec-
tions are mutually exclusive (such as “Yes or No,” or “Pick-up or Delivery”).
When one radio button is “on,” all of the others must be “off,” sort of the way
buttons used to work on old radios: press one button in, and the rest pop out.

When checkboxes are grouped together, however, it is possible to select as
many or as few from the group as desired. This makes them the right choice
for lists in which more than one selection is OK.

192 Part Il. HTML for Structure

Radio buttons

Radio buttons are added to a form via the input element with the type attri-
bute set to “radio.” Here is the syntax for a minimal radio button:

<input type="radio" name="variable" value="value">

The name attribute is required and plays an important role in binding mul-
tiple radio inputs into a set. When you give a number of radio button inputs
the same name value (“age” in the following example), they create a group of
mutually exclusive options.

In this example, radio buttons are used as an interface for users to enter their
age group. A person can't belong to more than one age group, so radio but-
tons are the right choice. FIGURE 9-11 shows how radio buttons are rendered
in the browser.
<p>How old are you?</p>

<input type="radio" name="age" value="under24" checked> under
24</11>
<input type="radio" name="age" value="25-34"> 25 to 34</1i>
<input type="radio" name="age" value="35-44"> 35 to 44</1i>
<input type="radio" name="age" value="over45"> 45+</1i>

Notice that all of the input elements have the same variable name (“age”), but
their values are different. Because these are radio buttons, only one button

can be checked at a time, and therefore, only one value will be sent to the
server for processing when the form is submitted.

You can decide which button is checked when the form loads by adding the
checked attribute to the input element (see Note). In this example, the button
next to “under 24” will be checked when the page loads.

Radio buttons (input type="radio") Checkboxes (input type="checkbox")

How old are you? What type of music do you listen to?

o under 24 v/ Punk rock
25to0 34 v Indie rock
35to 44 Hip Hop
45+ Rockabilly

Radio buttons (left) are appropriate when only one selection is
permitted. Checkboxes (right) are best when users may choose any number of choices,
from none to all of them.

The Great Form Control Roundup

Radio button

NOTE

It may look like the checked attribute
has no value, but it is one of the attri-
butes in HTML that can be minimized to
one word. Behind the scenes, the mini-
mized checked attribute stands for the
rather redundant:

checked="checked"

One of the rules of the stricter XHTML
syntax is that attributes cannot be mini-
mized in this way.

9.Forms 193

The Great Form Control Roundup

Checkbox button

Checkbox buttons

Checkboxes are added via the input element with its type set to checkbox.
As with radio buttons, you create groups of checkboxes by assigning them
the same name value. The difference, as we’ve already noted, is that more than
one checkbox may be checked at a time. The value of every checked button
will be sent to the server when the form is submitted. Here’s an example of
a group of checkbox buttons used to indicate musical interests; FIGURE 9-11
shows how they look in the browser:

<p>What type of music do you listen to?</p>

<input type="checkbox" name="genre" value="punk" checked> Punk
rock</1i>

<input type="checkbox" name="genre" value="indie" checked> Indie
rock</1i>

<input type="checkbox" name="genre" value="hiphop"> Hip Hop
<input type="checkbox" name="genre" value="rockabilly">
Rockabilly</1i>

Checkboxes don't necessarily need to be used in groups, of course. In this
example, a single checkbox is used to allow visitors to opt in to special pro-
motions. The value of the control will be passed along to the server only if
the user checks the box.

<p><input type="checkbox" name="OptIn" value="yes"> Yes, send me news
and special promotions by email.</p>

Checkbox buttons also use the checked attribute to make them preselected
when the form loads.

In EXERCISE 9-2, yoUu'll get a chance to add both radio and checkbox buttons
to the pizza ordering form.

EXERCISE 9-2. Adding radio buttons and checkboxes

The next section of the Black Goose Bistro pizza ordering form uses radio buttons and

checkboxes for selecting pizza options. Open the pizza.html document and follow these

steps:

1. In the “Design Your Dream Pizza” section, there are lists of Crust and Toppings options.
The Crust options should be radio buttons because pizzas have only one crust. Insert a
radio button before each option. Follow this example for the remaining crust options:

<input type="radio" name="crust" value="white"> Classic white

2. Mark up the Toppings options as you did the Crust options, but this time, the type
should be checkbox. Be sure the variable name for each is toppings[], and that the
“Red sauce” option is preselected (checked), as noted on the sketch.

3. Save the document and check your work by opening it in a browser to make sure it
looks right; then submit the form to make sure it’s functioning properly.

194 Part Il. HTML for Structure

The Great Form Control Roundup

Menus

Another way to provide a list of choices is to put them in a drop-down or
scrolling menu. Menus tend to be more compact than groups of buttons and Menu control
checkboxes.

You add both drop-down and scrolling menus to a form with the select
element. Whether the menu pulls down or scrolls is the result of how you
specify its size and whether you allow more than one option to be selected.

Let’s take a look at both menu types. A logical grouping of options within
amenu

An option within a menu

Drop-down menus

The select element displays as a drop-down menu (also called a pull-down
menu) by default when no size is specified or if the size attribute is set to
1. In pull-down menus, only one item may be selected. Here’s an example
(shown in FIGURE 9-12):

<p>What is your favorite 80s band?

<select name="EightiesFave">
<option>The Cure</option>
<option>Cocteau Twins</option>
<option>Tears for Fears</option>
<option>Thompson Twins</option>
<option value="EBTG">Everything But the Girl</option>
<option>Depeche Mode</option>
<option>The Smiths</option>
<option>New Order</option>

</select>

</p>

What is your favorite 80s band? | The Cure

ar

Pull-down menus pop open when the user clicks the arrow or bar.

You can see that the select element is just a container for a number of option
elements. The content of the chosen option element is what gets passed to the
web application when the form is submitted. If, for some reason, you want to
send a different value than what appears in the menu, use the value attribute
to provide an overriding value. For example, if someone selects “Everything
But the Girl” from the sample menu, the form submits the value “EBTG” for
the “EightiesFave” variable. For the others, the content between the option
tags will be sent as the value.

Scrolling menus

To make the menu display as a scrolling list, simply specify the number of
lines youd like to be visible using the size attribute. This example menu has

9. Forms 195

The Great Form Control Roundup

NOTE

The label attribute in the optgroup
element is not the same as the label
element used to improve accessibility
(discussed later in this chapter).

the same options as the previous one, except it has been set to display as a
scrolling list that is six lines tall (FIGURE 9-13):

<p>What 80s bands did you listen to?

<select name="EightiesBands" size="6" multiple>
<option>The Cure</option>
<option>Cocteau Twins</option>
<option selected>Tears for Fears</option>
<option selected>Thompson Twins</option>
<option value="EBTG">Everything But the Girl</option>
<option>Depeche Mode</option>
<option>The Smiths</option>
<option>New Order</option>

</select>

</p>

The Cure

Cocteau Twins

Tears for Fears

Thompson Twins

Everything But the Girl
What 80s bands did you listen to? Depeche Mode

A scrolling menu with multiple options selected.

You may notice a few minimized attributes tucked in there. The multiple
attribute allows users to make more than one selection from the scrolling
list. Note that pull-down menus do not allow multiple selections; when the
browser detects the multiple attribute, it displays a small scrolling menu
automatically by default.

Use the selected attribute in an option element to make it the default value
for the menu control. Selected options are highlighted when the form loads.
The selected attribute can be used with pull-down menus as well.

Grouping menu options

You can use the optgroup element to create conceptual groups of options.
The required label attribute provides the heading for the group (see Note).
FIGURE 9-14 shows how option groups are rendered in modern browsers.

<select name="icecream" size="7" multiple>
<optgroup label="traditional">
<option>vanilla</option>
<option>chocolate</option>
</optgroup>
<optgroup label="fancy">
<option>Super praline</option>
<option>Nut surprise</option>
<option>Candy corn</option>
</optgroup>
</select>

196 Part Il. HTML for Structure

traditional
vanilla
chocolate
fancy
Super praline
Nut surprise
Candy corn

Option groups.

In EXERCISE 9-3, you will use the select element to let Black Goose Bistro
customers choose a number of pizzas for their order.

File Selection Control

File selection field

Web forms can collect more than just data. They can also be used to trans-
mit external documents from a user’s hard drive. For example, a printing
company could use a web form to upload artwork for a business card order.
A magazine could use a form to collect digital photos for a photo contest.

The file selection control makes it possible for users to select a document
from the hard drive to be submitted with the form data. We add it to the form
by using our old friend, the input element, with its type set to file.

The markup sample here (FIGURE 9-15) shows a file selection control used
for photo submissions:
<form action="/client.php" method="POST" enctype="multipart/form-data">
<label>Send a photo to be used as your online icon (optional)

<input type="file" name="photo"></label>
</form>

The file upload widget varies slightly by browser and operating system, but
it is generally a button that allows you to access the file organization system
on your computer (FIGURE 9-15).

File input (on Chrome browser)

Send a photo to be used as your online icon (optional):

Choose File | No file chosen

Afile selection form field.

The Great Form Control Roundup

EXERCISE 9-3.
Adding a menu

The only other control that needs to be
added to the order form is a pull-down
menu for selecting the number of pizzas
to have delivered.

1. Insert a select menu element with
the option to order between 1 and 6
pizzas:

<p>How many pizzas:

<select name="pizzas"

size="1">

<option>1</option>
<-- more options here -->
</select>
</p>
2. Save the document and check it in

a browser. You can submit the form,
too, to be sure that it’s working. You
should get the “Thank You” response
page listing all of the information you
entered in the form.

