CSS FOR PRESENTATION

INTRODUCING
CASCADING STYLE
SHEETS

You've heard style sheets mentioned quite a bit already, and now we’ll
finally put them to work and start giving our pages some much-needed
style. Cascading Style Sheets (CSS) is the W3C standard for defining the
presentation of documents written in HTML, and in fact, any XML language.
Presentation, again, refers to the way the document is delivered to the user,
whether shown on a computer screen, displayed on a cell phone, printed on
paper, or read aloud by a screen reader. With style sheets handling the presen-
tation, HTML can handle the business of defining document structure and
meaning, as intended.

CSS is a separate language with its own syntax. This chapter covers CSS ter-
minology and fundamental concepts that will help you get your bearings for
the upcoming chapters, where you'll learn how to change text and font styles,
add colors and backgrounds, and even do basic page layout. By the end of
Part IIl, [aim to give you a solid foundation for further reading on your own
and lots of practice.

THE BENEFITS OF CSS

Not that you need further convincing that style sheets are the way to go, but
here is a quick rundown of the benefits of using style sheets.

* Precise type and layout controls. You can achieve print-like precision
using CSS. There is even a set of properties aimed specifically at the
printed page (but we won't be covering them in this book).

* Less work. You can change the appearance of an entire site by editing
one style sheet. This also ensures consistency of formatting throughout
the site.

CHAPTER

11

IN THIS CHAPTER
The benefits and power of CSS

How HTML markup creates a
document structure

Writing style rules

Attaching styles to the HTML
document

Big concepts: inheritance,
specificity, the cascade, rule
order, and the box model

239

How Style Sheets Work

* More accessible sites. When all matters of presentation are handled by
CSS, you can mark up your content meaningfully, making it more acces-
sible for non-visual or mobile devices.

Come to think of it, there really aren’t any disadvantages to using style sheets.
There are some lingering hassles from browser inconsistencies, but they can
either be avoided or worked around if you know where to look for them.

The Power of CSS

Were not talking about minor visual tweaks here, like changing the color
of headlines or adding text indents. When used to its full potential, CSS is a
robust and powerful design tool. My eyes were first opened to the possibili-
ties of using CSS for design by the variety and richness of the designs at CSS
Zen Garden (www.csszengarden.com).

In the misty days of yore (2003), when developers were still hesitant to give
up their table-based layouts for CSS, David Shea’s CSS Zen Garden site dem-
onstrated exactly what could be accomplished using CSS alone. David posted
an HTML document and invited designers to contribute their own style
sheets that gave the document a visual design. FIGURE 11-1 shows just a few of
my favorites. All of these designs use the exact same HTML source document.

Not only that, they don't include a single img element (all of the images are in
the background of elements). But look at how different each page looks—and
how sophisticated. That’s all done with style sheets. It is proof of the power in
keeping CSS separate from HTML, and presentation separate from structure.

The CSS Zen Garden is no longer being updated and now is considered a
historical document of a turning point in the adoption of web standards.
Despite its age, I still find it to be a nice one-stop lesson for demonstrating
exactly what CSS can do.

Granted, it takes a lot of practice to be able to create CSS layouts like those
shown in FIGURE 11-1. Killer graphic design skills help too (unfortunately, you
won't get those in this book). 'm showing this to you up front because I want
you to be aware of the potential of CSS-based design, particularly because the
examples in this beginners’ book tend to be simple and straightforward. Take
your time learning, but keep your eye on the prize.

HOW STYLE SHEETS WORK

It’s as easy as 1-2-3!
1. Start with a document that has been marked up in HTML.

2. Write style rules for how you’d like certain elements to look.

240 Part lIl. CSS for Presentation

How Style Sheets Work

szendrage

hebeautyofcss desigh x.__

CSS Zen Dragen By the Pier
by Matthew Buchanan by Peter Ong Kelmscott
zen | garden
Ida
Organica Creativa Shaolin Yokobue
by Eduardo Cesario by Javier Cabrera

These pages from the CSS Zen Garden use the same HTML source
document, but the design is changed with CSS alone (used with permission of CSS Zen
Garden and the individual designers).

3. Attach the style rules to the document. When the browser displays the
document, it follows your rules for rendering elements (unless the user
has applied some mandatory styles, but we’ll get to that later).

OK, so there’s a bit more to it than that, of course. Let’s give each of these steps
a little more consideration.

1. Marking Up the Document

You know a lot about marking up content from the previous chapters. For
example, you know that it is important to choose elements that accurately
describe the meaning of the content. You also heard me say that the markup

11. Introducing Cascading Style Sheets 241

How Style Sheets Work

EXERCISE 11-1.
A first look

In this chapter, we'll add a few simple
styles to a short article. The document,
cooking.html, and its associated

image, salads.jpg, are available at
learningwebdesign.com/5e/materials/.

For now, just open the document

in a browser to see how it looks by
default (it should look something like
FIGURE 11-2). You can also open
the document in a text editor to get
ready to follow along in the next two
exercises.

‘acrisp. Spring day in Portsmouth, NH cooking and chatiing with Duniel Larca of the band Nada Suf as
fown et for 28 pils,

i Surf Lo be on the show, I was old that Dasic] Lorca was the gy | wasted o alk o. Then Daniel cmaild his.
b bout i doi.* Afier years of oly et

et T've been doing a loof with a band

Daniel I, smoked jam, and). joking! 6

hour Salad because thats how long he worked on it The [rech tomatoes were slowly smaked over woodehip in the gril, und when
jam. The 10 put on the

‘meandered. the avocads finally wen! on the il after dark. | was on fashlight duty while Daniel checked for the

salad y
periect grll masks,

Turote ires mach le s 6 people instead of
The Main Course

In addition 0 the smoy grilled saad, Dariel
rapes, and wild ice with gl

Dinner shose o midnight,but it wis a paty s0 nobody cared,

belles, ips, and nearly $ hours of footage. I'm considering

y.carly the
amming the show “Cooking with Nada Surf™

This is what the
article looks like without any style
sheet instructions. Although we won’t
be making it beautiful, you will get a
feel for how style sheets work.

creates the structure of the document, sometimes called the structural layer,
upon which the presentation layer can be applied.

In this and the upcoming chapters, you'll see that having an understanding of
your document’ structure and the relationships between elements is central
to your work as a style sheet author.

In the exercises throughout this chapter you will get a feel for how simple it
is to change the look of a document with style sheets. The good news is that
I've whipped up a little HTML document for you to play with. You can get
acquainted with the page we’ll be working with in EXERCISE 11-1.

2. Writing the Rules

A style sheet is made up of one or more style instructions (called style rules)
that describe how an element or group of elements should be displayed. The
first step in learning CSS is to get familiar with the parts of a rule. As you'll
see, they’re fairly intuitive to follow. Each rule selects an element and declares

how it should look.

The following example contains two rules. The first makes all the h1 elements
in the document green; the second specifies that the paragraphs should be in
a large, sans-serif font. Sans-serif fonts do not have a little slab (a serif) at the
ends of strokes and tend to look more sleek and modern.

h1 { color: green; }

p { font-size: large; font-family: sans-serif; }
In CSS terminology, the two main sections of a rule are the selector that iden-
tifies the element or elements to be affected, and the declaration that provides
the rendering instructions. The declaration, in turn, is made up of a property
(such as color) and its value (green), separated by a colon and a space. One or
more declarations are placed inside curly brackets, as shown in FIGURE 11-3.

declaration block

selector {
propertyl: valuei;
property2: value2;
property3: value3;
¥

declaration

selector { property: value; }

The parts of a style rule.

242 Part lIl. CSS for Presentation

Selectors

In the previous small style sheet example, the h1 and p elements are used as
selectors. This is called an element type selector, and it is the most basic type
of selector. The properties defined for each rule will apply to every h1 and p
element in the document, respectively.

Another type of selector is an ID selector, which selects an element based on
the value of an element’s id attribute. It is indicated with the # symbol. For
example, the selector #recipe targets an element with id="recipe".

In upcoming chapters, I'll introduce you to more sophisticated selectors that
you can use to target elements, including ways to select groups of elements,
and elements that appear in a particular context. See the “Selectors in this
Book” sidebar for details.

Mastering selectors—that is, choosing the best type of selector and using it
strategically—is an important step in mastering CSS.

Declarations

The declaration is made up of a property/value pair. There can be more than
one declaration in a single rule; for example, the rule for the p element shown
earlier in the code example has both the font-size and font-family proper-
ties. Each declaration must end with a semicolon to keep it separate from the
following declaration (see Note). If you omit the semicolon, the declaration
and the one following it will be ignored. The curly brackets and the declara-
tions they contain are often referred to as the declaration block (FIGURE 11-3).

Because CSS ignores whitespace and line returns within the declaration
block, authors typically write each declaration in the block on its own line,
as shown in the following example. This makes it easier to find the properties
applied to the selector and to tell when the style rule ends.
p i
font-size: large;
font-family: sans-serif;

}

Note that nothing has really changed here—there is still one set of curly
brackets, semicolons after each declaration, and so on. The only difference is
the insertion of line returns and some character spaces for alignment.

Properties

The heart of style sheets lies in the collection of standard properties that
can be applied to selected elements. The complete CSS specification defines
dozens of properties for everything from text indents to how table headers
should be read aloud. This book covers the most common and best-support-
ed properties that you can begin using right away.

How Style Sheets Work

Selectors in This Book

Instead of throwing the selectors at
you all at once, I've spread them out
S0 you can master a few at a time.
Here is where you will find them:
Chapter 11:
Element type selector (p.243)
Grouped selectors (p.252)

Chapter 12:
Descendent selectors (p.281)
ID and class selectors (p.282-6)

Child, next-sibling, and following-
sibling selectors (p.283)

Universal selector (*) (p.285)

Chapter 13:
Pseudo-class selectors (p.316)
Pseudo-element selectors (p.320)
Attribute selectors (p.323)

NOTE

Technically, the semicolon is not required
after the last declaration in the block, but
it is recommended that you get into the
habit of always ending declarations with
a semicolon. It will make adding declara-
tions to the rule later that much easier.

11. Introducing Cascading Style Sheets 243

How Style Sheets Work

Values

Values are dependent on the property. Some properties take length measure-
ments, some take color values, and others have a predefined list of keywords.
When you use a property, it is important to know which values it accepts;
however, in many cases, simple common sense will serve you well. Authoring
tools such as Dreamweaver or Visual Studio provide hints of suitable values
to choose from. Before we move on, why not get a little practice writing style
rules yourself in EXERCISE 11-2?

EXERCISE 11-2. Your first style sheet

Open cooking.html in a text editor. In the head of the document
you will find that I have set up a style element for you to type the
rules into. The style element is used to embed a style sheet in an
HTML document. To begin, we’ll simply add the small style sheet
that we just looked at in this section. Type the following rules into
the document, just as you see them here:

<style>
hi {
color:
}

p

{
font-size: large;
font-family: sans-serif;

green;

</style>

Save the file, and take a look at it in the browser. You should
notice some changes (if your browser already uses a sans-serif
font, you may see only a size change). If not, go back and check
that you included both the opening and closing curly bracket and
semicolons. It’s easy to accidentally omit these characters, causing
the style sheet not to work.

Now we’ll edit the style sheet to see how easy it is to write rules
and see the effects of the changes. Here are a few things to try.

IMPORTANT: Remember that you need to save the document after
each change in order for the changes to be visible when you reload
itin the browser.

* Make the h1 element “gray” and take a look at it in the browser.
Then make it “blue”. Finally, make it “orange”. (We’'ll run through
the complete list of available color names in Chapter 13,
Colors and Backgrounds.)

* Add a new rule that makes the h2 elements orange as well.

* Add a 100-pixel left margin to paragraph (p) elements by using
this declaration:

margin-left: 100px;

Remember that you can add this new declaration to the existing
rule for p elements.

* Add a 100-pixel left margin to the h2 headings as well.

e Add an orange, 1-pixel border to the bottom of the h1 element
by using this declaration:

border-bottom: 1px solid orange;

e Move the image to the right margin, and allow text to flow
around it with the float property. The shorthand margin
property shown in this rule adds zero pixels of space on the
top and bottom of the image and 12 pixels of space on the left
and right of the image (the values are mirrored in a manner
explained in Chapter 14, Thinking Inside the Box):

img {
float: right;
margin: 0 12px;

When you are done, the document should look something like the
one shown in FIGURE 11-4.

1 had the pleasure of spending a erisp, Spring day in Portsmouth, NH cooking and chatting with Daniel
Lorca of the band Nada Surf as he prepared a gaurmet, sit-down dinner for 28 pals.

When | first invited Nada Surf to be on the show, | was told that Daniel Lorca was the guy | wanted to
talk to. Then Daniel emailed his response: *fm way into it, but i don't want to talk about , i wanna do
it.” After years of only having access to touring bands between their sound check and set, I've been
doing a lot of falking about cooking with rockstars. To actually cook with a band was a dream come
true.