Congratulations! You've built your first
working web form. In EXERCISE 9-4,
we’ll add markup that makes it more
accessible to assistive devices.

9. Forms 197

The Great Form Control Roundup

Hidden control field

WARNING

It is possible for users to access and
manipulate hidden form controls. If
you should become a professional web
developer, you will learn to program
defensively for this sort of thing.

Date input control

Time input control

Date/time control

Specifies a month in a year

Specifies a particular week in a year

It is important to note that when a form contains a file selection input ele-
ment, you must specify the encoding type (enctype) as multipart/form-data
in the form element and use the POST method.

The file input type has a few attributes. The accept attribute gives the
browser a heads-up on what file types may be accepted (audio, video, image,
or some other format identified by its media type). Adding the multiple attri-
butes allows multiple files to be selected for upload. The required attribute,
as it says, requires a file to be selected.

Hidden Controls

There may be times when you need to send information to the form process-
ing application that does not come from the user. In these instances, you can
use a hidden form control that sends data when the form is submitted, but is
not visible when the form is displayed in a browser.

Hidden controls are added via the input element with the type set to hidden.
Its sole purpose is to pass a name/value pair to the server when the form is
submitted. In this example, a hidden form element is used to provide the
location of the appropriate thank-you document to display when the transac-
tion is complete:

<input type="hidden" name="success-1link" value="http://www.example.com/
thankyou.html">

I've worked with forms that have had dozens of hidden controls in the form
element before getting to the parts that the user actually fills out. This is
the kind of information you get from the application programmer, system
administrator, or whoever is helping you get your forms processed. If you are
using an existing script, be sure to check the accompanying instructions to
see if any hidden form variables are required.

Date and Time Controls

If you've ever booked a hotel or a flight online, you've no doubt used a little
calendar widget for choosing the date. Chances are, that little calendar was
created with JavaScript. HTMLS5 introduced six new input types that make
date and time selection widgets part of a browser’s standard built-in display
capabilities, just as they can display checkboxes, pop-up menus, and other
widgets today. As of this writing, the date and time pickers are implemented
on only a few browsers (Chrome, Microsoft Edge, Opera, Vivaldi, and
Android), but on non-supporting browsers, the date and time input types
display as a perfectly usable text-entry field instead. FIGURE 9-16 shows date
and time widgets as rendered in Chrome on macOS.

198 Part Il. HTML for Structure

The Great Form Control Roundup

input type="time"

12:06 -- &
input type="date" input type="datetime-local"
mm/dd/ yyyy oY 03/dd/yyyy, ——i-— -—— ¥
[]
August 2016 ~ ¢ g August 2016 + Lol
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
; 92 1 4 52 63 1 2 3 4 5 &

7 ooz 7 8 9 10 M 12 13

12“ ; ;': ;7 ;8 ;2 §° 14 15 16 17 18 19 20

! 4 2% 4 N 2 23 24 25 26 27
LI 28 20 30 31

input type="month" input type="week"
Rugust 2016 v Week ==, ==== S
August 2016 ~ 4| @ » August 2016 ~ 1 b
Sun Mon Tue Wed Thu Fri Sat Week Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 31 1 2 3 4 5 86

7 8 9 10 M 12 13 32 7 8 9 10 M 12 13
14 15 16 17 18 19 20 33 14 15 16 17 18 19 20
21 22 23 24 25 26 27 34 21 22 23 24 25 26 27
28 29 30 AN 3 28 29 30 31

Date and time picker inputs (shown in Chrome on macOS).

The new date- and time-related input types are as follows: NOTE

<input type="date" name="name" value="2017-01-14"> The value attribute is optional but may
be included to provide a starting date or
time in the widget. It is included here to
demonstrate date and time formats.

Creates a date input control, such as a pop-up calendar, for specifying a
date (year, month, day). The initial value must be provided in ISO date
format (YYYY-MM-DD).

<input type="time" name="name" value="03:13:00">

Creates a time input control for specifying a time (hour, minute, seconds,
fractional sections) with no time zone indicated. The value is provided as
hh:mm:ss.

<input type="datetime-local" name="name" value="2017-01-14T03:13:00">

Creates a combined date/time input control with no time zone informa-
tion (YYYY-MM-DDThh:mm:ss).

9. Forms 199

The Great Form Control Roundup

Number input

Slider input

<input type="month" name="name" value="2017-01">
Creates a date input control that specifies a particular month in a year
(YYYY-MM).

<input type="week" name="name" value="2017-W2">

Creates a date input control for specifying a particular week in a year
using an ISO week numbering format (YYYY-W#).

Numerical Inputs

The number and range input types collect numerical data. For the number
input, the browser may supply a spinner widget with up and down arrows for
selecting a specific numerical value (a text input may display in user agents
that don’t support the input type). The range input is typically displayed as
a slider (FIGURE 9-17) that allows the user to select a value within a specified
range:

<label>Number of guests <input type="number" name="guests" min="1"
max="6"></label>

<label>Satisfaction (0 to 10) <input type="range" name="satisfaction"
min="0" max="10" step="1"></label>

input type="number"

Number of guests: ¢

input type="range"

Satisfaction (from 0 to 10): °)

The number and range input types (shown in Chrome on macOS).

Both the number and range input types accept the min and max attributes for
specifying the minimum and maximum values allowed for the input (again,
the browser could check that the user input complies with the constraint).
Both min and max are optional, and you can also set one without the other.
Negative values are allowed. When the element is selected, the value can be
increased or decreased with the number keys on a computer keyboard, in
addition to being moved with the mouse or a finger.

200 PartIl. HTML for Structure

The step attribute allows developers to specify the acceptable increments for
numerical input. The default is 1. A value of “.5” would permit values 1, 1.5,
2, 2.5, and so on; a value of 100 would permit 100, 200, 300, and so on. You
can also set the step attribute to any to explicitly accept any value increment.

These two elements allow for only the calculated step values, not for a speci-
fied list of allowed values (such as 1, 2, 3, 5, 8,13, 21). If you need customized
values, you need to use JavaScript to program that behavior.

Because these are newer elements, browser support is inconsistent. Some
UI widgets include up and down arrows for increasing or decreasing the
amount, but many don’t. Mobile browsers (i0S Safari, Android, Chrome for
Android) currently do not support min, max, and step. Internet Explorer 9
and earlier do not support number and range inputs at all. Again, browsers
that don’t support these new input types display a standard text input field
instead, which is a fine fallback.

Color Selector

The intent of the color control type is to create a pop-up color picker for
visually selecting a color value similar to those used in operating systems
or image-editing programs. Values are provided in hexadecimal RGB values
(#RRGGBB). FIGURE 9-18 shows the color picker in Chrome on macOS (it is
the same as the macOS color picker). Non-supporting browsers—currently all
versions of IE, iOS Safari, and older versions of Android—display the default
text input instead.

<label>Your favorite color: <input type="color" name="favorite">
</label>

[IoN] Celors
(==L
Your favorite color: |
&
B]

The color input type (shown in Chrome on macQOS).

The Great Form Control Roundup

Color picker

9.Forms 201

The Great Form Control Roundup

That wraps up the form control roundup. Learning how to insert form
controls is one part of the forms production process, but any web developer
worth her salt will take the time to make sure the form is as accessible as
possible. Fortunately, there are a few things we can do in markup to describe
the form’s structure.

A Few More Form Elements

For the sake of completeness, let’s look at the remaining form elements. These were
added in HTML5 and, as of this writing, they still have spotty browser support. They
are somewhat esoteric anyway, so you may wait a while to add these to your HTML
toolbox. We've already covered the datalist element for providing suggested values
for text inputs. HTMLS5 also introduced the following elements:

progress

Indicates the state of an ongoing process

The progress element gives users feedback on the state of an ongoing process,
such as a file download. It may indicate a specific percentage of completion
(determinate), like a progress bar, or just indicate a “waiting” state (indeterminate),
like a spinner. The progress element requires scripting to function.

Percent downloaded: <progress max="100" id="fave">0</progress>

meter

Represents a measurement within a range

meter represents a measurement within a known range of values (also known as a
gauge). It has a number of attributes: min and max indicate the highest and lowest
values for the range (they default to 0 and 100); Low and high could be used to
trigger warnings at undesirable levels; and optimum specifies a preferred value.

<meter min="0" max="100" name="volume">60%</meter>

output

Calculated output value

Simply put, the output element indicates the result of a calculation by a script or
program. This example, taken from the HTML5.2 specification, uses the output
element and JavaScript to display the sum of numbers entered into inputs a and b.

<form onsubmit="return false" oninput="o.value = a.valueAsNumber +
b.valueAsNumber">

<input name=a type=number step=any>

+ <input name=b type=number step=any> =

<output name=o for="a b"></output>

</form>

202 PartIl. HTML for Structure

FORM ACCESSIBILITY FEATURES

It is essential to consider how users without the benefit of visual browsers
will be able to understand and navigate through your web forms. The 1label,
fieldset, and legend form elements improve accessibility by making the
semantic connections between the components of a form clear. Not only is
the resulting markup more semantically rich, but there are also more ele-
ments available to act as “hooks” for style sheet rules. Everybody wins!

Labels

Although we may see the label “Address” right next to a text field for entering
an address in a visual browser, in the source, the label and field input may
be separated. The label element associates descriptive text with its respec-
tive form field. This provides important context for users with speech-based
browsers. Another advantage to using labels is that users can click or tap any-
where on them to select or focus the form control. Users with touch devices
will appreciate the larger tap target.