Daniel prepared a salad of arugula, smoked tomatoes,
tomate jam, and grilled avecado (it's as good as it sounds!). |
jokingly called it "6-hour Salad” because that's how long he
worked on it. The fresh tomatoes were slowly smoked over
woodchips in the grill, and when they were softened, Daniel

separated out the seeds which he reduced into a smoky jam.

The tomatoes were cut into strips 10 put on the salads. As

the day meandered, the avocados finally went on the grill

after dark. | was on flashlight duty while Daniel checked for

the perfect grill marks. ! %
I wrote up a streamiined adaptation of his recipe that o

requires much less time and serves 6 peaple instead of fivetimes that amount.

In addition 10 the smoky grilled salad, Daniel served tarragon comish hens with a cognac cream sauce
loaded with chanterelles and grapes, and wild rice with grilled ramps (wild garlicky leeks). Dinner was
served close to midnight, but it was a party so nobody cared.

We left that night (technically, early the next moring) with full belies, new cooking tips, and nearly 5
hours of footage. I'm considering renaming the show "Cooking with Nada Surf'.

The article after we add a small style sheet. Not
beautiful—just different.

244 Part lIl. CSS for Presentation

3. Attaching the Styles to the Document

In the previous exercise, we embedded the style sheet right in the document
by using the style element. That is just one of three ways that style informa-
tion can be applied to an HTML document. You'll get to try out each of these
soon, but it is helpful to have an overview of the methods and terminology
up front.

External style sheets

An external style sheet is a separate, text-only document that contains
a number of style rules. It must be named with the .css suffix. The .css
document is then linked to (via the link element) or imported (via an
@import rule in a style sheet) into one or more HTML documents. In this
way, all the files in a website may share the same style sheet. This is the
most powerful and preferred method for attaching style sheets to content.
We'll discuss external style sheets more and start using them in the exer-
cises in Chapter 13.

Embedded style sheets

This is the type of style sheet we worked with in the exercise. It is placed
in a document via the style element, and its rules apply only to that
document. The style element must be placed in the head of the docu-
ment. This example also includes a comment (see the “Comments in Style
Sheets” sidebar).
<head>
<title>Required document title here</title>
<style>
/* style rules go here */
</style>
</head>

Inline styles

You can apply properties and values to a single element by using the style
attribute in the element itself, as shown here:

<h1 style="color: red">Introduction</h1>
To add multiple properties, just separate them with semicolons, like this:
<h1 style="color: red; margin-top: 2em">Introduction</h1>

Inline styles apply only to the particular element in which they appear.
Inline styles should be avoided, unless it is absolutely necessary to over-
ride styles from an embedded or external style sheet. Inline styles are
problematic in that they intersperse presentation information into the
structural markup. They also make it more difficult to make changes
because every style attribute must be hunted down in the source.

EXERCISE 11-3 gives you an opportunity to write an inline style and see how
it works. We won’t be working with inline styles after this point for the rea-
sons listed earlier, so here’s your chance.

How Style Sheets Work

Comments in Style
Sheets

Sometimes it is helpful to leave
yourself or your collaborators
comments in a style sheet. CSS has
its own comment syntax, shown here:

/* comment goes here */

Content between the /* and */ will
be ignored when the style sheet is
parsed, which means you can leave
comments anywhere in a style sheet,
even within a rule:

body {
font-size: small;
/* change this later */

One use for comments is to label
sections of the style sheet to make
things easier to find later; for
example:

/* FOOTER STYLES */

CSS comments are also useful for
temporarily hiding style declarations
in the design process. When | am
trying out a number of styles, | can
quickly switch styles off by enclosing
them in /* and */, check the design
in a browser, then remove the
comment characters to make the
style appear again. It's much faster
than retyping the entire thing.

11. Introducing Cascading Style Sheets 245

The Big Concepts

EXERCISE 11-3.
Applying an inline style

Open the article cooking.html in
whatever state you last left it in
EXERCISE 11-2. If you worked to the
end of the exercise, you will have a rule
that makes the h2 elements orange.

Write an inline style that makes the
second h2 gray. We'll do that right in
the opening h2 tag by using the style
attribute, as shown here:

<h2 style="color: gray">The
Main Course</h2>
Note that it must be gray-with-an-a (not
grey-with-an-e) because that is the way
the color is defined in the spec.

Save the file and open it in a browser.
Now the second heading is gray,
overriding the orange color set in the
embedded style sheet. The other h2
heading is unaffected.

THE BIG CONCEPTS

There are a few big ideas that you need to get your head around to be com-
fortable with how Cascading Style Sheets behave. 'm going to introduce you
to these concepts now so we don't have to slow down for a lecture once were
rolling through the style properties. Each of these ideas will be revisited and
illustrated in more detail in the upcoming chapters.

Inheritance

Are your eyes the same color as your parents’? Did you inherit their hair
color? Well, just as parents pass down traits to their children, styled HTML
elements pass down certain style properties to the elements they contain.
Notice in EXERCISE 11-1, when we styled the p elements in a large, sans-serif
font, the em element in the second paragraph became large and sans-serif as
well, even though we didn’t write a rule for it specifically (FIGURE 11-5). That
is because the em element inherited the styles from the paragraph it is in.
Inheritance provides a mechanism for styling elements that don't have any
explicit styles rules of their own.

Unstyled paragraph

I've been doing a lot of [talking|about cooking

Paragraph with styles applied

I've been doing a lot of|talking|about cooking

The em element is large and sans-serif even
though it has no style rules of its own. It inherits
styles from the paragraph that contains it.

The em element inherits styles that were applied to the paragraph.

Document structure

This is where an understanding of your document’s structure becomes
important. As I've noted before, HTML documents have an implicit structure,
or hierarchy. For example, the sample article we’ve been playing with has an
html root element that contains a head and a body, and the body contains
heading and paragraph elements. A few of the paragraphs, in turn, contain
inline elements such as images (img) and emphasized text (em). You can visu-
alize the structure as an upside-down tree, branching out from the root, as
shown in FIGURE 11-6.

246 Part lIl. CSS for Presentation

html

head body

title | |style| [meta u H

The document tree structure of the sample document, cooking.html.

Parents and children

The document tree becomes a family tree when it comes to referring to the
relationship between elements. All the elements contained within a given
element are said to be its descendants. For example, the h1, h2, p, em, and
img elements in the document in FIGURE 11-6 are all descendants of the body
element.

An element that is directly contained within another element (with no inter-
vening hierarchical levels) is said to be the child of that element. Conversely,
the containing element is the parent. For example, the em element is the child
of the p element, and the p element is its parent.

All of the elements higher than a particular element in the hierarchy are its
ancestors. Two elements with the same parent are siblings. We don't refer to
“aunts” or “cousins,” so the analogy stops there. This may all seem academic,
but it will come in handy when you're writing CSS selectors.

Pass it on

When you write a font-related style rule using the p element as a selector, the
rule applies to all of the paragraphs in the document as well as the inline text
elements they contain. We've seen the evidence of the em element inheriting
the style properties applied to its parent (p) back in FIGURE 11-5. FIGURE 11-7
demonstrates what’s happening in terms of the document structure diagram.
Note that the img element is excluded because font-related properties do not
apply to images.

Notice that I've been saying “certain” properties are inherited. It's important
to note that some style sheet properties inherit and others do not. In general,
properties related to the styling of text—font size, color, style, and the like—
are passed down. Properties such as borders, margins, backgrounds, and so
on that affect the boxed area around the element tend not to be passed down.
This makes sense when you think about it. For example, if you put a border

The Big Concepts

11. Introducing Cascading Style Sheets 247

The Big Concepts

When you learn a new property, it

is a good idea to note whether it
inherits. Inheritance is noted for every
property listing in this book. For the
most part, inheritance follows your
expectations.

html

head body

p {font-size: large; font-family: sans serif;}

title | |style| |meta

Certain properties applied to the p element are inherited by their
children.

around a paragraph, you wouldnt want a border around every inline element
(such as em, strong, or a) it contains as well.

You can use inheritance to your advantage when writing style sheets. For
example, if you want all text elements to be blue, you could write separate
style rules for every element in the document and set the color to “blue” A
better way would be to write a single style rule that applies the color property
to the body element, and let all the elements contained in the body inherit that
style (FIGURE 11-8).

Any property applied to a specific element overrides the inherited values for
that property. Going back to the article example, if we specify that the em ele-
ment should be orange, that would override the inherited blue setting.

If you apply the color property to the
| html | body element, it will be passed down to
all the elements in the document.

| head | body body {color: blue;}
[tie] [styie] [meta] [0 nﬁgénm

(The color will show for the image only if it has a border applied to it.)

All the elements in the document inherit certain properties applied to
the body element.

248 Part lIl. CSS for Presentation

Conflicting Styles: The Cascade

Ever wonder why they are called “cascading” style sheets? CSS allows you
to apply several style sheets to the same document, which means there
are bound to be conflicts. For example, what should the browser do if a
document’s imported style sheet says that h1 elements should be red, but its
embedded style sheet has a rule that makes his purple? The two style rules
with h1 selectors have equal weight, right?

The folks who wrote the style sheet specification anticipated this problem
and devised a hierarchical system that assigns different weights to the vari-
ous sources of style information. The cascade refers to what happens when
several sources of style information vie for control of the elements on a page:
style information is passed down (“cascades” down) until it is overridden by
a style rule with more weight. Weight is considered based on the priority of
the style rule source, the specificity of the selector, and rule order.

Priority

If you don’t apply any style information to a web page, it renders according to
the browser’s internal style sheet. We've been calling this the default render-
ing; the W3C calls it the user agent style sheet. Individual users can apply
their own styles as well (the user style sheet, also called the reader style sheet),
which override the default styles in their browser. However, if the author of
the web page has attached a style sheet (the author style sheet), that overrides
both the user and the user agent styles. The sidebar “Style Rule Hierarchy”
provides an overview of the cascading order from highest to lowest priority.

The only exception is if the user has identified a style as “important,” in
which case that style will override all competing styles (see the “Assigning
Importance” sidebar). This permits users to keep settings accommodating a
disability such as extra large type for sight impairment.

Specificity

It is possible for conflicts to arise in which an element is getting style instruc-
tions from more than one rule. For example, there may be a rule that applies
to paragraphs and another rule for a paragraph that has the ID “intro.” Which
rule should the intro paragraph use?

When two rules in a style sheet conflict, the type of selector is used to deter-
mine the winner. The more specific the selector, the more weight it is given
to override conflicting declarations. In our example, the selector that includes
the ID name (#intro) is more specific than a general element selector (like
p), so that rule would apply to the “intro” paragraph, overriding the rules set
for all paragraphs.

It’s a little soon to be discussing specificity because we’ve looked at only two
types of selectors. For now, put the term specificity and the concept that some

The Big Concepts

Style Rule Hierarchy

Style information can come from
various origins, listed here from
highest priority to lowest. In other
words, items higher in the list
override items below.

* Any style rule marked !important
by the reader (user)

* Any style rule marked !important
by the author

* Style sheets written by the author

* Style sheets created by the reader
(user)

* Browser’s default style rules (“user
agent style sheet”)

11. Introducing Cascading Style Sheets 249

The Big Concepts

-

Assigning Importance

If you want a rule not to be overridden by a subsequent
conflicting rule, include the 'important indicator just after
the property value and before the semicolon for that rule. For
example, to guarantee paragraph text will be blue, use the
following rule:

p {color: blue !important;}

Even if the browser encounters an inline style later in the
document (which should override a document-wide style
sheet), like this one:

<p style="color: red">

that paragraph will still be blue because the rule with the
limportant indicator cannot be overridden by other styles in
the author’s style sheet.

The only way an !important rule may be overriddenis by a
conflicting rule in a reader (user) style sheet that has also been
marked !important. This is to ensure that special reader

requirements, such as large type or high-contrast text for the
visually impaired, are never overridden.

Based on the previous examples, if the reader’s style sheet
includes this rule

p {color: black;}

the text would still be blue because all author styles (even those
not marked !important) take precedence over the reader’s
styles. However, if the conflicting reader’s style is marked
limportant, like this

p {color: black !important;}

the paragraphs will be black and cannot be overridden by any
author-provided style.

Beware that the !important indicator is not a get-out-of-jail-
free card. Best practices dictate that it should be used sparingly,
if at all, and certainly never just to get yourself out of a sticky
situation with inheritance and the cascade.

selectors have more “weight,” and therefore override others, on your radar.
We will revisit specificity in much more detail in Chapter 12, Formatting Text

when you have more selector types under your belt.

Rule order

After all the style sheet sources have been sorted by priority, and after all
the linked and imported style sheets have been shuffled into place, there are
likely to be conflicts in rules with equal weights. When that is the case, the
order in which the rules appear is important. The cascade follows a “last one

wins” rule. Whichever rule appears last has the last word.