Each label element is associated with exactly one form control. There are two
ways to use it. One method, called implicit association, nests the control and
its description within a label element. In the following example, labels are
assigned to individual checkboxes and their related text descriptions. (By the
way, this is the way to label radio buttons and checkboxes. You can'’t assign a
label to the entire group.)

<label><input type="checkbox" name="genre" value="punk"> Punk
rock</label></1i>
<label><input type="checkbox" name="genre" value="indie"> Indie
rock</label></1i>
<label><input type="checkbox" name="genre" value="hiphop"> Hip
Hop</label></1i>
<label><input type="checkbox" name="genre" value="rockabilly">

Rockabilly</label></1i>

The other method, called explicit association, matches the label with the con-
trol’s id reference. The for attribute says which control the label is for. This
approach is useful when the control is not directly next to its descriptive text
in the source. It also offers the potential advantage of keeping the label and
the control as two distinct elements, which you may find handy when align-
ing them with style sheets.

<label for="form-login-username">Login account</label>
<input type="text" name="login" id="form-login-username">

<label for="form-login-password">Password</label>
<input type="password" name="password" id="form-login-password">

Form Accessibility Features

Attaches information to form controls

To keep form-related ids distinct
from other ids on the page, consider
prefacing them with “form-" as shown
in the examples.

Another technique for keeping forms
organized is to give the form element
an ID name and include it as a prefix
in the IDs for the controls it contains
as follows:

<form id="form-login">
<input id="form-login-user">
<input id="form-login-passwd">

9.Forms 203

Form Accessibility Features

Groups related controls and labels

Assigns a caption to a fieldset

WARNING

Fieldsets and legends tend to throw some
curveballs when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser to
browser. Legends are unique in that their
text doesn’t wrap. The solution is to put a
span or b element in them and control
presentation of the contained element
without sacrificing accessibility. Be sure
to do lots of testing if you style these form
elements.

fieldset and legend

The fieldset element indicates a logical group of form controls. A fieldset
may also include a legend element that provides a caption for the enclosed

fields.

FIGURE 9-19 shows the default rendering of the following example, but you
could use style sheets to change the way the fieldset and legend appear (see
Warning):

<fieldset>
<legend>Mailing List Sign-up</legend>

<label>Add me to your mailing list <input type="radio"
name="1list" value="yes" checked></label></1i>
<label>No thanks <input type="radio" name="list" value="no">
</label></1i>

</fieldset>

<fieldset>
<legend>Customer Information</legend>

<label>Full name: <input type="text" name="fullname"></label>
</1i>
<label>Email: <input type="text" name="email"></label></1i>
<label>State: <input type="text" name="state"></label></1i>

</fieldset>

— Mailing List Sign-up

Add me to your mailing list (®
No thanks

— Customer Information

Full name
Email
State

The default rendering of fieldsets and legends.

In EXERCISE 9-4, we'll wrap up the pizza order form by making it more acces-
sible with labels and fieldsets.

204 Part Il. HTML for Structure

EXERCISE 9-4. Labels and fieldsets

Form Accessibility Features

Our pizza ordering form is working, but we need to label it
appropriately and create some fieldsets to make it more usable
on assistive devices. Once again, open the pizza.html document
and follow these steps.

| like to start with the broad strokes and fill in details later, so we’ll
begin this exercise by organizing the form controls into fieldsets,
and then we’ll do all the labeling. You could do it the other way
around, and ideally, you'd just mark up the labels and fieldsets as
you go along instead of adding them all later.

1. The “Your Information” section at the top of the form is definitely
conceptually related, so let’s wrap it all in a fieldset element.
Change the markup of the section title from a paragraph (p) to a
legend for the fieldset:

<fieldset>
<legend>Your Information</legend>

Name: <input type="text" name="fullname">
</1i>

</fieldset>

2. Next, group the Crust, Toppings, and Number questions in a big
fieldset with the legend “Pizza specs” (the text is there; you just
need to change it from a p to a legend):

<h2>Design Your Dream Pizza:</h2>

3. Create another fieldset just for the Crust options, again changing
the description in a paragraph to a legend. Do the same for the
Toppings and Number sections. In the end, you will have three
fieldsets contained within the larger “Pizza specs” fieldset. When
you are done, save your document and open it in a browser.
Now it should look very close to the final form shown back in
FIGURE 9-2, given the expected browser differences:

<fieldset>

<legend>Crust (Choose one):</legend>
.

</fieldset>

4. OK, now let’s get some labels in there. In the “Your Information”
fieldset, explicitly tie the label to the text input by using the for/
id label method. Wrap the description in 1abel tags and add
the id to the input. The for/id values should be descriptive
and they must match. I've done the first one for you; you do the
other four:

<label for="form-name">Name:</label> <input
type="text" name="fullname" id="form-name"></1i>

5. For the radio and checkbox buttons, wrap the label element
around the input and its value label. In this way, the button will
be selected when the user clicks or taps anywhere inside the
label element. Here’s the first one; you do the rest:

<label><input type="radio" name="crust"
value="white"> Classic White</label></1i>

<fieldset>
<legend>Pizza specs</legend> Save your document, and you're done! Labels don’t have any
%rus’_c... effect on how the form looks by default, but you can feel good
Nﬁzgéggs"' about the added semantic value you’ve added and maybe even
</fie1dsgt> use them to apply styles at another time.
p
DIY Form Widgets intended function of the div (a listbox) and each 1i (an option

Despite having dozens of form widgets straight out of HTML to
choose from, it is common for developers to “roll their own”
form widgets using markup, CSS, and JavaScript. This might

be preferable if you want to provide custom functionality or to
make the styling of the form extra-fancy. For example, you could
create a drop-down menu using an unordered list inside a div
instead of the standard select element:

<div class="select" role="listbox">
<ul class="optionlist">
<1i class="option" role="option">Red</1i>
<1li class="option" role="option">Yellow</1i>

</div>

To help assistive technologies like screen readers recognize this
as a form element, use the ARIA role attribute to describe the

in that listbox). There are also many ARIA states and properties
that make forms, both standard and custom, usable with
assistive devices. For a complete list, see www.w3.0rg/TR/wai-
aria/states_and_properties.

Custom form widgets require scripting and CSS well beyond
the scope of this book, but | wanted you to be aware of the
technique. It’s also extremely easy to mess up, making a user’s
interaction with the form awkward and frustrating (even for
sighted users), so “roll your own” with caution.

The article “How to Build Custom Form Widgets” on MDN Web
Docs provides a nice overview (developer.mozilla.org/en-US/
docs/Web/Guide/HTML/Forms/How_to_build_custom_form_
widgets). You might also choose to use a premade custom
widget from one of the available JavaScript Libraries like jQuery
Ul (jqueryui.com).

J

9. Forms 205

http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties

Form Layout and Design

FORM LAYOUT AND DESIGN

I can’t close this chapter without saying a few words about form design, even
though this chapter is about markup, not presentation.

Usable Forms

A poorly designed form can ruin a user’s experience on your site and nega-
tively impact your business goals. Badly designed forms mean lost custom-
ers, so it is critical to get it right—both on the desktop and for small-screen
devices with their special requirements. You want the path to a purchase or
other action to be as frictionless as possible.

The topic of good web form design is a rich one that could fill a book in itself.
In fact, there is such a book: Web Form Design (Rosenfeld Media) by web
form expert Luke Wroblewski, and I recommend it highly. Luke’s subsequent
book, Mobile First (A Book Apart), includes tips for how to format forms in
a mobile context. You can browse over a hundred articles about forms on his
site at www.lukew.com/ff?tag=forms.

Here I'll offer just a very small sampling of tips from Web Form Design to get
you started, but the whole book is worth a read:

Avoid unnecessary questions.

Help your users get through your form as easily as possible by not includ-
ing questions that are not absolutely necessary to the task at hand. Extra
questions, in addition to slowing things down, may make a user wary of
your motivations for asking. If you have another way of getting the infor-
mation (for example, the type of credit card can be determined from the
first four numbers of the account), then use alternative means and don'
put the burden on the user. If there is information that might be nice to
have but is not required, consider asking at a later time, after the form has
been submitted and you have built a relationship with the user.

Consider the impact of label placement.

The position of the label relative to the input affects the time it takes to
fill out the form. The less the user’s eye needs to bounce around the page,
the quicker the form completion. Putting the labels above their respective
fields creates a single alignment for faster scans and completion, par-
ticularly when you're asking for familiar information (name, address, etc.).
Top-positioned labels can also accommodate labels of varying lengths
and work best on narrow, small-screen devices. They do result in a longer
form, however, so if vertical space is a concern, you can position the labels
to the left of the inputs. Left alignment of labels results in the slowest
form completion, but it may be appropriate if you want the user to slow
down or be able to scan and consider the types of required information.

206 PartIl. HTML for Structure

Choose input types carefully.

As you've seen in this chapter, there are quite a few input types to choose
from, and sometimes it’s not easy to decide which one to use. For example,
a list of options could be presented as a pull-down menu or a number of
choices with checkboxes. Weigh the pros and cons of each control type
carefully, and follow up with user testing.

Group related inputs.

It is easier to parse the many fields, menus, and buttons in a form if they
are visually grouped by related topic. For example, a user’s contact infor-
mation could be presented in a compact group so that five or six inputs
are perceived as one unit. Usually, all you need is a very subtle indication,
such as a fine horizontal rule and some extra space. Don't overdo it.

Clarify primary and secondary actions.

The primary action at the end of the form is usually some form of submit
button (“Buy,” “Register,” etc.) that signals the completion of the form
and the readiness to move forward. You want that button to be visually
dominant and easy to find (aligning it along the main axis of the form is
helpful as well). Using JavaScript, you can gray out the submit button as
non-functioning until all necessary data has been filled in.

Secondary actions tend to take you a step back, such as clearing or reset-
ting the form. If you must include a secondary action, make sure that it is
styled to look different and less important than the primary action. It is
also a good idea to provide an opportunity to undo the action.

Styling Forms

As we’ve seen in this chapter, the default rendering of form markup is not up
to par with the quality we see on most professional web forms today. As for
other elements, you can use style sheets to create a clean form layout as well
as change the appearance of most form controls. Something as simple as nice
alignment and a look that is consistent with the rest of your site can go a long
way toward improving the impression you make on a user.

Keep in mind that form widgets are drawn by the browser and are informed
by operating system conventions. However, you can still apply dimensions,
margins, fonts, colors, borders, and background effects to form elements such
as text inputs, select menus, textareas, fieldsets, labels, and legends. Be sure
to test in a variety of browsers to check for unpleasant surprises. Chapter 19,
More CSS Techniques, in Part 11, lists some specific techniques once you have
more experience with CSS. For more help, a web search for “CSS for forms”
will turn up a number of tutorials.

Form Layout and Design

9. Forms 207

Test Yourself

TEST YOURSELF

Ready to put your web form know-how to the test? Here are a few questions
to make sure you've gotten the basics. You'll find the answers in Appendix A.

1. Decide whether each of these forms should be sent via the GET or POST
method:

a. A form for accessing your bank account online
b. A form for sending t-shirt artwork to the printer
c. A form for searching archived articles

d. A form for collecting long essay entries

2. Which form control element is best suited for the following tasks? When
the answer is “input,” be sure to also include the type. Some tasks may
have more than one correct answer.

a. Choose your astrological sign from 12 signs.

b. Indicate whether you have a history of heart disease (yes or no).
c. Write up a book review.

d. Select your favorite ice cream flavors from a list of eight flavors.

e. Select your favorite ice cream flavors from a list of 25 flavors.

3. Each of these markup examples contains an error. Can you spot it?

a. <input name="country" value="Your country here.">
b. <checkbox name="color" value="teal">
c. <select name="popsicle">

<option value="orange">

<option value="grape">

<option value="cherry">

</select>

d. <input type="password">

e. <textarea name="essay" width="100" height="6">Your story.
</textarea>

208 Part Il. HTML for Structure

Element Review: Forms

ELEMENT REVIEW: FORMS

The following table lists all of the form-related elements and attributes
included in HTML 5.2 (some attributes were not covered in this chapter). The
attributes for each input type are listed in TABLE 9-1.

Element and attributes Description

button Generic input button
autofocus Automatically focuses the form control when the page is loaded
name="text" Supplies a unique variable name for the control
disabled Disables the input so it cannot be selected

type="submit|reset|button”
value="text"
menu="idvalue"

form,formaction, formenctype,
formmethod, formnovalidate,
formtarget

The type of custom button
Specifies the value to be sent to the server
Specifies a designated pop-up menu

Form submission-related attributes used for submit and reset type buttons

datalist Provides a list of options for text inputs
fieldset Groups related controls and labels
disabled Disables all the inputs in the fieldset so they cannot be selected, edited, or

form="idvalue"

name="text"

submitted
Associates the element with a specific form

Supplies a unique variable name for the control

form

action="url"
method="get|post"

enctype="content type"

accept-charset="characterset"

Form element

Location of forms processing program (required)
The method used to submit the form data

The encoding method, generally either application/x-www-form-urlencoded
(default) or multipart/form-data

Character encodings to use

autocomplete Default setting for autofill feature for controls in the form
name="text" Name of the form to use in the document.forms API
novalidate Bypasses form control validation for this form

target="text| blank|_ self|
_parent| top"

Sets the browsing context

9. Forms

209

Element Review: Forms

Element and attributes

Description

input
autofocus

type="submit|reset|button|
text|password|checkbox|radio|
image|file|hidden|email|tel|
search|url|date|time|
datetime-local|month|week |
number |range|color"

See TABLE 9-1 for a full list of
attributes associated with each

input type.
disabled

form="form id value"

Creates a variety of controls, based on the type value
Indicates the control should be ready for input when the document loads

The type of input

Disables the input so it cannot be selected, edited, or submitted

Associates the control with a specified form

label Attaches information to controls

for="text" Identifies the associated control by its id reference
legend Assigns a caption to a fieldset
meter Represents a fractional value within a known range

high="number"
low="number"
max="number"
min="number"

.

optimum="number"

value="number"

Indicates the range that is considered “high” for the gauge
Indicates the range that is considered “low” for the gauge
Specifies the highest value for the range

Specifies the lowest value for the range

Indicates the number considered to be “optimum”

Specifies the actual or measured value

optgroup Defines a group of options
disabled Disables the optgroup so it cannot be selected
label="text" Supplies a label for a group of options

option An option within a select menu control
disabled Disables the option so it cannot be selected
label="text" Supplies an alternate label for the option
selected Preselects the option

value="text"

Supplies an alternate value for the option

output
for="text"
form="form id value"

name="text"

Represents the results of a calculation
Creates a relationship between output and another element
Associates the control with a specified form

Supplies a unique variable name for the control

210 PartIl. HTML for Structure

Element and attributes

Element Review: Forms

Description

progress

max="number"

value="number"

Represents the completion progress of a task (can be used even if the maximum value

of the task is not known)
Specifies the total value or final size of the task

Specifies how much of the task has been completed

select

autofocus

disabled

form="form id value"
multiple

name="text"

required

size="number"

Pull-down menu or scrolling list

Indicates the control should be highlighted and ready for input when the
document loads

Indicates the control is nonfunctional; can be activated with a script
Associates the control with a specified form

Allows multiple selections in a scrolling list

Supplies a unique variable name for the control

Indicates the user input is required for this control

The height of the scrolling list in text lines

textarea
autocomplete

autofocus

cols="number"
dirname="text"
disabled
form="form id value"
inputmode
maxlength="text"
minlength="text"
name="text"
placeholder="text"
readonly

required
rows="number"

wrap="hard|soft"

Multiline text-entry field
Hint for form autofill feature

Indicates the control should be highlighted and ready for input when the
document loads

The width of the text area in characters

Allows text directionality to be submitted

Disables the control so it cannot be selected

Associates the control with a specified form

Hint for selecting an input modality

Specifies the maximum number of characters the user can enter
Specifies the minimum number of characters the user can enter
Supplies a unique variable name for the control

Provides a short hint to help the user enter the correct data
Makes the control unalterable by the user

Indicates user input is required for this control

The height of the text area in text lines

Controls whether line breaks in the text input are returned in the data; hard
preserves line breaks, while soft does not

9. Forms

211

Element Review: Forms

Available attributes for each input type

Attribute

submit

reset

button

text

password

checkbox

radio

image

file

hidden

accept

alt

autocomplete

autofocus

checked

disabled

form

formaction

formenctype

formmethod

formnovalidate

formtarget

height

list

max

min

maxlength

minlength

multiple

name

pattern

placeholder

readonly

required

size

SIc

step

value

width

212 PartIl. HTML for Structure

Attribute

email

telephone, search, url

number

range

Element Review: Forms

date, time, datetime-local,
month, week

color

accept

alt

autocomplete

autofocus

checked

disabled

form

formaction

formenctype

formmethod

formnovalidate

formtarget

height

list

max

min

maxlength

minlength

multiple

name

pattern

placeholder

readonly

required

size

SIc

step

value

width

9.Forms 213

EMBEDDED MEDIA

The HTML specification defines embedded content as follows:

content that imports another resource into the document, or content from
another vocabulary that is inserted into the document

In Chapter 7, Adding Images, you saw examples of both parts of that defini-
tion because images are one type of embedded content. The img and picture
elements point to an external image resource using the src or srcset attri-
butes, and the svg element embeds an image file written in the SVG vocabu-
lary right in the page.

But images certainly arent the only things you can stick in a web page. In this
chapter, we'll look at other types of embedded content and their respective
markup, including the following:

* A window for viewing an external HTML source (iframe)
* Multipurpose embedding elements (object and embed)
* Video and audio players (video and audio)

* A scriptable drawing area that can be used for animations or game-like
interactivity (canvas)

WINDOW-IN-A-WINDOW (IFRAME)

The iframe (short for inline frame) element lets you embed a separate HTML
document or other web resource in a document. It has been around for many
years, but it has recently become one of the most popular ways to share con-
tent between sites.

CHAPTER

10

IN THIS CHAPTER
The iframe element
The object element

Video and audio players

The canvas element

<iframe>..</iframe>
A nested browsing window

215

Window-In-A-Window (iframe)

For example, when you request the code to embed a video from YouTube or
a map from Google Maps, they provide iframe-based code to copy and paste
into your page. Many other media sites are following suit because it allows
them to control aspects of the content you are putting on your page. Inline
frames have also become a standard tool for embedding ad content that
might have been handled with Flash back in the day. Web tutorial sites may
use inline frames to embed code samples on pages.

Adding an iframe to the page creates a little window-in-a-window (or a
nested browsing context, as it is known in the spec) that displays the external
resource. You place an inline frame on a page similarly to an image, specifying
the source (src) of its content. The width and height attributes specify the
dimensions of the frame. The content in the iframe element itself is fallback
content for browsers that don't support the element, although virtually all
browsers support iframes at this point.