Within a style sheet, if there are conflicts within style rules of identical
weight, whichever one comes last in the list “wins.” Take these three rules,

for example:

<style>

p { color:
p { color:

p { color
</style>

In this scenario, paragraph text will be green because the last rule in the style
sheet—that is, the one closest to the content in the document—overrides the
earlier ones. Procedurally, the paragraph is assigned a color, then assigned a
new one, and finally a third one (green) that gets used. The same thing hap-

red; }
blue; }
: green; }

pens when conflicting styles occur within a single declaration stack:

250 Part lIl. CSS for Presentation

<style>
p { color: red;
color: blue;
color: green; }
</style>

The resulting color will be green because the last declaration overrides the
previous two. It is easy to accidentally override previous declarations within a
rule when you get into compound properties, so this is an important behav-
ior to keep in mind. That is a very simple example. What happens when style
sheet rules from different sources come into play?

Let’s consider an HTML document that has an embedded style sheet (added
with the style element) that starts with an @import rule for importing an
external .css file. That same HTML document also has a few inline style
attributes applied to particular h1 elements.

STYLE DOCUMENT (external.css):
h1 { color: red }

HTML DOCUMENT:

<IDOCTYPE html>
<html>
<head>
<title>.</title>
<style>
@import url(external.css); /* set to red first */
hi { color: purple;} /* overridden by purple */
</style>
</head>
<body>

<h1 style="color: blue">Heading</h1> /* blue comes last and wins */

</body>

</html>
When the browser parses the file, it gets to the imported style sheet first,
which sets his to red. Then it finds a rule with equal weight in the embed-
ded style sheet that overrides the imported rule, so h1s are set to purple. As it
continues, it encounters a style rule right in an h1 that sets its color to blue.
Because that rule came last, it’s the winner, and that ha will be blue. That’s the
effect we witnessed in EXERCISE 11-3. Note that other his in this document
without inline style rules would be purple, because that was the last h1 color
applied to the whole document.

The Box Model

As long as we're talking about Big CSS Concepts, it is only appropriate to
introduce the cornerstone of the CSS visual formatting system: the box
model. The easiest way to think of the box model is that browsers see every
element on the page (both block and inline) as being contained in a little

The Big Concepts

~N

Using Rule Order for
Fallbacks

Many CSS properties are tried

and true and are supported by all
browsers; however, there are always
useful, new properties emerging that
take a while to be implemented by
browsers. It is common for just one
or two browsers to support a new
feature and for others to lag behind
or never support it at all. It also takes
a long time for some old browsers to
completely fade from existence.

Fortunately, there are a number of
ways to provide fallbacks (alternative
styles using better-supported
properties) to non-supporting
browsers. The most straightforward
method takes advantage of browsers’
built-in behavior of ignoring any
declaration they don’t understand
and then using rule order strategically.

In this example, | have added a
decorative border image to an
element by using the border-image
property and provided a fallback
solid border with the tried-and-

true border property. Supporting
browsers use the image because

itis the last rule in the stack. Non-
supporting browsers set a solid
border but stop there when they

get to the border-image property
they don’t understand. They won’t
crash or throw an error. They just
ignore it. The border displays as

the fallback solid red line on those
browsers, which is fine, but users
with supporting browsers will see the
decorative border as intended.

h1 {
/* fallback first */

border: 25px solid #eee;
/* newer technique */
border-image: url(fancyframe.
png) 55 fill / 55px / 25px;
}

You'll see this method of providing
fallbacks by putting newer properties
last throughout this book.

11. Introducing Cascading Style Sheets 251

The Big Concepts

A Quick History of CSS

The first official version of CSS (the
CSS Level 1 Recommendation,
a.k.a CSS1) was released in 1996,
and included properties for adding
font, color, and spacing instructions
to page elements. Unfortunately,
lack of browser support prevented
the widespread adoption of CSS for
several years.

CSS Level 2 (€CSS2), released in
1998, most notably added properties
for positioning that allowed CSS

to be used for page layout. It also
introduced styles for other media
types (such as print and handheld)
and more sophisticated methods
for selecting elements. CSS Level

2, Revision 1 (CSS2.1) made some
minor adjustments to CSS2 and
became a Recommendation in 2011.

CSS Level 3 (€SS3) is different
from prior versions in that it is
divided into individual modules,
each addressing a feature such as
animation, multiple column layouts,
or borders. While some modules are
being standardized, others remain
experimental. In that way, browser
developers can begin implementing
(and we can begin using!) one feature
at a time instead of waiting for an
entire specification to be “ready.”

Now that each CSS module is on its
own track, modules have their own
Level numbers. No more big, all-
encompassing CSS versions. Newly
introduced modules, such as the
Grid Layout Module, start out at Level
1. Modules that have been around

a while may have already reached
Level 4.

You won’t believe how many
individual specifications are in

the works! For an overview of the
specifications in their various states of
“doneness,” see the W3C’s CSS current
work page at www.w3.0rg/Style/CSS/
current-work.

rectangular box. You can apply properties such as borders, margins, padding,
and backgrounds to these boxes, and even reposition them on the page.

We're going to go into a lot more detail about the box model in Chapter 14,
but having a general feel for it will benefit you even as we discuss text and
backgrounds in the following two chapters.

To see the elements roughly the way the browser sees them, I've written style
rules that add borders around every content element in our sample article:
h1 { border: 1px solid blue; }
h2 { border: 1px solid blue; }
p { border: 1px solid blue; }

em { border: 1px solid blue; }
img { border: 1px solid blue; }

FIGURE 11-9 shows the results. The borders reveal the shape of each block
element box. There are boxes around the inline elements (em and img) as well.
If you look at the headings, you will see that block element boxes expand to
fill the available width of the browser window, which is the nature of block
elements in the normal document flow. Inline boxes encompass just the char-
acters or image they contain.

[Cooking with Daniel from Nada Surf |

‘had the pleasure of spending a crisp, Spring day in Portsmouth, NH cooking and chatting with Daniel Lorca of the band Nada Surf as |
¢ prepared a gourme, sit-down dinner for 28 pals

en] first invited Nada Surf 10 be on the showgf was 10k that Daniel Lorca was the guy 1 wanted 1o talk to. T“r‘. w a E tb
a

fresponse: "i'm way into it, but i don't want 10 tg{k about it i\wanna do it.” After years of only having access tp
fheir sound check and set, I've been doing a lofof [alking] atout cooking with rockstars. To actually cook 3
firue.

& about it, 1

[Six-hour Salad

alads. As the day meandered, the avocados finally went on the grill after dark. I was on flashlight duty while Daniel checked for the

aniel prepared a salad of arugula, smoked omatoes, tomate jam, and grilled avocado (it's as good as it sounds . 1 jokingly called it °6-
ur Salad" because that's how long he worked on it. The fresh tomatoes were slowly smoked over woodchips in the grill, and when
cy were softened, Daniel scparatcd out the sceds which he reduced into a smoky jam. The tomatoes were cu into sirips (o put on the
et grill marks.

wrote up a streamlined adaptation of his recipe that requires [muck] less time and serves 6 people instead of fivefimes that amount.

fl‘he Main Course |

[n addition (o the smoky grilled salad, Danicl scrved tarragon cornish hens with a cognac cream sauce loaded with chanterclles and
s, and wild rice with grilled ramps (wild garlicky leeks). Dinner was served close to midnight, but it was a. body cared.

‘e left that night (technically, early the next morning) with full bellies, new cooking tips, and nearly 5 hours of footage. I'm considering
naming the show "Cooking with Nada Surf",

Rules around all the elements reveal their element boxes.

Grouped Selectors

Hey! This is a good opportunity to show you a handy style rule shortcut. If
you ever need to apply the same style property to a number of elements, you
can group the selectors into one rule by separating them with commas. This

252 Part lIl. CSS for Presentation

CSS Units of Measurement

one rule has the same effect as the five rules listed previously. Grouping them
makes future edits more efficient and results in a smaller file size:

hi, h2, p, em, img { border: 1px solid blue; } .
Pop Quiz

Now you have two selector types in your toolbox: a simple element selector

and grouped selectors. Can you guess why | didn’t just add

the border property to the body
element and let it inherit to all the
elements in the grouped selector?

CSS UNITS OF MEASUREMENT

Answer:

"pa1layul 10U a4e 1ey) senuadoud
U} JO BUO S| I9pI0q 9SNEIY

This chapter lays the groundwork for upcoming lessons, so it’s a good time to
get familiar with the units of measurement used in CSS. You'll be using them
to set font size, the width and height of elements, margins, indents, and so on.
The complete list is provided in the sidebar “CSS Units.”

Some will look familiar (like inches and millimeters), but there are some units
that bear more explanation: absolute units, rem, em, and vw/vh. Knowing
how to use CSS units effectively is another one of those core CSS skills.

CSS Units

CSS3 provides a variety of units of measurement. They fall into ch
two broad categories: absolute and relative.

zero width, equal to the width of a zero (0) in the
current font and size.

VW viewport width unit, equal to 1/100 of the current

Absolute units viewport (browser window) width.

Absolute units have predefined meanings or real-world vh
equivalents. With the exception of pixels, they are not
appropriate for web pages that appear on screens.

viewport height unit, equal to 1/100 of the current
viewport height.

) .)) vmin viewport minimum unit, equal to the value of vw or vh,

px pixel, defined as equal to 1/96 of an inch in CSS3. WP i g
' whichever is smaller.
n |nFITes, vmax viewport maximum unit, equal to the value of vw or vh,
mm millimeters. whichever is larger.
cm centimeters.
q Va millimeter.
NOTES

pt points (1/72 inch). Points are a unit commonly used in

print design. * Although not a “unit,” percentages are another common

pc picas (1 pica = 12 points or 1/6 inch). Points are a unit
commonly used in print design.
Relative units

Relative units are based on the size of something else, such as
the default text size or the size of the parent element.

em a unit of measurement equal to the current font size.

ex x-height, approximately the height of a lowercase “x” in
the font.

rem root em, equal to the em size of the root element
(html).

measurement value for web page elements. Percentages

are calculated relative to another value, such as the value

of a property applied to the current element or its parent or
ancestor. The spec always says what a percentage value for a
property is calculated on.

When used for page layouts, percentage values ensure that
page elements stay proportional.

¢ Child elements do not inherit the relative values of their
parent, but rather the resulting calculated value.

e |E9 supports vm instead of vmin. IE and Edge (all versions as
of 2017) do not support vmax.

11. Introducing Cascading Style Sheets 253

CSS Units of Measurement

Rem Fallbacks for Old
IE Browsers

The drawback to rems is that IE8
and earlier do not support them
at all, and you need to provide

a fallback declaration with the
equivalent measurement in pixels.
There are production tools that
can convert all your rem units to
pixels automatically, which are
discussed in Chapter 20, Modern
Development Tools.

Absolute Units

Absolute units have predefined meanings or real-world equivalents. They are
always the same size, regardless of the context in which they appear.

The most popular absolute unit for web design is the pixel, which CSS3
defines as 1/96 inch. Pixels are right at home on a pixel-based screen and
offer precise control over the size of the text and elements on the page. For a
while there, pixels were all we used. Then we realized they are too rigid for
pages that need to adapt to a wide variety of screen sizes and user preferences.
Relative measurements like rem, em, and % are more appropriate to the fluid
nature of the medium.

As long as we are kicking px to the curb, all of the absolute units—such as pt,
pc, in, mm, and cm—are out because they are irrelevant on screens, although
they may be useful for print style sheets. That narrows down your unit
choices a bit.

That said, pixels do still have their place in web design for elements that truly
should stay the same size regardless of context. Border widths are appropriate
in pixels, as are images that have inherent pixel dimensions.

Relative Units

As T just established, relative units are the way to go for most web measure-
ments, and there are a few options: rem, em, and vw/vh.

The rem unit

CSS3 introduced a relative measurement called a rem (for root em) that is
based on the font size of the root (html) element, whatever that happens to
be. In modern browsers, the default root font size is 16 pixels; therefore, a rem
is equivalent to a 16-pixel unit (unless you set it explicitly to another value).
An element sized to 10rem would measure 160 pixels.

For the most part, you can use rem units like an absolute measurement in
style rules; however, because it is relative, if the base font size changes, so
does the size of a rem. If a user changes the base font size to 24 pixels for
easier reading from a distance, or if the page is displayed on a device that has
a default font size of 24 pixels, that 10rem element becomes 240 pixels. That
seems dodgy, but rest assured that it is a feature, not a bug. There are many
instances in which you want a layout element to expand should the text size
increase. It keeps the page proportional with the font size, which can help
maintain optimum line lengths.

The em unit

An em is a relative unit of measurement that, in traditional typography, is
based on the width of the capital letter M (thus the name “em”). In the CSS

254 Part lIl. CSS for Presentation

specification, an em is calculated as the distance between baselines when the
font is set without any extra space between the lines (also known as leading).
For text with a font size of 16 pixels, an em measures 16 pixels; for 12-pixel
text, an em equals 12 pixels; and so on, as shown in FIGURE 11-10.

em box
ey there! &here! H y theI‘e!
12px type 16px type 24px type
lem=12px lem=16px lem =24px

An em is based on the size of the text.

Once the dimension of an em for a text element is calculated by the browser,
it can be used for all sorts of other measurements, such as indents, margins,
the width of the element on the page, and so on. Basing measurements on text
size helps keep everything in proportion should the text be resized.