In this very crude example, the parent document displays the web page glos-
sary.html in an inline frame (FIGURE 10-1). This iframe has its own set of
scrollbars because the embedded HTML document is too long to fit. To be
honest, you don't often see iframes used this way in the wild (except for code
examples, perhaps), but it is a good way to understand how they work.

<h1>An Inline Frame</h1>

<iframe src="glossary.html" width="400" height="250" >
Read the glossary.
</iframe>

eve T 2 @

An Inline Frame

C

cache
Temporary storage area that browsers use for I
downloaded documents

CaGI
Common Gateway Interface, a mechanism for
communication between the web server and other
programs running on the server

codec
An algorithm used by media files for compressing
and decompressing data

Inline frames (added with the iframe element) are like a browser
window within the browser that displays external HTML documents and resources.

In modern uses of iframe, the window is not so obvious. In fact, there is usu-
ally no indication that there is an embedded frame there at all, as shown by
the Google Maps example in FIGURE 10-2.

216 PartIl. HTML for Structure

Isabella Stewart Gardner Museum

Sign in
Isabella Stewart Gardner Mus... 'd &
25 Evans Way, Boston, MA 02115 Dirsctions Savo
£ 4.5 %%k 261 reviews
View larger map o
S
Museum of Fine .
Simmons College Arts, Boston
» e
ilsubﬂlh Stewart g
Gardner Museum z s
Arttreasures in @@ &
“Og/e
Massachusetts College
Massachusetts »
College of Pharmacy... — of At and.Design
Longwood (@) ™=
al Cahan| &
: Ll
.. Google Par

Brigham Circle @ ©2016 Google - Map data 2016 Google Terms of Use Report a map error

The edges of an iframe are usually not detectable, as shown in this
embedded Google Map.

There are some security concerns with using iframes because they may act
like open windows through which hackers can sneak. The sandbox attribute
puts restrictions on what the framed content can do, such as not allowing
forms, pop ups, scripts, and the like.

Iframe security is beyond the scope of this chapter, but you'll need to brush up
if you are going to make use of iframes on your site. I recommend the MDN
Web Docs article “From object to iframe: Other Embedding Technologies”
(developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/
Other_embedding_technologies), which provides a good overview of iframe
security issues.

To get a feel for how iframes work, use one to embed your favorite video on
a page in EXERCISE 10-1.

EXERCISE 10-1. Embedding a video with iframe

If you'd like to poke around with an iframe, it'’s easy to grab one from YouTube to
embed your favorite video on a page.

Start by creating a new HTML document, including the basic structural elements that
we covered in Chapter 4, Creating a Simple Page.

Go to YouTube and once you are on the page for your chosen video, look for the Share
button; then choose the Embed option. The iframe code is there for you to copy and
paste. If you click “Show more,” there will be further configuration options. Just copy
the iframe code and paste it into the new HTML document. Open it in a browser, and
you’re done!

Window-In-A-Window (iframe)

10. Embedded Media 217

Multipurpose Embedder (object)

Represents external resource

Parameters of an object

The embed Element

The embed element was created

by Netscape for use with plug-in
technologies. It has always been
well supported, but it wasn’t
adopted into a formal specification
until HTML5. With so many other
options for embedding media, the
embed element is not as useful as
it once was. Itis often used as a
fallback when there is a good reason
to support extremely old browser
Versions.

embed is an empty element that
points to an external resource with
the src attribute:

<embed type="video/quicktime"

src="movies/hekboy.mov"

width="320" height="256">
There are additional media-specific
attributes that set parameters
similar to the param element, but
I'm not going to cover them all here.
In fact, I think that’s all there is to say
about embed.

MULTIPURPOSE EMBEDDER (OBJECT)

In the early days, web browsers were extremely limited in what they were
able to render, so they relied on plug-ins to help them display media that
they couldnt handle natively. Java applets, Flash movies, RealMedia (an old
web video and audio format), and other media required third-party plug-ins
in order to be played in the browser. Heck, even JPEG images once required
a plug-in to display.

To embed those media resources on the page, we used the object and embed
elements. They have slightly different uses. The object element is a multipur-
pose object placer. It can be used to place an image, create a nested browsing
context (like an iframe), or embed a resource that must be handled by a plug-
in. The embed element was for use with plug-ins only.

To put it frankly, although still in use, object is going out of style, and embed
is all but extinct (I've tucked it away in a brief sidebar). Media like Java
applets and Flash movies are disappearing fast, and modern browsers use
APIs to display many types of media natively. In addition, mobile browsers as
well as the desktop Microsoft Edge browser don't support plug-ins.

That said, let’s take a look at the object element. At its most minimal, the
object element uses the data attribute to point to the resource and the type
attribute to provide its MIME type. Any content within the object element
tags will be used as a fallback for browsers that don’t support the embedded
resource type. Here is a simple object element that places an SVG image on
the page and provides a PNG fallback:

<object data="picture.svg" type="image/svg+xml">

</object>

Additional attributes for the object element are available and vary according
to the type of media it is placing. The media format may also require that the
object contain a number of param elements that set parameters specific to
that type of media.

Farewell Flash

Apple’s announcement that it would not support Flash on its iOS devices, ever,

gave HTML5 an enormous push forward and eventually led to Adobe stopping
development on its mobile Flash products. Not long after, Microsoft announced that
it was discontinuing its Silverlight media player in lieu of HTMLS5 alternatives. As of
this writing, HTML5 is a long way from being able to reproduce the vast features and
functionality of Flash, but it’s getting there gradually. We are likely to occasionally
see Flash players on the desktop, but the trajectory away from plug-ins and toward
standard web technologies seems clear.

218 PartIl. HTML for Structure

In this example, param elements specify whether the movie starts automati-
cally (no) or has visible controls (yes):
<object type="video/quicktime" data="movies/hekboy.mov" width="320"
height="256">
<param name="autostart" value="false">

<param name="controller" value="true">
</object>

VIDEO AND AUDIO

Until recently, browsers did not have built-in capabilities for handling video
or sound, so they used plug-ins to fill in the gap. With the development of the
web as an open standards platform, and with broadband connections allow-
ing for heftier downloads than previously, it seemed to be time to make mul-
timedia support part of browsers’ out-of-the-box capabilities. Enter the new
video and audio elements and their respective APIs (see the “API” sidebar).

The Good News and the Bad News

The good news is that the video and audio elements are well supported in
modern browsers, including IE 9+, Safari, Chrome, Opera, and Firefox for
the desktop and iOS Safari 4+, Android 2.3+, and Opera Mobile (however,
not Opera Mini).

But if youTe envisioning a perfect world where all browsers are supporting
video and audio in perfect harmony, I'm afraid it’s not that simple. Although
they have all lined up on the markup and JavaScript for embedding media
players, unfortunately they have not agreed on which formats to support.
Let’s take a brief journey through the land of media file formats. If you want
to add video or audio to your page, this stuff is important to understand.

How Media Formats Work

When you prepare audio or video content for web delivery, there are two
format decisions to make. The first is how the media is encoded (the algo-
rithms used to convert the source to 1s and Os and how they are compressed).
The method used for encoding is called the codec, which is short for “code/
decode” or “compress/decompress.” There are a bazillion codecs out there
(that’s an estimate). Some probably sound familiar, like MP3; others might
sound new, such as H.264, Vorbis, Theora, VP8, and AAC.

Second, you need to choose the container format for the media. You can think
of it as a ZIP file that holds the compressed media and its metadata together
in a package. Usually a container format is compatible with more than one
codec type, and the full story is complicated. Because space is limited in this
chapter, I'm going to cut to the chase and introduce the most common con-
tainer/codec combinations for the web. If you are going to add video or audio
to your site, I encourage you to get more familiar with all of these formats.

Video and Audio

API

An API (Application Programming
Interface) is a standardized set of
commands, data names, properties,
actions, and so on, that lets one
software application communicate
with another. HTML5 introduced a
number of APIs that give browsers
programmable features that
previously could only be achieved
with third-party plug-ins.

Some APIs have a markup
component, such as embedding
multimedia with the new HTML5
video and audio elements (Media
Player API). Others happen entirely
behind the scenes with JavaScript
or server-side components, such as
creating web applications that work
even without an internet connection
(Offline Web Application API).

The W3C is working on lots and lots
of APIs for use with web applications,
allin varying stages of completion
and implementation. Most have their
own specifications, separate from
the HTML5 spec itself, but they are
generally included under the wide
HTML5 umbrella that covers web-
based applications.

Alist of all HTML5 APIs and specs in
development is available at html5-
overview.net, maintained by Erik
Wilde. You will also find introductions
to better-known APIs in Appendix D.

10. Embedded Media 219

http://html5-overview.net
http://html5-overview.net

Video and Audio

For a thorough introduction to HTML
video and audio, | recommend
Beginning HTML5 Media: Make the
Most of the New Video and Audio
Standards for the Web by Silvia
Pfeiffer and Tom Green (Apress).

Meet the video formats
For video, the most common options are as follows:

MPEG-4 container + H.264 video codec + AAC audio codec. This com-
bination is generally referred to as “MPEG-4,” and it takes the .mp4 or
.m4v file suffix. H.264 is a high-quality and flexible video codec, but it is
patented and must be licensed for a fee. All current browsers that support
HTMLS5 video can play MPEG-4 files with the H.264 codec. The newer
H.265 codec (also known as HEVC, High Efficiency Video Coding) is in
development and reduces the bitrate by half, but is not well supported as
of this writing.

WebM container + VP8 video codec + Vorbis audio codec. “WebM” is a
container format that has the advantage of being open source and royalty-
free. It uses the .webm file extension. It was originally designed to work
with VP8 and Vorbis codecs.

WebM container + VP9 video codec + Opus audio codec. The VP9 video
codec from the WebM project offers the same video quality as VP8 and
H.264 at half the bitrate. Because it is newer, it is not as well supported,
but it is a great option for browsers that can play it.

Ogg container + Theora video codec + Vorbis audio codec. This is typically
called “Ogg Theora,” and the file should have an .ogv suffix. All of the
codecs and the container in this option are open source and unencum-
bered by patents or royalty restrictions, but some say the quality is infe-
rior to other options. In addition to new browsers, it is supported on some
older versions of Chrome, Firefox, and Android that don’t support WebM
or MP4, so including it ensures playback for more users.

Of course, the problem that I referred to earlier is that browser makers have
not agreed on a single format to support. Some go with open source, royalty-
free options like Ogg Theora or WebM. Others are sticking with H.264
despite the royalty requirements. What that means is that we web developers
need to make multiple versions of videos to ensure support across all brows-
ers. TABLE 10-1 lists which browsers support the various video options (see
the “Server Setup” sidebar).

s B

Server Setup

In TABLES 10-1and 10-2, the Type column identifies the MIME type of each
media format. If your site is running on the Apache server, to make sure that video
and audio files are served correctly, you may need to add their respective types to
the server’s .htaccess file. The following example adds the MP4 type/subtype and
extensions:

AddType video/mp4 mp4 mav

220 PartIl. HTML for Structure

Meet the audio formats

The landscape looks similar for audio formats: several to choose from, but no
format that is supported by all browsers (TABLE 10-2).

MP3. The MP3 (short for MPEG-1 Audio Layer 3) format is a codec and
container in one, with the file extension.mp3. It has become ubiquitous
as a music download format.

WAYV. The WAV format (wav) is also a codec and container in one. This
format is uncompressed so it is only good for very short clips, like sound
effects.

Ogg container + Vorbis audio codec. This is usually referred to as “Ogg
Vorbis” and is served with the .ogg or .oga file extension.

MPEG 4 container + AAC audio codec. “MPEG4 audio” (.m4a) is less com-
mon than MP3.

WebM container + Vorbis audio codec. The WebM (.webm) format can also
contain audio only.

WebM container + Opus audio codec. Opus is a newer, more efficient audio
codec that can be used with WebM.

Video support in desktop and mobile browsers (as of 2017)

Video and Audio

HLS (HTTP Streaming
Video)

If you are serious about web video,
you should become familiar with
HLS (HTTP Streaming Video), a
streaming format that can adapt its
bitrate on the fly. The HLS Wikipedia
entry is as good a place as any to
get started: en.wikipedia.org/wiki/
HTTP_Live_Streaming.

Format Type IE MS Edge | Chrome | Firefox | Safari Opera | Android | iOS Safari
MP4 (H.264) | video/mp4 mp4 mav | 90+ 12+ 4+ Yes* 32+ 25+ 44+ 32+
WebM (VP8) | video/webm webm - - 6+ 40+ - 15+ 23+ -

webmv
WebM (VP9) | video/webm webm - 14+ 29+ 28+ — 16+ 44+ —

webmv
Ogg Theora | video/ogg ogv - - 30+ 35+ - 13+ 23+ -
* Firefox version varies by operating system.

Audio support in current browsers (as of 2017)
Format Type IE MS Edge | Chrome | Firefox | Opera Safari | iOS Safari | Android
MP3 audio/mpeg mp3 90+ 12+ 30+ 22+ 15+ 4+ 41 23+
WAV audio/wav or - 12+ 80+ 35+ 1.5+ 4+ 32+ 23+

audio/wave

Ogg Vorbis audio/ogg ogg oga |-— - 40+ 35+ 1.5+ - - 23+
MPEG-4/AAC audio/mp4 m4a 110+ | 12+ 120+ - 15+ 4+ 41+ 30+
WebM/Vorbis audio/webm webm - - 6.0+ 40+ 115+ — - 233+
WebM/Opus audio/webm webm - 14+ 33+ 15+ 20+ - - -

10. Embedded Media 221

Video and Audio

Adding a Video to a Page

I guess it’s about time we got to the markup for adding a video to a web page

Adds a video player to the page (this is an H

TML chapter, after all). Let’s start with an example that assumes

you are designing for an environment where you know exactly what browser

your user wi

11 be using. When this is the case, you can provide only one video

format using the src attribute in the video tag (just as you do for an img).

FIGURE 10-3

shows a movie with the default player in the Chrome browser.

©08 /[y croesses eeorsisw 201 x serrr

c2clo " 20 ;

Jeff the Brotherhood at SXSW

A
h

—1 LT

of sound with only a drum kit and three guitar strings. This might be a gaod
5. They've been playing together since they were 10 and 12 years old, o they've

a Mac).

An embedded movie using the video element (shown in Chrome on

Video and Audio Encoding Tools

There are scores of options for editing and encoding video and audio files, so | can’t cover them all here, but the following tools are
free and get the job done.

Video conversion
* Handbrake (handbrake.fr) is a popular open source tool for ¢ Audio Converter (online-audio-converter.com) is one of the

converting to MPEG4 with H.264, H.265, VP8, and Theora
available for Windows, macOS, and Linux.

Firefogg (firefogg.org) is an extension to Firefox for
converting video to the WebM (VP8 and VP9) and Ogg Th

formats. Simply install the Firefogg extension to Firefox (cross- « MediaHuman Audio Converter (www.mediahuman.com/

platform); then visit the Firefogg site and convert video b
using its online interface.

FFmpeg (ffmpeg.org)is an open source, command-line tool more. It has an easy drag-and-drop interface, but is pretty

for converting just about any video format. If you are not
comfortable with the command line, there are a number
software packages (some for pay, some free) that offer a
interface to FFmpeg to make it more user-friendly.

Freemake (freemake.com) is a free video and audio

conversion tool for Windows that supports over 500 media

formats.

Audio conversion

Ctis free audio and video tools from 123Apps.com that converts
files to MP3, WAV, OGG, and more.

¢ Media.io (media.io) is a free web service that converts audio
eora to MP3, WAV, and OGG.

y audio-converter/) is free for Mac and Windows and can
convert to all of the audio formats listed in this chapter and

much no-frills.
of .
user

Max (sbooth.org/Max/) is an open source audio converter
(Mac only).

e Audacity (www.audacityteam.org) is free, open source,
cross-platform audio software for multitrack recording and
editing. It can import and export files in many of the formats
listed in this chapter.

222

Part Il. HTML for Structure

Here is a simple video element that embeds a movie and player on a web
page:
<video src="highlight reel.mp4" width="640" height="480"
poster="highlight still.jpg" controls autoplay>
Your browser does not support HTML5 video. Get the MP4 video
</video>

Browsers that do not support video display whatever content is provided
within the video element. In this example, it provides a link to the movie that
your visitor could download and play in another player.

There are also some attributes in that example worth looking at in detail:

width="pixel measurement"
height="pixel measurement"

Specifies the size of the box the embedded media player takes up on the
screen. Generally; it is best to set the dimensions to exactly match the pixel
dimensions of the movie. The movie will resize to match the dimensions
set here.

poster="url of image"

Provides the location of an image that is shown in place of the video
before it plays.

controls

Adding the controls attribute prompts the browser to display its built-
in media controls, generally a play/pause button, a “seeker” that lets you
move to a position within the video, and volume controls. It is possible to
create your own custom player interface using CSS and JavaScript if you
want more consistency across browsers.

autoplay

Makes the video start playing automatically after it has downloaded
enough of the media file to play through without stopping. In general,
use of autoplay should be avoided in favor of letting the user decide when
the video should start. autoplay does not work on iOS Safari and some
other mobile browsers in order to protect users from unnecessary data
downloads.

In addition, the video element can use the loop attribute to make the video
play again after it has finished (ad infinitum), muted for playing the video
track without the audio, and preload for suggesting to the browser whether
the video data should be fetched as soon as the page loads (preload="auto")
or wait untl the user clicks the play button (preload="none"). Setting
preload="metadata" loads information about the media file, but not the
media itself. A device can decide how to best handle the auto setting; for
example, a browser in a smartphone may protect a user’s data usage by not
preloading media, even when it is set to auto.

Video and Audio

10. Embedded Media 223

Video and Audio

Providing video format options

Do you remember back in Chapter 7 when we supplied multiple image for-
mats with the picture element using a number of source elements? Well,
picture got that idea from video!

As you've seen, it is not easy to find one video format to please all browsers
(although MPEG4/H.264 gets close). In addition, new efficient video formats
like VP9 and H.265 are available but not supported in older browsers. Using
source elements, we can let the browsers use what they can.

In the markup, a series of source elements inside the video element point to
each video file. Browsers look down the list until they find one they support
and download only that version. The following example provides a video
clip in the souped-up WebM/VP9 format for supporing browsers, as well as
an MP4 and Ogg Theora for other browsers. This will cover pretty much all
browsers that support HTMLS5 video (see the sidebar “Flash Video Fallback”).
<video id="video" controls poster="img/poster.jpg">

<source src="clip.webm" type="video/webm">

<source src="clip.mp4" type="video/mp4">

<source src="clip.ogg" type="video/ogg">

Download the MP4 of the clip.