The trick to working with ems is to remember they are always relevant to
the current font size of the element. To borrow an example from Eric Meyer
and Estelle Weyl's CSS: The Definitive Guide (O'Reilly), if you set a 2em left
margin on an h1, h2, and p, those elements will not line up nicely because the
em units are based on their respective element’s sizes (FIGURE 11-11).

DjThis is a 24pt Heading

l:DA Heading in 20pt

morem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam
facilisis imperdiet pretium. Proin fermentum urna sed arcu
efficitur tincidunt. Donec id libero euismod, venenatis augue in,
vestibulum lectus. Donec ultricies finibus eleifend. Aenean egestas
augue sem, vitae ultricies libero fringilla a. Aliquam at tellus
purus. Donec accumsan metus sit amet leo volutpat pellentesque.

hi, h2, p { margin-left: 2em; }

Em measurements are always relevant to the element’s font size. An
em for one element may not be the same for another.

Viewport percentage lengths (vw/vh)

The viewport width (vw) and viewport height (vh) units are relative to the
size of the viewport (browser window). A vw is equal to 1/100 the width of
the viewport. Similarly, a vh is equal to 1/100 the height of the viewport.
Viewport-based units are useful for making images and text elements stay
the full width or height of the viewport:

CSS Units of Measurement

NOTE

Don’t confuse the em unit of measure-
ment with the em HTML element used
to indicate emphasized text. They are
totally different things.

11. Introducing Cascading Style Sheets 255

Developer Tools Right in Your Browser

BROWSER SUPPORT NOTE

IE9 supports vm instead of vmin. IE and
Edge (all versions as of 2017) do not sup-
port vmax.

header {
width: 100vw;
height: 100vh; }

It’s also easy to specify a unit to be a specific percentage of the window size,
such as 50%:
img {
width: 50vw;
height: 50vh; }
Related are the vmin unit (equal to the value of vw or vh, whichever is smaller)
and vmax (equal to the value of vw or vh, whichever is larger).

That should give you a good introduction to the units you'll be using in your
style sheets. I recommend reading the full CSS Values and Units Module
(www.w3.0rg/TR/css3-values/) to deepen your knowledge and make the values
listed for properties in this book easier to understand. In addition to length
units, it includes text-based values (such as keywords, text strings, and URLs),
numbers and percentage values, colors, and more.

DEVELOPER TOOLS RIGHT IN
YOUR BROWSER

Because of the cascade, a single page element may have styles applied from a
number of sources. This can make it tricky to debug a page when styles arent
displaying the way you think they should. Fortunately, every major browser
comes with developer tools that can help you sort things out.

I've opened the simple cooking.html document that we’ve been working on
in the Chrome browser, then selected View - Developer - Developer Tools from
the menu. The Developer Tools panel opens at the bottom of the document,
as you can see in FIGURE 11-12. You can also make it its own separate window
by clicking the windows icon in the top left.

In the Elements tab on the left, I can see the HTML source for the document.
The content is initially hidden so you can see the structure of the document
more clearly, but clicking the arrows opens each section. When I click the
element in the source (like the second p element shown in the figure), that
element is also highlighted in the browser window view.

In the Styles tab on the right, I can see all of the styles that are being applied
to the selected element. In the example, I see the font-size, font-family, and
margin-left properties from the style element in the document. If there were
external CSS documents, theyd be listed too. I can also see the “User Agent
Style Sheet,” which is the browser’s default styles. In this case, the browser
style sheet adds the margin space around the paragraph. Chrome also pro-
vides a box model diagram for the selected element that shows the content
dimensions, padding, border, and margins that are applied. This is a great
tool for troubleshooting unexpected spacing in layouts.

256 Part lIl. CSS for Presentation

http://www.w3.org/TR/css3-values/

Elements selected in |

code are highlighted in
the browser view.

Developer Tools Right in Your Browser

® © ® /1 cooking with Nada Surf x \TO\ Jennifer
< c o ol 5% 0
Responsive ¥ 997 x 339 100% ¥
I had the pleasure of spending a crisp, Spring day in Portsmouth, NH cooking and chatting with Daniel Lorca
m of the band Nada Surf as he prepared a gourmet, sit-down dinner for 28 pals.

When | first invited Nada Surf to be on the show, | was told that Daniel Lorca was the guy | wanted to talk to.
Then Daniel emailed his response: "i'm way into it, but | don't want to talk about it, i wanna do it." After years of
only having access to touring bands between their sound check and set, I've been doing a lot of talking about
cooking with rockstars. To actually cook with a band was a dream come true

(% fl | Eemenis Console Sources Network

Timeline Profiles Application Security Audits X

Styies | Computed Event Listeners
thov @ .cls +,

<html-

» <head>..</head>

conking ex11-2. htnl :15

All styles that are applied
R—— wer e senees | | 10 the selected element.
Cebiitnargin befare: dea;
R
-webkit-marqin-start: 8px;
SeebKitrargin-ends opes

HTML source for the page.

Margins, borders, and
paddings applied to the
element.

= - |

The Chrome browser with the Developer Tools panel open.

The cool thing is that when you edit the style rules in the panel, the changes
are reflected in the browser view of the page in real time! If I select the h1
element and change the color from orange to green, it turns green in the win-
dow. It’s a great way to experiment with or troubleshoot a design; however,
the changes are not being made to the document itself. It’s just a preview, so
you'll have to duplicate the changes in your source.

You can inspect any page on the web in this way, play around with turning
styles off and on, and even add some of your own. Nothing you do has any
effect on the actual site, so it is just for your education and amusement.

The element and style inspectors are just the tip of the iceberg of what
browser developer tools can do. You can also tweak and debug JavaScript,
check performance, view the document in various device simulations, and
much more. The good news is that all major browsers now have built-in tools
with similar features. As a web developer, you'll find they are your best friend.

¢ Chrome DevTools (View - Developer > Developer Tools)
developer.chrome.com/devtools

* Firefox (Tools > Web Developer)
developer.mozilla.org/en-US/docs/Tools

* Microsoft Edge (open with F12 key)
developer.microsoft.com/en-us/microsoft-edge/platform/documentation/
f12-devtools-guide/

11. Introducing Cascading Style Sheets 257

Moving Forward with CSS

* Safari (Develop » Show Web Inspector)
developer.apple.com/library/content/documentation/AppleApplications/
Conceptual/Safari_Developer_Guide/Introduction/Introduction.html)

* Opera (View - Developer Tools > Opera Dragonfly)
www.opera.com/dragonfly/

* Internet Explorer 9+ (open with F12 key)
msdn.microsoft.com/en-us/library/gg589512(v=vs.85).aspx

MOVING FORWARD WITH CSS

This chapter covered all the fundamentals of Cascading Style Sheets, includ-
ing rule syntax, ways to apply styles to a document, and the central concepts
of inheritance, the cascade (including priority, specificity, and rule order),
and the box model. Style sheets should no longer be a mystery, and from this
point on, we’ll merely be building on this foundation by adding properties
and selectors to your arsenal and expanding on the concepts introduced here.

CSS is a vast topic, well beyond the scope of this book. Bookstores and the
web are loaded with information about style sheets for all skill levels. T've
compiled a list of the resources I've found the most useful during my learning
process. I've also provided a list of popular tools that assist in writing style
sheets.

Books

There is no shortage of good books on CSS out there, but these are the ones
that taught me, and I feel good recommending them.

* CSS: The Definitive Guide, 4th Edition by Eric A. Meyer and Estelle Weyl
(O'Reilly)

* CSS Cookbook by Christopher Schmitt (O'Reilly)

Online Resources

The sites listed here are good starting points for online exploration of style
sheets.
CSS-Tricks (css-tricks.com)
The is the blog of CSS guru Chris Coyier. Chris loves CSS and enthusias-
tically shares his research and tinkering on his site.
World Wide Web Consortium (www.w3.0rg/TR/CSS/)

The World Wide Web Consortium oversees the development of web tech-
nologies, including CSS. This page is a “snapshot” of the CSS specifica-
tions. See also www.w3.0rg/Style/CSS/current-work.

258 Part lIl. CSS for Presentation

MDN Web Docs (developer.mozilla.org)

The CSS pages at MDN include detailed reference pages, step-by-step
tutorials, and demos. It’s a great hub for researching any web technology.

A List Apart (www.alistapart.com/topics/code/css/)

This online magazine features some of the best thinking and writing
on cutting-edge, standards-based web design. It was founded in 1998 by

Jeffrey Zeldman and Brian Platz.

TEST YOURSELF

Here are a few questions to test your knowledge of the CSS basics. Answers
are provided in Appendix A.

1.

2.

Identify the various parts of this style rule:

blockquote { line-height: 1.5; }

selector: value:

property: declaration:

What color will paragraphs be when this embedded style sheet is applied
to a document? Why?

<style type="text/css">
p { color: purple; }
p { color: green; }
p { color: gray; }
</style>

Rewrite each of these CSS examples. Some of them are completely incor-
rect, and some could just be written more efficiently.

a. p {font-family: sans-serif;}
p {font-size: 1em;}
p {line-height: 1.2em;}

b. blockquote {
font-size: 1em
line-height: 150%
color: gray }

c. body
{background-color: black;}
{color: #666;}
{margin-left: 12em;}
{margin-right: 12em;}

Test Yourself

11. Introducing Cascading Style Sheets 259

http://www.alistapart.com/topics/code/css/

Test Yourself

d. p {color: white;}
blockquote {color: white;}
1i {color: white;}

e. <strong style="red">Act now!

4. Circle all the elements that you would expect to appear in red when
the following style rule is applied to a document with the structure dia-
grammed in FIGURE 11-13.

div#fintro { color: red;}

html
head body
title style hl div id="intro" divid="main" p
P ul h2||p[[h2]]p
img| [strong li i ||l

The document structure of a sample document.

260 Part lIl. CSS for Presentation

FORMATTING TEXT

Now that you've gotten your feet wet formatting text, are you ready to jump
into the deep end? By the end of this chapter, you'll pick up over 40 additional
CSS properties used to manipulate the appearance of text. Along the way,
you'll also learn how to use more powerful selectors for targeting elements in
a particular context and with a specific id or class name.

The nature of the web makes specifying type tricky, if not downright frustrat-
ing, particularly if you have experience designing for print or even formatting
text in a word processing program. There is no way to know for sure whether
the font you specify will be available or how large or small the type will
appear when it hits your users’ browsers. We'll address the best practices for
dealing with these challenges as we go along.

Throughout this chapter, we’ll be sprucing up a Black Goose Bistro online
menu similar to the one we marked up back in Chapter 5, Marking Up Text. I
encourage you to work along with the exercises to get a feel for how the prop-
erties work. FIGURE 12-1 shows how the menu looks before and after we’re
done. It’s not a masterpiece, because we're just scratching the surface of CSS
here, but at least the text has more personality.

BASIC FONT PROPERTIES

When I design a text document (for print or the web), one of the first things
I do is specify a font. In CSS, fonts are specified using a set of font-related
properties for typeface, size, weight, font style, and special characters. There
are also shortcut properties that let you specify multiple font attributes in a
single rule.

CHAPTER

12

IN THIS CHAPTER
Font properties
Web fonts

Advanced typography
with CSS3

Text line settings
Text effects

Selectors: descendent,
ID, and class

Specificity overview

List styles

261

Basic Font Properties

Black Goose Bistro * Summer Menu

Baker's Corner, Seekonk, Massachusetts
Hours: Monday through Thursday: 11 109, Friday and Saturday; 11 to midnight

Appetizers
Black Goose Bistro * Summer Menu
‘This season, we explore the sp.
Baker's Corner, Seckonk, Massachusetts

Black bean purses

Spicy black bean and s b Hours: MoNDAY THRoUGH THURSDAY: 11 {0 9, FRIDAY AND SATURDAY; 11 to midnight
Southwestern napoleons with |

Layers o light lump cral APPETIZERS
Main courses This season, we explore the spicy flavors of the southwest in our appetizer collection.

Big, bold flavors are the name Black bean purses

Jerk rotisserie chicken with fris Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until golden. £3.05
‘Teader chicken slow-rog with I b — new item!
Shrimp sate kebabs with peanu o !
Skewers of shrimp maris ~ Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas. $7.95
Grilled skit sicak with mushrc
Flavorful skirt steak mar MAIN COURSES
51695
* W e rquied 10 warm you Big, bold of the game thi . Allow us to assist you with finding the perfect wine.

Jerk rotisserie chicken with fried plantains — new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce and served with fried plantains and fresh mango. Very
spiey. $12.95
Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to perfection. Served with spicy peanut sauce and jasmine rice. $12.95
Grilled skirt steak with mushroom fricasee
Flavorful skirt steak marinated in Asian flavors grilled as you like it”, Served over a blend of sauteed wild mushrooms with a side of blue cheese
‘mashed potatoes. $16.05

" W are required to warn you that undercooked food is @ health risk.

Before and after views of the Black Goose Bistro menu that we’ll be

working on in this chapter.