</video>;

Custom video players

One of the powerful things about the video element and the Media Player
API is that the system allows for a lot of customization. You can change the
appearance of the control buttons with CSS and manipulate the functional-
ity with JavaScript. That is all beyond the scope of this chapter, but I recom-
mend the article “Creating a Cross-Browser Video Player” by Eric Shepherd,
Chris Mills, and Ian Devlin (developer.mozilla.org/en-US/Apps/Fundamentals/
Audio_and_video_delivery/cross_browser_video_player) for a good overview.

You may also be interested in trying out a prefab video player that pro-
vides good looks and advanced performance such as support for streaming
video formats. You can implement many of them by adding a line or two of
JavaScript to your document and then by using the video element, so it’s
not hard to get started. There’s a nice roundup of plug-and-play video player
options listed at VideoSWS (videosws.praegnanz.de/).

s B

Flash Video Fallback

Older browsers—most notably Internet Explorer versions 8 and earlier—do not
support video. If f IE8 is making a significant blip in your site statistics, you may
choose to provide a Flash movie fallback. The “Creating a Cross-Browser Video
Player” article mentioned previously has thorough explanation of the technique.
Another article worth a read is Kroc Camen’s “Video for Everybody” (camendesign.
com/code/video_for_everybody). It is a bit dated, but I'm sure would be helpful,
balanced with your up-to-date browser support knowledge.

224 Part Il. HTML for Structure

Adding Audio to a Page

If you've wrapped your head around the video markup example, you already
know how to add audio to a page. The audio element uses the same attri-
butes as the video element, with the exception of width, height, and poster
(because there is nothing to display). Just like the video element, you can
provide a stack of audio format options using the source element, as shown
in the example here. FIGURE 10-4 shows how the audio player might look
when it’s rendered in the browser.

<p>Play "Percussion Gun" by White Rabbits</p>

<audio id="whiterabbits" controls preload="auto">
<source src="percussiongun.mp3" type="audio/mp3">
<source src="percussiongun.ogg" type="audio/ogg">
<source src="percussiongun.webm" type="audio/webm">
<p>Download "Percussion Gun":</p>

MP3</1i>
0gg Vorbis</1i>

</audio>

Play "Percussion Gun" by White Rabbits

N e 0:30) —

Audio player as rendered in Firefox.

If you have only one audio file, you can simply use the src attribute instead. If
you want to be evil, you could embed audio in a page, set it to play automati-
cally and then loop, and not provide any controls to stop it like this:

<audio src="jetfighter.mp3" autoplay loop></audio>

But you would never, ever do something like that, right? Right?! Of course
you wouldn’t.

Adding Text Tracks

The track element provides a way to add text that is synchronized with the
timeline of a video or audio track. Some uses include the following:

e Subtitles in alternative languages
¢ Captions for the hearing impaired

¢ Descriptions of what is happening in a video for the sight impaired

Chapter titles to allow for navigation through the media

Metadata that is not displayed but can be used by scripts

Video and Audio

Adds an audio file to the page

Adds synchronized text to
embedded media

10. Embedded Media 225

Video and Audio

NOTE

The full list of two-letter language codes
is published at www.iana.org/assign-
ments/language-subtag-registry/lan-
guage-subtag-registry.

Clearly, adding text tracks makes the media more accessible, but it has the
added bonus of improving SEO (Search Engine Optimization). It can also
allow for deep linking, linking to a particular spot within the media’s timeline.

FIGURE 10-5 shows how captions might be rendered in a browser that sup-
ports the track element.

and with so many tools, the sky is the limit

FIGURE 10-5. Avideo with captions.

Use the track element inside the video or audio element you wish to anno-
tate. The track element must appear after all the source elements, if any, and
may include these attributes:
src
Points to the text file.
kind
Specifies the type of text annotation you are providing (subtitles, cap-
tions, descriptions, chapters, or metadata). If kind is set to subtitle, you
must also specify the language (srclang attribute) by using a standard-
ized IANA two-letter language tag (see Note).
label
Provides a name for the track that can be used in the interface for selecting
a particular track.
default

Marks a particular track as the default and it may be used on only one
track within a media element.

226 Part Il. HTML for Structure

The following code provides English and French subtitle options for a movie:

<video width="640" height="320" controls>
<source src="japanese movie.mp4" type="video/mp4">
<source src="japanese movie.webm" type="video/webm">
<track src="english subtitles.vtt"
kind="subtitles"
srclang="en"
label="English subtitles"
default>
<track src="french.vtt"
kind="subtitles"
srclang="fr"
label="Sous-titres en francais">
</video>

WebVTT

You'll notice in the previous example that the track points to a file with a .vet
suffix. That is a text file in the WebVTT (Web Video Text Tracks) format that
contains a list of cues. It looks like this:

WEBVTT

00:00:01.345 --> 00:00:03.456
Welcome to Artifact [applause]

00:00:06.289 --> 00:00:09.066
There is a lot of new mobile technology to discuss.

00:00:06.289 --> 00:00:13.049
We're glad you could all join us at the Alamo Drafthouse.

Cues are separated by empty line spaces. Each cue has a start and end time
in hours:minutes:seconds:milliseconds format, separated by an “arrow” (-->).
The cue text (subtitle, caption, description, chapter, or metadata) is on a line
below. Optionally, an ID can be provided for each cue on the line above the
time sequence.

You can probably guess that there’s a lot more to mastering text tracks for
video and audio. Take a look at the following resources:

* “Adding Captions and Subtitles to HTML5 Video” at MDN Web Docs
(developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/
Adding_captions_and_subtitles_to_HTML5_video)

¢ Subtitle tutorial on Miracle Tutorials (www.miracletutorials.com/how-to-
create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/)

* The WebVTT specification at the W3C is available at www.w3.0rg/TR/
webvttl/

If you'd like to play around with the video element, spend some time with
EXERCISE 10-2.

Video and Audio

NOTE

Other timed text formats include SRT
captioning (replaced by WebVTT) and
TML/DFXF, which is maintained by the
W3C and supported by Internet Explorer
but it is not recommended in the HTML5
specification for track.

10. Embedded Media 227

https://developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
https://developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/

Canvas

EXERCISE 10-2. Embedding a video player

In this exercise, you’ll add a video to a page with the video 3. Save and view the document in your browser. If you see the
element. In the materials for Chapter 10, you will find the small fallback message, your browser is old and doesn’t support the
movie about wind tunnel testing in MPEG-4, OGG/Theora, and video element. If you see the controls but no video, it doesn’t
WebM formats. support MP4, so try it again with one of the other formats.
1. Create a new document with the proper HTMLS5 setup, or you 4. The video element is pretty straightforward so you may feel
can use the same document you used in EXERCISE 10-1. done at this point, but I encourage you to play around with it a
2. Start by adding the video element with the src attribute little to see what happens. Here are some things to try:
pointed to windtunnel.mp4 because MP4 video has the best * Resize the video player with the width and height
browser support. Be sure to include the width (320 pixels) and attributes.
height (262 pixels), as well as the controls attribute so you'll « Add the autoplay attribute.

have a way to play and pause it. Include some fallback copy
within the video element—either a message or a link to the

video:

<video src="windtunnel.mp4" width="320"

height="262" controls>

¢ Remove the controls attribute and see what that’s like as
a user.

¢ Rewrite the video element using source elements for each
of the three provided video formats.

Sorry, your browser doesn't support HTML5 video.

</video>

NOTE

If you have a good reason to support
IE8, the FlashCanvas JavaScript library
(flashcanvas.net) adds canvas support
using the Flash drawing API.

CANVAS

Another cool, “Look Ma, no plug-ins!” addition in HTMLS5 is the canvas
element and the associated Canvas APL The canvas element creates an area
on a web page for drawing with a set of JavaScript functions for creating
lines, shapes, fills, text, animations, and so on. You could use it to display an
illustration, but what gives the canvas element so much potential (and has
the web development world so delighted) is that it’s all generated with script-
ing. That means it is dynamic and can draw things on the fly and respond to
user input. This makes it a nifty platform for creating animations, games, and
even whole applications—all using the native browser behavior and without
proprietary plug-ins like Flash.

It is worth noting that the canvas drawing area is raster-based, meaning that
it is made up of a grid of pixels. This sets it apart from the other drawing
standard, SVG, which uses vector shapes and paths that are defined with
points and mathematics.

The good news is that every current browser supports the canvas element
as of this writing, with the exception of Internet Explorer 8 and earlier (see
Note). It has become so well established that Adobe’s Animate software (the
replacement for Flash Pro) now exports to canvas format.

FIGURE 10-6 shows a few examples of the canvas element used to create
games, drawing programs, an interactive molecule structure tool, and an

228 Part Il. HTML for Structure

asteroid animation. You can find more examples at EnvatoTuts+ (code.
tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments-
-net-14210), on David Walsh’s blog (davidwalsh.name/canvas-demos), as well
as the results of your own web search.

e s ==

.-

ritzesanun

mahjong.frvr.com/ muro.deviantart.com/

CanvasMoL

www.effectgames.com/demos/canvascycle/ alteredqualia.com/canvasmol/

A few examples of the canvas element used for games, animations,
and applications.

Mastering the canvas element is more than we can take on here, particularly
without any JavaScript experience under our belts, but I will give you a taste
of what it is like to draw with JavaScript. That should give you a good idea
of how it works, and also a new appreciation for the complexity of some of
those examples.