A Word About Property Listings

Each CSS property listing in this book is accompanied by information on how it
behaves and how to use it. Property listings include:

Values:
These are the accepted values for the property. Predefined keyword values appear
in code font (for example, small, italic, or small-caps) and must be typed in
exactly as shown.

Default:
This is the value that will be used for the property by default (its initial value)—
that is, if no other value is specified. Note that the default browser style sheet
values may vary from the defaults defined in CSS.

Applies to:
Some properties apply only to certain types of elements.
Inherits:
This indicates whether the property is passed down to the element’s descendants.

CSS-wide keywords

All CSS properties accept the three CSS-wide keywords: initial, inherit, and
unset. Because they are shared by all properties, they are not listed with the values
for individual property listings.

* The initial keyword explicitly sets the property to its default (initial) value.

* The inherit keyword allows you to explicitly force an element to inherit a style
property from its parent. This may come in handy to override other styles applied
to that element and to guarantee that the element always matches its parent.

* Finally, unset erases declared values occurring earlier in the cascade, setting the
property to either inherit or initial, depending on whether it inherits or not.

262 Part lIl. CSS for Presentation

Specifying the Font Name

Choosing a typeface, or font family as it is called in CSS, for your text is a
good place to start. Let’s begin with the font-family property and its values.

Values: one or more font or generic font family names, separated by commas
Default: depends on the browser
Appliesto: all elements

Inherits: yes

Use the font-family property to specify a font or list of fonts (known as a
font stack) by name, as shown in these examples:

body { font-family: Arial; }

var { font-family: Courier, monospace; }

p { font-family: "Duru Sans", Verdana, sans-serif; }

Here are some important syntax requirements:

* All font names, with the exception of generic font families, must be capi-
talized. For example, use Arial instead of arial.

* Use commas to separate multiple font names, as shown in the second and
third examples.

* Notice that font names that contain a character space (such as Duru Sans
in the third example) must appear within quotation marks.

You might be asking, “Why specify more than one font?” That’s a good ques-
tion, and it brings us to one of the challenges of specifying fonts for the web.

Font limitations

Browsers are limited to displaying fonts they have access to. Traditionally, that
meant the fonts that were already installed on the user’s hard drive. In 2010,
however, there was a boom in browser support for embedded web fonts using
the CSS @font-face rule, so it became possible for designers to provide their
own fonts. See the sidebar “Say Hello to Web Fonts” for more information.

But back to our font-family rule. Even when you specify that the font should
be Futura in a style rule, if the browser can’t find it (for example, if that font
is not installed on the user’s computer or the provided web font fails to load),
the browser uses its default font instead.

Fortunately, CSS allows us to provide a list of back-up fonts (that font stack
we saw earlier) should our first choice not be available. If the first specified
font is not found, the browser tries the next one, and down through the list
until it finds one that works. In the third font-family rule shown in the previ-
ous code example, if the browser does not find Duru Sans, it will use Verdana,
and if Verdana is not available, it will substitute some other sans-serif font.

Basic Font Properties

Font Properties

The CSS2.1 font-related properties
are universally supported:

font-family
font-size
font-weight
font-style
font-variant
font

The CSS Font Module Level 3

adds these properties for more

sophisticated font handling, although

browser support is inconsistent as of

this writing:
font-stretch
font-variant-ligatures
font-variant-position
font-variant-caps
font-variant-numeric
font-variant-alternates
font-variant-east-asian
font-size-adjust
font-kerning
font-feature-settings
font-language-override

12. Formatting Text 263

Basic Font Properties

Say Hello to Web Fonts

The ability to provide your own font for use on a web page has been around since
1998, but it was never feasible because of browser inconsistencies. Fortunately, that
story has changed, and now web fonts are a perfectly viable option. The web has
never looked better!

There is a lot to say about web fonts, so this sidebar is merely an introduction,
starting with the challenges.

Web font formats

There have been two main hurdles to including fonts with web pages. First, there is
the problem that different browsers support different font formats. Most fonts come
in OpenType (OTF) or TrueType (TTF) format, but older versions of Internet Explorer
accept only its proprietary Embedded Open Type (EOT).

The good news is that there is a new standard for packaging fonts for delivery to web
pages that all browser vendors, even IE, are implementing. The new format, WOFF/
WOFF2 (for Web Open Font Format versions 1 and 2), is a container that packages
font files for web delivery. Now that IE9 supports WOFF, one day it may be all we
need. As of this writing, however, it is still a best practice to provide the same fontin a
number of different formats (more on that in just a moment).

The other issue with providing fonts on web pages is that the font companies, or
foundries, are concerned (a polite way to say “freaked out”) that their fonts will be
sitting vulnerably on servers and available for download. Fonts cost a lot to create
and are very valuable. Most come with licenses that cover very specific uses by a
limited number of machines, and “free to download for whatever” is usually not
included.

So, to link to a web font, you need to use the font legally and provide it in a way that
all browsers support. There are two general approaches to providing fonts: host them
yourself or use a web font service. Let’s look at both options.

Host your own

In the “host your own” option, you find the font you want, put it on your server in all
the required formats, and link it to your web page by using the CSS3 @font-face
rule. It is worth noting that each font file corresponds to a single weight or variant of
a typeface. So if you want to use regular, bold, and italic versions, you have to host
three different font files and reference each in your CSS.

Step 1: Find a font. This can be a bit of a challenge because the End User License
Agreement (EULA) for virtually all commercial fonts does not cover web usage. Be
sure to purchase the additional web license if it is available. However, thanks to
demand, some foundries are opening fonts up for web use, and there are a growing
number of open source fonts that you can use for free. The service Fontspring
(fontspring.com), by Ethan Dunham, is a great place to purchase fonts that have

a web license that you can use on your site or your own computer. The site Font
Squirrel (fontsquirrel.com), also by Ethan Dunham, is a great source for open source
fonts that can be used for commercial purposes for free.

Step 2: Save it in multiple formats. As of this writing, providing multiple formats
(EQT, WOFF, TTF, SVG) is a reality. The recommended source for the various formats
is the font vendor where you purchased the font, as they will be the best quality and

264 Part lIl. CSS for Presentation

Basic Font Properties

approved under the EULA. If you have an open source font (one
that is free from licensing restrictions) and you need alternative
formats, there is a service that will take your font and make
everything you need for you—the “@font-face Generator” from
Font Squirrel (www.fontsquirrel.com/fontface/generator). Go
to that page and upload your font, and it gives back the font in
TTF, EQOT, WOFF, WOFF2, and SVG, as well as the CSS code you
need to make it work.

Step 3: Upload to the server. Developers typically keep their
font files in the same directory as the CSS files, but that’s just
a matter of preference. If you download a package from Font

Squirrel, be sure to keep the pieces together as you found them.

Step 4: Write the code. Link the font to your site by using the
@font-face rule in your.css document. The “at-rule” gives the
font a font-family name that you can then reference later

in your style sheet. It also lists the locations of the font files in
their various formats. This cross-browser code example was
developed by Ethan Dunham (yep, him again!) to address a bug
in IE. recommend reading the full article at blog.fontspring.
com/2011/02/further-hardening-of-the-bulletproof-syntax/.
See also Paul Irish’s updated version at paulirish.com/2009/
bulletproof-font-face-implementation-syntax/.

@font-face {
font-family: 'MyWebFont';
src: url('webfont.eot'); /* IE9 Compat Modes */
src: url('webfont.eot?#iefix') format('embedded-
opentype'), /* IE6-IE8 */
url('webfont.woff') format('woff'),
/* Modern Browsers */
url('webfont.ttf') format('truetype'),
/* Safari, Android, i0S */
url('webfont.svgttsvgFontName') format('svg');
/* Legacy i0S */

Then you just refer to the established font name in your font
rules, like so:

p {font-family: MywebFont; }

Use a font embedding service

If that seems like a lot of work, you may want to sign up with
one of the font embedding services that do all the heavy lifting
foryou. For a fee, you get access to high-quality fonts, and

the service handles font licensing and font protection for the
foundries. They also generally provide an interface and tools
that make embedding a font as easy as copy and paste.

The services have a variety of fee structures. Some charge
monthly fees; some charge by the font. Some have a surcharge
for bandwidth as well. There are generally tiered plans that

~N

range from free to hundreds of dollars per month.

Here are some font embedding services that are popular as
of this writing, but it's worth doing a web search to see what’s
currently offered.

Google Web Fonts (www.google.com/webfonts)

Google Web Fonts is a free service that provides access to
hundreds of open source fonts that are free for commercial
use. All you have to do is choose a font, and then copy and
paste the code they generate for you. If you don’t have a font
budget and you aren’t too particular about fonts, this is a
wonderful way to go. We'll use it in the first exercise in this
chapter.

Typekit, from Adobe (www.typekit.com)

Typekit was the first web font service and is now part of
Adobe. Their service uses JavaScript to link the fonts to
your site in a way that improves performance and quality
in all browsers. | also recommend their blog for excellent
articles on how type works (see blog.typekit.com/
category/type-rendering/).

Fonts.com (fonts.com)

Fonts.com boasts the largest font collection from the biggest
font foundries. If you need a particular font, they are likely to
have it.

Other services include Cloud Typography by Hoefler & Co.
(www.typography.com/cloud/welcome/), Typotheque (www.
typotheque.com/webfonts), and Fonts Live (www.fontslive.
com). They differ in the number of fonts they offer and their
fee structures, so you may want to shop around. Fontstand
(fontstand.com/) allows you to rent fonts on a monthly basis,
which, depending on your use, could work out to be a fraction
of the cost of buying the font outright.

Summing up web fonts

Which method you use to add fonts to your site is up to your
discretion. If you like total control, hosting your own font
(legally, of course) may be a good way to go. If you need a very
particular, well-known font because your client’s brand depends
on it, you will probably find it on one of the web font services for
a price. If you want to experiment with web fonts and are happy
to choose from what’s freely available, then Google Web Fonts

is for you.

You now have a good foundation in including web fonts on your
web pages. The landscape is likely to change quickly over the
next few years, so be sure to do your own research when you are
ready to get started.

12. Formatting Text 265

http://www.fontsquirrel.com/fontface/generator
http://www.google.com/webfonts
http://www.typekit.com
http://www.typotheque.com/webfonts
http://www.typotheque.com/webfonts
http://www.fontslive.com/
http://www.fontslive.com/
https://fontstand.com/

Basic Font Properties

NOTE

Generic font family names do not need
to be capitalized in the style rule.

Generic font families

That last option, “some other sans-serif font,” bears more discussion. “Sans-
serif” is just one of five generic font families that you can specify with the
font-family property. When you specify a generic font family, the browser
chooses an available font from that stylistic category. FIGURE 12-2 shows
examples from each family.

seri pecerstve (Hello Hello
Times Georgia
Hello Hello
Times New Roman Lucida

anesert swigne - (Hello Hello
Verdana Trebuchet MS
Hello Hello
Arial Arial Black

monospace

Wi

Monospace font
(equal widths)

Proportional font
(different widths)

Hello

Courier

Hello

Courier New

Hello

Andale Mono

Hello Hello st
Apple Chancery Comic Sans Snell
fant
e Hello HELLO HELLD
Impact Stencil Mojo
Examples of the five generic font families.
serif

Examples: Times, Times New Roman, Georgia

Serif typefaces have decorative slab-like appendages (serifs) on the ends

of certain letter strokes.

sans-serif

Examples: Arial, Arial Black, Verdana, Trebuchet MS, Helvetica, Geneva

Sans-serif typefaces have straight letter strokes that do not end in serifs.

266 Part lIl. CSS for Presentation

monospace
Examples: Courier, Courier New, and Andale Mono

In monospace (also called constant width) typefaces, all characters take
up the same amount of space on a line. For example, a capital W will
be no wider than a lowercase i. Compare this to proportional typefaces
(such as the one you're reading now) that allot different widths to differ-
ent characters.

cursive
Examples: Apple Chancery, Zapf-Chancery, and Comic Sans

Cursive fonts emulate a script or handwritten appearance.

fantasy
Examples: Impact, Western, or other decorative font

Fantasy fonts are purely decorative and would be appropriate for head-
lines and other display type.

Font stack strategies

The best practice for specifying fonts for web pages is to start with your first
choice, provide some similar alternatives, and then end with a generic font
family that at least gets users in the right stylistic ballpark. For example,
if you want an upright, sans-serif font, you might start with a web font if
you are providing one (Oswald), list a few that are more common (Univers,
Tahoma, Geneva), and finish with the generic sans-serif. There is no limit
to the number of fonts you can include, but many designers strive to keep it
under 10.

font-family: Oswald, Univers, Tahoma, Geneva, sans-serif;

A good font stack should include stylistically related fonts that are known
to be installed on most computers. Sticking with fonts that come with the
Windows, macOS, and Linux operating systems, as well as fonts that get
installed with popular software packages such as Microsoft Office and Adobe
Creative Suite, gives you a solid list of “web-safe” fonts to choose from. A good
place to look for stylistically related web-safe fonts is CSS Font Stack (www.
cssfontstack.com). There are many articles on font stack strategies that are just
a Google search away. I recommend Michael Tuck’s “8 Definitive Font Stacks”
(www.sitepoint.com/eight-definitive-font-stacks), which is an oldie but goodie.

So, as you see, specifying fonts for the web is more like merely suggesting
them. You don’t have absolute control over which font your users will see.
You might get your first choice; you might get the generic fallback. It’s one of
those web design quirks you learn to live with.

Now seems like a good time to get started formatting the Black Goose Bistro
menu. We'll add new style rules one at a time as we learn new properties,
staring with EXERCISE 12-1.

Basic Font Properties

12. Formatting Text 267

http://www.cssfontstack.com
http://www.cssfontstack.com
http://www.sitepoint.com/eight-definitive-font-stacks

Basic Font Properties

EXERCISE 12-1. Formatting a menu

In this exercise, we'll change the fonts for the body and main
heading of the Black Goose Bistro menu document, menu.html,
which is available at.learningwebdesign.com/5e/materials. Open
the document in a text editor. You can also open it in a browser to
see its “before” state. It should look something like FIGURE 12-1.
Hang on to this document, because this exercise will continue as
we pick up additional font properties.

I've included an embedded font in this exercise to show you how
easy it is to do with a service like Google Web Fonts.

1. Use an embedded style sheet for this exercise. Start by adding a
style element in the head of the document, like this:

<head>
<title>Black Goose Bistro</title>
<style>

</style>
</head>
2. would like the main text to appear in Verdana or some other
sans-serif font. Instead of writing a rule for every element in the
document, we will write one rule for the body element that will
be inherited by all the elements it contains. Add this rule to the
embedded style sheet:

<style>
body {font-family: Verdana, sans-serif;}
</style>

3. lwant a fancy font for the “Black Goose Bistro, Summer Menu”
headline, so | chose a free display font called Marko One from
Google Web Fonts (www.google.com/webfonts). Google
gave me the code for linking the font file on their server to my
HTML file (it’s actually a link to an external style sheet). It must
be placed in the head of the document, so copy it exactly as
it appears, but keep it on one line. Put it after the title and
before the style element.

<head>

<title>Black Goose Bistro</title>

<link href="http://fonts.googleapis.com/~>
css?family=Marko+One" rel="stylesheet">
<style>

4. Now write a rule that applies it to the h1 element. Notice I've
specified Georgia or another serif font as fallbacks:

<style>
body {font-family: Verdana, sans-serif;}
hi {font-family: "Marko One", Georgia, serif;}
</style>
5. Save the document and reload the page in the browser. It
should look like FIGURE 12-3. Note that you’ll need to have
an internet connection and a current browser to view the
Marko One headline font. We’ll work on the text size in the next
exercise.

Black Goose Bistro « Summer Menu

Baker's Corner, Seekonk, Massachusetts
Hours: Monday through Thursday: 11 to 9, Friday and Saturday; 11 to midnight

Appetizers

This season, we explore the spicy flavors of the southwest in our appetizer collection.

Black bean purses

Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until

golden. $3.95

Southwestern napoleons with lump crab — new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas. $7.95

Main courses

Big, bold flavors are the name of the game this summer. Allow us to assist you with finding the perfect

wine.

Jerk rotisserie chicken with fried plantains — new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce and served
with fried plantains and fresh mango. Very spicy. $12.95

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to perfection. Served
with spicy peanut sauce and jasmine rice. $12.95

Grilled skirt steak with mushroom fricasee
Flavorful skirt steak marinated in asian flavors grilled as you like it". Served over a blend of sauteed
wild mushrooms with a side of blue cheese mashed potatoes. $16.95

* We are required to warn you that undercooked food is a health risk.

The menu after we change only the font family.

268 Part lIl. CSS for Presentation

http://www.google.com/webfonts

Specifying Font Size

Use the aptly named font-size property to specify the size of the text.

Values: length unit | percentage | xx-small | x-small | small | medium | large |
x-large | xx-large | smaller | larger

Default: medium
Appliesto: all elements

Inherits: yes
You can specify text size in several ways:

* Using one of the CSS length units, as shown here:

h1 { font-size: 1.5em; }

Basic Font Properties

When specifying a number of units, be sure the unit abbreviation imme-
diately follows the number, with no extra character space in between (see
the sidebar “Providing Measurement Values”).

CSS length units are discussed in Chapter 11, Introducing Cascading Style
Sheets. See also the “CSS Units Cheat Sheet” sidebar.

As a percentage value, sized up or down from the element’s inherited font
size:

h1 { font-size: 150%; }
Using one of the absolute keywords (xx-small, x-small, small, medium,

large, x-large, xx-large). On most current browsers, medium corresponds
to the default font size.

hi { font-size: x-large; }
Using a relative keyword (larger or smaller) to nudge the text larger or
smaller than the surrounding text:

strong { font-size: larger; }

I'm going to cut to the chase and tell you that, despite all these options, the
preferred values for font-size in contemporary web design are the relative
length units em and rem, as well as percentage values. You can specify font size
in pixels (px), but in general, they do not provide the flexibility required in
web page design. All of the other absolute units (pt, pc, in, etc.) are out too,

Providing Measurement
Values
When you’re providing measurement
values, the unit must immediately
follow the number, like this:

margin: 2em;
Adding a space before the unit will
cause the property not to work:

INCORRECT: margin: 2 em;

It is acceptable to omit the unit of
measurement for zero values:

margin: 0;

CSS Units Cheat Sheet

As a quick reference, here are the CSS
length units again:

Relative units

em ex rem ch

vw vh vmin vmax

Absolute units
px in mm cm

q pt pc

unless you are creating a style sheet specifically for print.

I'll explain the keyword-based font-size values in a moment, but let’s start

our discussion with the best practice using relative values.

12. Formatting Text 269

Basic Font Properties

NOTE

Itis also common practice to set the body
to 100%, but setting it on the html ele-
ment is a more flexible approach.

BROWSER SUPPORT NOTE

Note that rem units are not supported in
Internet Explorer 8 and earlier. If for some
reason you need to support old brows-
ers, you'll need to provide a fallback dec-
laration set in pixels. There are also tools
that change all your rem units to pixels
automatically, as discussed in Chapter
20, Modern Web Development Tools.

Sizing text with relative values

The best practice for setting the font size of web page elements is to do it in a
way that respects the user’s preference. Relative sizing values %, rem, and em
allow you to use the default font size as the basis for proportional sizing of
other text elements. It’s usually not important that the headlines are exactly
24 pixels; it is important that they are 1.5 times larger than the main text so
they stand out. If the user changes their preferences to make their default font
size larger, the headlines appear larger, too.

To maintain the browser’s default size, set the font-size of the root element
to 100% (see Note):
html {
font-size: 100%;

}

That sets the basis for relative sizing. Because the default font size for all mod-
ern browsers is 16 pixels, we’ll assume our base size is 16 pixels going forward
(we'll also keep in mind that it could be different).

Rem values

The rem unit, which stands for “root em,” is always relative to the size of the
root (html) element. If the root size is 16 pixels, then a rem equals 16 pixels.
What'’s nice about rem units is, because they are always relative to the same
element, they are the same size wherever you use them throughout the docu-
ment. In that way, they work like an absolute unit. However, should the root
size be something other than 16 pixels, elements specified in rem values will
resize accordingly and proportionally. It’s the best of both worlds.

Here is that same heading sized with rem values:

hi { font-size: 1.5rem; } /* 1.5 x 16 = 24 */

Em measurements

Em units are based on the font size of the current element. When you specify
font-size in ems, it will be relative to the inherited size for that element.
Once the em is calculated for an element, it can be used for other measure-
ments as well, such as margins, padding, element widths, and any other set-
ting you want to always be relative to the size of the font.

Here I've used em units to specify the size of an h1 that has inherited the
default 16-pixel font size from the root:

hi { font-size: 1.5em; } /* 1.5 x 16 = 24 */

There are a few snags to working with ems. One is that because of rounding
errors, there is some inconsistency in how browsers and platforms render text
set in ems.

270 PartlIl. CSS for Presentation

The other tricky aspect to using ems is that they are based on the inherited
size of the element, which means that their size is based on the context in
which they are applied.

The h1 in the previous example was based on an inherited size of 16 pixels.
But if this h1 had appeared in an article element that had its font size set to
14 pixels, it would inherit the 14-pixel size, and its resulting size would be just
21 pixels (1.5 x 14 = 21). FIGURE 12-4 shows the results.

THE MARKUP

<h1>Headline in Body</h1>
<p>Pellentesque ligula leo,..</p>
<article>
<h1>Headline in Article</h1>
<p>Vivamus .</p>
</article>

THE STYLES

hi {
font-size: 1.5em;
}
article {
font-size: .875em

}

/* sets all his to 1.5em */

/* 14 pixels based on 16px default */

Headline in Body

Pellentesque ligula leo, dictum sit amet gravida ac, tempus at risus. Phasellus
pretium mauris mi, in tristique lorem egestas sit amet. Nam nulla dui, porta in
lobortis eu, dictum sed sapien. Pellentesque sollicitudin faucibus laoreet. Aliquam
nec neque ultrices, faucibus leo a, vulputate mauris. Integer rhoncus sapien est,
vel eleifend nulla consectetur a. Suspendisse laoreet hendrerit eros in ultrices.
Mauris varius lorem ac nisl bibendum, non consectetur nibh feugiat. Vestibulum eu
eros in lacus mollis sollicitudin.

Headline in Article

Vivamus a nunc mi. Vestibulum ullamcorper velit ligula, eget iaculis augue ultricies vitae. Fusce
eu erat neque. Nam auctor nisl ut ultricies dignissim. Quisque vel tortor mi. Mauris sed aliquet
orci. Nam at lorem efficitur mauris suscipit tincidunt a et neque.

All h1 elements are sized at 1.5em, but they are different sizes because
of the context in which they appear.

From this example, you can see that an element set in ems might appear at
different sizes in different parts of the document. If you wanted the h1 in the
article to be 24 pixels as well, you could calculate the em value by dividing
the target size by its context: 24 / 14 =1.71428571 em. (No need to round that
figure down...the browser knows what to do with it.)

If you have elements nested several layers deep, the size increase or decrease
compounds, which can create problems. With many layers of nesting, text
may end up being way too small. When working with ems, pay close atten-
tion and write style rules in a way that takes the context into account.

This compounding nature of the em is what has driven the popularity of the
predictable rem unit.

Basic Font Properties

NOTE

Ethan Marcotte introduced the target
+ context = result formula in his book
Responsive Web Design (A Book Apart). It
is useful for converting pixel values into
percentages and ems.

12. Formatting Text 271

Basic Font Properties

Percentage values

We saw a percentage value (100%) used to preserve the default font size, but
you can use percentage values for any element. They are pretty straightfor-
ward.

In this example, the h1 inherits the default 16px size from the html element,
and applying the 150% value multiplies that inherited value, resulting in an
h1 that is 24 pixels:

hi { font-size: 150%; } /* 150% of 16 = 24 */

Working with keywords

An alternative way to specify font-size is by using one of the predefined
absolute keywords: xx-small, x-small, small, medium, large, x-large, and
xx-large. The keywords do not correspond to particular measurements, but
rather are scaled consistently in relation to one another. The default size is
medium in current browsers. FIGURE 12-5 shows how each of the absolute
keywords renders in a browser when the default text is set at 16 pixels. 've
included samples in Verdana and Times to show that, even with the same
base size, there is a big difference in legibility at sizes small and below
Verdana was designed to be legible on screens at small font sizes; Times was
designed for print so is less legible in that context.

This is an example of the default text size in Verdana.

weemai | xsmail | small | medium | large | X-large | xx—large

This is an example of the default text size in Times.

s | xsmalt | small | medium | large | X-large | xx—large

Text sized with absolute keywords.

The relative keywords, larger and smaller, are used to shift the size of text
relative to the size of the parent element text. The exact amount of the size
change is determined by each browser and is out of your control. Despite that
limitation, it is an easy way to nudge type a bit larger or smaller if the exact
proportions are not critical.

You can apply your new CSS font knowledge in EXERCISE 12-2.

272 PartlIl. CSS for Presentation

EXERCISE 12-2. Setting font size

Basic Font Properties

Let’s refine the size of some of the text elements to give the online menu a more
sophisticated appearance. Open menu.html in a text editor and follow the steps. You can
save the document at any point and take a peek in the browser to see the results of your
work. You should also feel free to try out other size values along the way.

1

There are many approaches to sizing text on web pages. In this example, start by
putting a stake in the ground and setting the font-size of the body element to 100%,

thus clearing the way for em measurements thereafter:

body {
font-family: Verdana, sans-serif;
font-size: 100%;

}

. The browser default of 16 pixels is a fine size for the main

page text, but | would like to improve the appearance of
the heading levels. I'd like the main heading to be 24 pixels,
orone and a half times larger than the body text [target (24)
+context (16) = 1.5]. I'll add a new rule that sets the size

of the h1 to 1.5em. | could have used 150% to achieve the
same thing.

h1 {
font-size:

}

1.5em;

. Now make the h2s the same size as the body text so they

blend in with the page better:

h2 {
font-size: dem;

}

FIGURE 12-6 shows the result of our font-sizing efforts.