The canvas Element

You add a canvas space to the page with the canvas element and specify the
dimensions with the width and height attributes. And that’s really all there is
to the markup. For browsers that don't support the canvas element, you can
provide some fallback content (a message, image, or whatever seems appro-
priate) inside the tags:

<canvas width="600" height="400" id="my first canvas">

Your browser does not support HTML5 canvas. Try using Chrome, Firefox,

Safari or MS Edge.
</canvas>

Adds a 2-D dynamic drawing area

Canvas

10. Embedded Media

229

Canvas

The markup just clears a space upon which the drawing will happen. You can
affect the drawing space itself with CSS (add a border or a background color,
for example), but all of the contents of the canvas are generated by scripting
and cannot be selected for styling with CSS.

Drawing with JavaScript

The Canvas API includes functions for creating shapes, such as strokeRect()
for drawing a rectangular outline and beginPath() for starting a line drawing,.
Some functions move things around, such as rotate() and scale(). It also
includes attributes for applying styles (for example, lineWidth, font, stroke-
Style, and fillStyle).

Sanders Kleinfeld created the following code example for his book HTML5
for Publishers (O'Reilly). He was kind enough to allow me to use it in this
book. FIGURE 10-7 shows the simple smiley face we’ll be creating with the
Canvas APL

Hello Canvas!

The finished product of our “Hello Canvas” example. See the original
at examples.oreilly.com/0636920022473/my_first_canvas/my_first_canvas.html.

And here is the script that created it. Dont worry that you don’t know any
JavaScript yet. Just skim through the script and pay attention to the inline
comments. I'll also describe some of the functions in use at the end. I bet
you'll get the gist of it just fine.

<script type="text/javascript">
window.addEventListener('load', eventWindowlLoaded, false);
function eventWindowlLoaded() {

canvasApp();

function canvasApp(){
var theCanvas = document.getElementById('my first canvas');
var my canvas = theCanvas.getContext('2d");
my_canvas.strokeRect(0,0,200,225)

// to start, draw a border around the canvas

230 PartIl. HTML for Structure

//draw face
my_canvas.beginPath();
my_canvas.arc(100, 100, 75, (Math.PI/180)*0, (Math.PI/180)*360, false);
// circle dimensions
my_canvas.strokeStyle = "black"; // circle outline is black
my_canvas.lineWidth = 3; // outline is three pixels wide
my canvas.fillStyle = "yellow"; // fill circle with yellow
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

// now, draw left eye

my canvas.fillStyle = "black"; // switch to black for the fill

my_canvas.beginPath();

my canvas.arc(65, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
// circle dimensions

my_canvas.stroke(); // draw circle

my_canvas.fill(); // fill in circle

my_canvas.closePath();

// now, draw right eye

my_canvas.beginPath();

my_canvas.arc(135, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
// circle dimensions

my_canvas.stroke(); // draw circle

my_canvas.fill(); // fill in circle

my_canvas.closePath();

// draw smile
my_canvas.lineWidth = 6; // switch to six pixels wide for outline
my_canvas.beginPath();
my_canvas.arc(99, 120, 35, (Math.PI/180)*0, (Math.PI/180)*-180, false);
// semicircle dimensions
my canvas.stroke();
my_canvas.closePath();

// Smiley Speaks!
my_canvas.fillStyle = "black"; // switch to black for text fill
my_canvas.font = '20px _sans'; // use 20 pixel sans serif font
my canvas.fillText ("Hello Canvas!", 45, 200); // write text

</script>

Finally, here is a little more information on the Canvas API functions used in
the example:

strokeRect(x1, y1, x2, y2)

Draws a rectangular outline from the point (x1, y1) to (x2, y2). By default,
the origin of the canvas (0, 0) is the top-left corner, and x and y coordi-
nates are measured to the right and down.

beginPath()

Starts a line drawing,

closePath()

Ends a line drawing that was started with beginPath().

Canvas

10. Embedded Media

231

Canvas

arc(x, y, arc radius, angle radians beg, angle radians_end)

Draws an arc where (x,y) is the center of the circle, arc_radius is the
length of the radius of the circle, and angle_radians_beg and _end indi-
cate the beginning and end of the arc angle.

stroke()

Draws the line defined by the path. If you don’t include this, the path
won't appear on the canvas.

£i11()
Fills in the path specified with beginPath() and endPath().
fillText(your text, x1, y1)

Adds text to the canvas starting at the (x,y) coordinate specified.
In addition, the following attributes were used to specify colors and styles:

lineWidth
Width of the border of the path.

strokeStyle
Color of the border.

fillStyle
Color of the fill (interior) of the shape created with the path.

font

The font and size of the text.

Of course, the Canvas API includes many more functions and attributes
than we’ve used here. For a complete list, see the W3Cs HTMLS5 Canvas 2D
Context specification at www.w3.0rg/TR/2dcontext. A web search will turn up
lots of Canvas tutorials should you be ready to learn more. In addition, I can
recommend these resources:

* The book HTMLS5 Canvas, Second Edition, by Steve Fulton and Jeff Fulton
(O'Reilly).

* If video is more your speed, try this tutorial by David Geary: HTMLS5
Canvas for Developers (shop.oreilly.com/product/0636920030751.do).

232

Part Il. HTML for Structure

TEST YOURSELF

We've looked at all sorts of ways to stick things in web pages in this chapter.
We've seen how to use iframe to create a “window-in-a-window” for display-
ing external web resources; object for resources that require plug-ins, video
and audio players; and the canvas 2-D scriptable drawing space. Now see if
you were paying attention. As always, answers are in Appendix A.

1. What is a “nested browsing context,” and how would you create one?

2. Why would you use the sandbox attribute with an iframe?

3. Name some instances when you might need to know the MIME type for
your media file.

4. Identify each of the following as a container format, video codec, or audio
codec:

a. Ogg
b. H264
c. VP8
d. Vorbis
e. WebM
f. Theora

g. Opus
h. MPEG-4

5. What does the poster attribute do?

6. Whatis a .vit file?

7. List at least two differences between SVG and Canvas.

8. List the two Canvas API functions you would use to draw a rectangle and
fill it with red. You don't need to write the whole script.

Test Yourself

10. Embedded Media 233

Element Review: Embedded Media

ELEMENT REVIEW: EMBEDDED MEDIA

The following elements are used to embed media files of many types into web pages.

Element and Attributes Description

src="URL"

crossorigin="anonymous |
use-credentials"”

preload="auto|none|metadata

audio Embeds an audio player on the page

Address of the resource

How the element handles requests from other origins (servers)

Indicates how much the media resource should be buffered on page load

type="media type"
width="number"

height="number"

autoplay Indicates the media can play as soon as the page is loaded
loop Indicates the media file should start playing again automatically once it reaches
the end
muted Disables the audio output
controls Indicates the browser should display a set of playback controls for the media file
canvas Represents a two-dimensional area that can be used for rendering dynamic bitmap
graphics
height The height of the canvas area
width The width of the canvas area
embed Embeds a multimedia object that requires a plug-in for playback on the page.
Certain media types require custom attributes not listed below.
src="URL" Address of the media resource

The media (MIME) type of the media
The horizontal dimension of the video player in pixels

The vertical dimension of the video player in pixels

iframe

src="URL"
srcdoc="HTML source code"
name="text"

sandbox=
"allow-forms|
allow-pointer-lock|
allow-popups|
allow-same-origin|
allow-scripts|
allow-top-navigation"

allowfullscreen
width="number"

height="number"

Creates a nested browsing context to display HTML resources in a page
Address of the HTML resource
The HTML source of a document to display in the inline frame
Assigns a name to the inline frame to be referenced by targeted links

Security rules for nested content

Indicates the objects in the inline frame are allowed to use requestFullScreen()
The horizontal dimension of the video player in pixels

The vertical dimension of the video player in pixels

234 PartIl. HTML for Structure

Element and Attributes

Element Review: Embedded Media

Description

object
data="URI"
type="media type"
typemustmatch

name="text"
form="form ID"
width="number"

height="number"

A generic element for embedding an external resource

Address of the resource
The media (MIME) type of the resource

Indicates the resource is to be used only if the value of the type attribute and the
content type of the resource match

The name of the object to be referenced by scripts
Associates the object with a form element
The horizontal dimension of the video player in pixels

The vertical dimension of the video player in pixels

param Supplies a parameter within an object element
name="text" Defines the name of the parameter
value="text" Defines the value of the parameter
source Allows authors to specify multiple versions of a media file (used with video
and audio)
src="text" The address of the resource

type="media type"

The media (MIME) type of the resource

track

kind="subtitles|captions|

descriptions|chapters|metadata”

src="text"

srclang="valid language tag"

Specifies an external resource (text or audio) that is timed with a media file that
improves accessibility, navigation, or SEO

Type of text track

Address of external resource

Language of the text track

label="text" A title for the track that may be displayed by the browser
default Indicates the track should be used by default if it does not override user prefer-
ences
video Embeds a video player on the page
src="URL" Address of the resource

crossorigin="anonymous |
use-credentials"

poster="URL"

preload="auto|none|metadata"

autoplay
loop

muted
controls
width="number"

height="number"

How the element handles requests from other origins (servers)

The location of an image file that displays as a placeholder before the video
begins to play

Hints how much buffering the media resource will need
Indicates the media can play as soon as the page is loaded

Indicates the media file should start playing again automatically once it reaches
the end

Disables the audio output
Indicates the browser should display a set of playback controls for the media file
Specifies the horizontal dimension of the video player in pixels

Specifies the vertical dimension of the video player in pixels

10. Embedded Media 235