Font Weight (Boldness)

After font families and size, the remaining font properties are straightfor-
ward. For example, if you want a text element to appear in bold, use the

font-weight property to adjust the boldness of type.

Black Goose Bistro + Summer Menu

Baker's Corner, Seekonk, Massachusetts
Hours: Monday through Thursday: 11 to 9, Friday and Saturday; 11 to midnight

Appetizers
This season, we explore the spicy flavors of the southwest in our appetizer collection.

Black bean purses
Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and
baked until golden. $3.95

Southwestern napoleons with lump crab — new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas.
$7.95

Main courses

Big, bold flavors are the name of the game this summer. Allow us to assist you with finding
the perfect wine.

The online menu after a few minor font-size
changes to the headings.

Values: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
| 900

Default: normal

Appliesto: all elements

Inherits: yes

As you can see, the font-weight property has many predefined values, includ-
ing descriptive terms (normal, bold, bolder, and lighter) and nine numeric
values (100 to 900) for targeting various weights of a font if they are available.

12. Formatting Text 273

Basic Font Properties

NOTE

The CSS Fonts Module Level 3 introduced
the font-synthesis property, which
allows authors to turn off (with a value
of none) or allow synthesized bold fonts
(value of weight); however, it is still con-
sidered experimental at this time.

Because most fonts commonly used on the web have only two weights, nor-
mal (or Roman) and bold, the only font weight value you will use in most
cases is bold. You may also use normal to make text that would otherwise
appear in bold (such as strong text or headlines) appear at a normal weight.

The numeric chart may come in handy when using web fonts with a large
range of weights (I've seen a few Google web fonts that require numeric size
values). If multiple weights are not available, numeric settings of 600 and
higher generally result in bold text, as shown in FIGURE 12-7 (although even
that can vary by browser).

If a separate bold face is not available, the browser may “synthesize” a bold
font by beefing up the available normal face (see Note).

This is an example of the default text in Verdana.
normal | bold | bolder | lighter

100 | 200 | 300 | 400 | 500

600 | 700 | 800 | 900

This is an example of the default text in Times.
normal | bold | bolder | lighter
1001200 1300 | 400 1 500

600 1700 1 800 1900

The effect (and lack thereof!) of font-weight values.

Font Style (Italics)

The font-style property affects the posture of the text—that is, whether the
letter shapes are vertical (normal) or slanted (italic and oblique).

Values: normal | italic | oblique
Default: normal
Appliesto: all elements

Inherits: yes

Use the font-style property to make text italic. Another common use is to
make text that is italicized in the browser’s default styles (such as emphasized
text) display as normal. There is an oblique value that specifies a slanted ver-
sion of the font; however, browsers generally display oblique exactly the same
as italic.

Try out weight and style in EXERCISE 12-3.

274 Part lIl. CSS for Presentation

Basic Font Properties

EXERCISE 12-3. Making text bold and italic

Back to the menu. I've decided that I'd like all of the menu item
names to be in bold text. What I'm not going to do is wrap each
one in tags.. that would be so 1996! I'm also not going to
mark them up as strong elements.. .that is not semantically
accurate. Instead, the right thing to do is simply apply a style to the
semantically correct dt (definition term) elements to make them
all bold at once. Add this rule to the end of the style sheet, save the
file, and try it out in the browser:

dt { font-weight: bold; }

Now that all the menu item names are bold, some of the text I've
marked as strong isn’t standing out very well, so I think I'll make
them italic for further emphasis. To do this, simply apply the font-
style property to the strong element:

strong { font-style: italic;}

Once again, save and reload. It should look like the detail shown in
FIGURE 12-8.

Font Variant in CSS2.1 (Small Caps)

Values: normal | small-caps
Default: normal

Appliesto: all elements
Inherits: yes

Black Goose Bistro « Summer Menu

Baker's Corner, Seekonk, Massachusetts
Hours: Monday through Thursday: 11 to 9, Friday and Saturday; 11 to midnight

Appetizers
This season, we explore the spicy flavors of the southwest in our appetizer collection.

Black bean purses
Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked
until golden. $3.95

Southwestern napoleons with lump crab — new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas.
$7.95

Main courses

Big, bold flavors are the name of the game this summer. Allow us to assist you with finding
the perfect wine.

Jerk rotisserie chicken with fried pl — new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce
and served with fried plantains and fresh mango. Very spicy. $12.95

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to
perfection. Served with spicy peanut sauce and jasmine rice. $12.95

Applying the font-weight and font-style
properties.

Some typefaces come in a “small caps” variant. This is a separate font design
that uses small uppercase-style letters in place of lowercase letters. Small caps
characters are designed to match the size and density of lowercase text so

they blend in.

Small caps should be used for strings of three or more capital letters appear-
ing in the flow of text, such as acronyms and abbreviations, that may look
jarring as full-sized capitals. Compare NASA and USA in the standard font to
Nasa and usa in small caps. Small caps are also recommended for times, like

1am or 2017ap.

When the font-variant property was introduced in CSS2.1, it was a one-trick
pony that allowed designers to specify a small-caps font for text elements.
CSS3 has greatly expanded the role of font-variant, as I will cover in the
upcoming section “Advanced Typography with CSS3.” For now, we’ll look at

only the CSS2.1 version of font-variant.

12. Formatting Text 275

Basic Font Properties

Design

Universe Ultra Condensed

Design

Universe Condensed

Design

Univers

Design

Universe Extended

Examples of
condensed, normal, and extended
versions of the Universe typeface.

WARNING

Be careful when using shorthand prop-
erties like font. Any omitted property
resets to its default value. On the flip
side, the shorthands are a good way to

get a blank slate if you need one.

If you include values for the newer
font-stretch property in the font
shorthand, first list a version that
omits stretch for browsers that don’t
support it. You will end up with two
declarations like this:

h3 {
font: bold 1.25em Helvetica;
font: bold extended 1.25em
Helvetica;

}

In most cases, browsers simulate small caps by scaling down uppercase letters
in the current font. To typography sticklers, this is less than ideal and results
in inconsistent stroke weights, but you may find it an acceptable option for
adding variety to small amounts of text. You will see an example of small caps
when we use the font-variant property in EXERCISE 12-5.

Font Stretch (Condensed and Extended)

Values: normal | ultra-condensed | extra-condensed | condensed |
semi-condensed | semi-expanded | expanded | extra-expanded |
ultra-expanded

Default: normal
Appliesto: all elements

Inherits: yes

The CSS3 font-stretch property tells the browser to select a normal, con-
densed, or extended font in the font family (FIGURE 12-9). If the browser can-
not find a matching font, it will not try to synthesize the width by stretching
or squeezing text; it may just substitute a font of a different width. Browser
support is just beginning to kick in for this property. As of this writing, it
works on IE11+, Edge, Firefox, Chrome 48+, Opera, and Android 52+, but it
is not yet supported on Safari or iOS Safari; however, that may change.

The Shortcut font Property

Specifying multiple font properties for each text element can get repetitive
and lengthy, so the creators of CSS provided the shorthand font property,
which compiles all the font-related properties into one rule.

Values: font-style font-weight font-variant font-stretch font-size/line-height
font-family | caption | icon | menu | message-box | small-caption |
status-bar

Default: depends on default value for each property listed

Appliesto: all elements

Inherits: yes

The value of the font property is a list of values for all the font properties
we just looked at, separated by character spaces. It is important to note that
only the CSS2.1 version of font-variant (small-caps) can be used in the font
shortcut (which is one reason I kept it separate). In this property, the order of
the values is important:

{ font: style weight stretch variant size/line-height font-family; }

276 PartlIl. CSS for Presentation

At minimum, the font property must include a font-size value and a font-
family value, in that order. Omitting one or putting them in the wrong order
causes the entire rule to be invalid. This is an example of a minimal font
property value:

p { font: 1em sans-serif; }

Once you've met the size and family requirements, the other values are
optional and may appear in any order prior to the font-size. When style,
weight, stretch, or variant is omitted, its value is set to normal. That makes it
easy to accidentally override a previous setting with the shorthand property,
so be careful when you use it.

There is one value in there, line-height, that we have not seen yet. As it
sounds, it adjusts the height of the text line and is used to add space between
lines of text. It appears just after font-size, separated by a slash, as shown
in these examples. The line-height property is covered in more detail later
in this chapter.

h3 { font: oblique bold small-caps 1.5em/1.8em Verdana, sans-serif; }
h2 { font: bold 1.75em/2 sans-serif; }

In EXERCISE 12-4, we'll use the shorthand font property to make some
changes to the h1 headings in the bistro menu.

System font keywords

The font property also has a number of keyword values (caption, icon, menu,
message-box, small-caption, and status-bar) that represent system fonts,
the fonts used by operating systems for things like labels for icons and menu
items. These may be useful when youre designing a web application so that
it matches the environment the user is working on. These are considered
shorthand values because they encapsulate the font, size, style, and weight of
the font used for each purpose with only one keyword.

Like the shorthand font property, EXERCISE 12-4 is short and sweet.

ADVANCED TYPOGRAPHY WITH CSS3

Now you have a good basic toolkit for formatting fonts with CSS. If you want
to get fancy, you should read up on all the properties in the CSS Fonts Module
Level 3, which give you far more control over character selection and position.
I'm going to keep my descriptions brief because of space restraints and the
fact that many of these features are still experimental or have very limited
browser support. But if nice typography is your thing, I urge you to do more
research, starting with the specification at www.w3.0rg/TR/css-fonts-3.

Advanced Typography with CSS3

EXERCISE 12-4.
Using the shorthand
font property

One last tweak to the menu, and then
we’ll take a brief break. To save space,
we can replace all the font properties
we've specified for the h1 element with
one declaration with the shorthand
font property:

h1 {
font: bold 1.5em "Marko One",
Georgia, serif;

}

You might find it redundant that |
included the bold font weight value in
this rule. After all, the h1 element was
already bold by default, right? The thing
about shorthand properties is that if you
omit a value, it is reset to the default
value for that property, not the browser’s
default value.

In this case, the default font-weight
value within a font declaration is
normal. Because our style sheet
overrides the browser’s default bold
heading style, the ha would appear in
normal-weight text if we don’t explicitly
make it bold in the font property.
Shorthand properties can be tricky that
way...pay attention so you don’t leave
something out and override a default or
inherited value you were counting on.

You can save this and look at it in the
browser. If you’ve done your job right, it
should look exactly the same as in the
previous step.

12. Formatting Text 277

Advanced Typography with CSS3

NOTE

The font-variant-ligatures prop-
erty has a long list of values, which you
can find at www.w3.0rg/TR/css-fonts-
3/#propdef-font-variant-ligatures.

Font Variant in CSS3

The collection of font-variant- prefixed properties in CSS3 aims to give
designers and developers access to special characters (glyphs) in fonts that
can make the typography on a page more sophisticated.

As I mentioned earlier, the CSS3 Font Module greatly expanded the defini-
tion of font-variant. Now it can serve as a shorthand property for a number
of font-variant- prefixed properties. These properties are still considered
experimental, although browser support is starting to pick up. Still, it’s inter-
esting to see how font control in web design is evolving, so let’s take a look.

NOTE

With the exception of font-variant-position, which has a specific purpose, the other
font-variant properties are great opportunities to practice progressive enhancement.
They are nice to have but OK to lose.

font-variant-ligatures

A ligature is a glyph that combines two or more characters into one
symbol. One common example is the combination of a lowercase f and i,
where the dot on the i becomes part of the f (fi). Ligatures can smooth out
the appearance of known awkward letter pairings, and ligature glyphs are
included in many fonts. The font-variant-ligatures property provides a
way to control the use of ligatures on web pages. This one is better sup-
ported than the others, and already works in IE10+, Chrome 34+, as well
as Safari and Opera (with the -webkit- prefix). I would expect browser
support to steadily improve.

font-variant-caps

Allows the selection of small-cap glyphs (small-caps) from the font’s
character set rather than simulating them in the browser. The all-small-
caps value uses small caps for upper- and lowercase letters. unicase uses
small caps for uppercase only, and lowercase letters in the word stay the
same. titling-caps is used for all-caps titles but is designed to be less
strong. Other options are petite-caps and all-petite-caps.

font-variant-position

Selects superscript (super) or subscript (sub) glyphs from the font’s char-
acter set when they are available. Otherwise, the browser creates super-
script or subscript text for the sup and sub elements by shrinking the
character and moving it above or below the baseline.

font-variant-numeric

Allows the selection of various number character styles if they are avail-
able. For example, you can pick numerals that are proportional or line up
in columns as for a spreadsheet (proportional-numbers/tabular-numbers)
opt for old-style numerals (old-style-nums) where some characters dip

278 Part lIl. CSS for Presentation

below the baseline, and specify whether fractions should be on a diagonal
or stacked (diagonal-fractions/stacked-fractions). It also allows you to
make ordinal numbers look like 2" instead of 2nd (ordinal) and gives
you a way to use zeros with slashes through them as is preferred in some
contexts (slashed-zero).

font-variant-alternates

Fonts sometimes offer more than one glyph for a particular character—for
example, a few swash designs for the letter S, or an old-fashioned s that
looks more like an f. font-variant-alternates provides a way to specify
swashes and other alternative characters. Many of its values are font-spe-
cific and must be defined first with the @font-features-values at-rule. I'll
leave a deeper explanation to the spec.

font-variant-east-asian

Allows selection of particular Asian glyphs.

Finally, the old font-variant property that has been around since the begin-
ning of CSS has been upgraded to be a shorthand property for all of the
properties listed here. You can use it today with the original small-caps value,
and it will be perfectly valid. Once these properties gain traction, it will be
able to do a whole lot more.

Other CSS3 Properties

It’s time to finish up our review of the font properties in the Fonts Module
Level 3. I'll give you a general idea of what is available (or will be, after
browser support catches up) and you can dig deeper in the spec on your own:

font-size-adjust
The size text looks on the page often has more to do with the height of the
lowercase x (its x-height) than the specified size of the text. For example,
10-point type with relatively large x-height is likely easier to read than
10-point type with dainty little lowercase letters. The font-size-adjust
property allows the browser to adjust the size of a fallback font until its

x-height matches the x-height of the first-choice font. This can ensure
better legibility even when a fallback font needs to be used.

font-kerning

Kerning is the space between character glyphs. Fonts typically contain
metadata about which letter pairs need to be cozied up together to make
the spacing in a word look consistent. The font-kerning property allows
the font’s kerning information to be applied (normal), turned off (none), or
left to the browser’s discretion (auto).

font-feature-settings

This property gives authors the ability to control advanced typographic
features in OpenType fonts that are not widely used, such as swashes, small

Advanced Typography with CSS3

12. Formatting Text 279

Changing Text Color

caps, ligatures, automatic fractions, and more. Those features should look
familiar, as many of them can be controlled with various font-variant
properties. In fact, the spec recommends you use font-variant whenever
possible and reserve font-feature-settings for edge cases. As of this
writing, however, the font-feature-settings property has better browser
support, so for the time being it may be a better option. Just be aware that
it cascades poorly, meaning it is easy to undo a setting when you use it
later to set something else. CSS-Tricks provides a good overview by Robin
Rendle (css-tricks.com/almanac/properties/f/font-feature-settings).

font-language-override
This experimental property controls the use of language-specific glyphs.
We've finally made our way through the various ways to control fonts in CSS

(it took a while!), but that is just one aspect of text presentation. Changing
the color of text is another common design choice.

For a nice overview of OpenType features and why they are worthwhile, read “Caring
about OpenType Features” by Tim Brown at Adobe Typekit (practice.typekit.com/
lesson/caring-about-opentype-features/).

CHANGING TEXT COLOR

You got a glimpse of how to change text color in Chapter 11, Introducing
Cascading Style Sheets, and to be honest, there’s not a lot more to say about
it here. You change the color of text with the color property.

Values: color value (name or numeric)
Default: depends on the browser and user’s preferences
Appliesto: all elements

Inherits: yes

Using the color property is very straightforward. The value of the color
property can be a predefined color name (see the “Color Names” sidebar) or
a numeric value describing a specific RGB color. Here are a few examples, all
of which make the h1 elements in a document gray:

h1 { color: gray; }

h1 { color: #666666; }

h1 { color: #666; }
h1 { color: rgh(102,102,102); }

280 Part lIl. CSS for Presentation

A Few More Selector Types

Don't worry about the numeric values for now; I just wanted you to see what
they look like. RGB color is discussed in detail in Chapter 13, Colors and
Backgrounds, so in this chapter, we’ll just stick with color names for demon- N
stration purposes.

Color is inherited, so you can change the color of all the text in a document Color Names

by applying the color property to the body element, as shown here: 552 1 defines 17 standard color

body { color: fuchsia; } names:

OK, so you probably wouldnt want all your text to be fuchsia, but you get black white purple

the idea. lime navy aqua

)) silver maroon fuchsia
For the sake of accuracy, I want to point out that the color property is not

olive blue orange
strictly a text-related property. In fact, according to the CSS specification, it] &
is used to change the foreground (as opposed to the background) color of an gra“y e l green
yellow tea

element. The foreground of an element consists of both the text it contains as
well as its border. So, when you apply a color to an element (including image

. Level 3 allows names from a
elements), know that color will be used for the border as well, unless there
) o)] , larger set of 140 color names to be
is a specific border-color property that overrides it. We'll talk more about specified in style sheets. You can see
borders and border color in Chapter 14, Thinking Inside the Box. samples of each in FIGURE 13-2

. . .) and at learningwebdesign.com/
Before we add color to the online menu, I want to take a little side trip and colornames.himl.

introduce you to a few more types of selectors that will give us more flexibil- [)
ity in targeting elements in the document for styling,

The updated CSS Color Module

A FEW MORE SELECTOR TYPES

So far, we've been using element names as selectors. In the last chapter, you
saw how to group selectors together in a comma-separated list so you can
apply properties to several elements at once. Here are examples of the selec-
tors you already know:

Element selector p { color: navy; }

Grouped selectors p, ul, td, th { color: navy; }

The disadvantage of selecting elements this way, of course, is that the proper-
ty (in this case, navy blue text) is applied to every paragraph and other listed
elements in the document. Sometimes you want to apply a rule to a particular
paragraph or paragraphs. In this section, we’ll look at three selector types that
allow us to do just that: descendant selectors, ID selectors, and class selectors.

Descendant Selectors

A descendant selector targets elements that are contained within (and there-
fore are descendants of) another element. It is an example of a contextual
selector because it selects the element based on its context or relation to
another element. The sidebar “Other Contextual Selectors” lists some more.

12. Formatting Text 281

A Few More Selector Types

Descendant selectors are indicated in a list separated by a character space.
This example targets emphasized text (em) elements, but only when they
appear in list items (1i). Emphasized text in paragraphs and other elements
would be unaffected (FIGURE 12-10).

1i em { color: olive; }

html

head body

title style p ul h2

em em li li li em

em em

1i em { property: value; }

Only em elements within 11 elements are selected. The other em
elements are unaffected.

Here’s another example that shows how contextual selectors can be grouped
in a comma-separated list, just as we saw earlier. This rule targets em ele-
ments, but only when they appear in h1, h2, and h3 headings:

hi em, h2 em, h3 em { color: red; }
It is also possible to nest descendant selectors several layers deep. This
example targets em elements that appear in anchors (a) in ordered lists (0l):

ol a em { font-variant: small-caps; }

ID Selectors

Back in Chapter 5, Marking Up Text, we learned about the id attribute, which
gives an element a unique identifying name (its id reference). The id attribute
can be used with any element, and it is commonly used to give meaning to
the generic div and span elements. ID selectors allow you to target elements
by their id values. The symbol that identifies ID selectors is the octothorpe
(#), also known as a hash or pound symbol.

Here is an example of a list item with an id reference:

<li id="sleestak">Sleestak T-shirt

282 Part lIl. CSS for Presentation

Now you can write a style rule just for that list item using an ID selector, like
so (notice the # preceding the id reference):

li#tsleestak { color: olive; }
Because id values must be unique in the document, it is acceptable to omit
the element name. The following rule is equivalent to the last one:

#sleestak { color: olive; }
You can also use an ID selector as part of a contextual selector. In this
example, a style is applied only to a elements that appear within the element
identified as “resources.” In this way, you can treat links in the element named

“resources” differently than all the other links on the page without any addi-
tional markup.

#iresources a { text-decoration: none; }

You should be beginning to see the power of selectors and how they can be
used strategically along with well-planned semantic markup.

Other Contextual Selectors

Descendant selectors are one of four types of contextual selectors (called
combinators in the Selectors specifications Level 3 and Level 4). The other three are
child selectors, next-sibling selectors, and subsequent-sibling selectors.

Child selector

A child selector is similar to a descendant selector, but it targets only the direct
children of a given element. There may be no other hierarchical levels in between.
They are indicated with the greater-than symbol (>). The following rule affects
emphasized text, but only when it is directly contained in a p element. An em element
inside a link (a) within the paragraph would not be affected.

p > em {font-weight: bold;}

Next-sibling selector

A next-sibling selector targets an element that comes directly after another element
with the same parent. It is indicated with a plus (+) sign. This rule gives special
treatment to paragraphs that follow an h1. Other paragraphs are unaffected.

hi + p {font-style: italic;}

Subsequent-sibling selectors

A subsequent-sibling selector selects an element that shares a parent with the
specified element and occurs after it in the source order. They do not need to follow
one another directly. This type of selector is new in CSS3 and is not supported by
Internet Explorer 8 and earlier. The following rule selects any h2 that both shares a
parent element (such as a section or article) with an h1 and appears after it in
the document.

hi ~ h2 {font-weight: normal;}

A Few More Selector Types

12. Formatting Text 283

A Few More Selector Types

Class Selectors

One last selector type, and then we can get back to text style properties. The
other element identifier you learned about in Chapter 5 is the class identifier,
used to classify elements into a conceptual group. Unlike the id attribute,
multiple elements may share a class name. Not only that, but an element
may belong to more than one class.

You can target elements belonging to the same class with—you guessed it—a
class selector. Class names are indicated with a period (.) at the beginning
of the selector. For example, to select all paragraphs with class="special",
use this selector (the period indicates the following word is a class selector):

p.special { color: orange; }

To apply a property to all elements of the same class, omit the element name
in the selector (be sure to leave the period; it’s the character that indicates a
class). This example targets all paragraphs and any other element that has
been marked up with class="special":

.special { color: orange; }

Specificity 101

In Chapter 11, [introduced you to the term specificity, which refers to the
fact that more specific selectors have more weight when it comes to handling
style rule conflicts. Now that you know a few more selectors, it is a good time
to revisit this very important concept.

This list of selector types from most to least specific should serve you well
In most scenarios:

e Inline styles with the style attribute are more specific than (and will
override...)

¢ ID selectors, which are more specific than (and will override...)
* C(lass selectors, which are more specific than (and will override...)
¢ Individual element selectors

The full story is a little more complicated, but here it is in a nutshell. To cal-
culate specificity, start by drawing three boxes:

1 01 0]

Now count up the number of IDs in the selector, and put that number in
the first box. Next count up the number of classes and pseudo-classes in the
selector, and put that number in the second box. Third, count up the element
names, and put that number in the third box.

Specificity is compared box by box. The first box that is not a tie determines
which selector wins. Here is a simple example of two conflicting rules for the
h1 element:

284 Part lIl. CSS for Presentation

h1 { color: red;} [o] [o] [1]

hi.special { color: lime; }

The second one has a class selector and the first one doesn't; therefore, the
second one is more specific and has more weight.
How about something more complicated?

article#tmain aside.sidebar:hover > hi:first-of-type
(o] [8] [1]

The second selector targets a link in an element with a string of class names
(represented by “.x”). But the first selector has an ID (#main) and is therefore
more specific.

(1] [3] [3]

XGXLGXLXGXGXG XWX arlink

You may need to do this full specificity calculation, but in most cases you'll
have a feel for which selector is more specific by following previously listed
general guidelines.

You can use specificity strategically to keep your style sheets simple and your
markup minimal. For example, it is possible to set a style for an element (p,
in this example), and then override when necessary by using more specific
selectors.

p { line-height: 1.2em; } [0] [0] [1]

blockquote p { line-height: 1em; } [0] [o] [2]

p.intro { line-height: 2em; } [0] [12] [2]
In these examples, p elements that appear within a blockquote have a smaller
line height than ordinary paragraphs. However, all paragraphs with a class
of “intro” will have a 2em line height, even if it appears within a blockquote,
because class selectors are more specific.

Understanding the concepts of inheritance and specificity is critical to mas-
tering CSS, and there is a lot more to be said about specificity. The “More
About Specificity” sidebar provides useful references.

Now, back to the menu. Fortunately, our Black Goose Bistro page has been
marked up thoroughly and semantically, so we have a lot of options for select-
ing specific elements. Give these new selectors a try in EXERCISE 12-5.

A Few More Selector Types

~N

More About Specificity

The specificity overview in this
chapter is enough to get you started,
but when you get more experienced
and your style sheets become more
complicated, you may find that you
need a more thorough understanding
of the inner workings.

For the technical explanation of
exactly how specificity is calculated,
see the CSS Selectors Module Level
4 specification at www.w3.0rg/TR/
selectors4/#specificity.

Eric Meyer provides a thorough,

yet more digestible, description of
this system in his book Selectors,
Specificity, and the Cascade: Applying
CSS to Documents (O’Reilly). This
material is also included in his book
co-authored with Estelle Weyl, CSS:
The Definitive Guide, 4e (O'Reilly).

If you are looking for help online,

| recommend the Smashing
Magazine article “CSS Specificity:
Things You Should Know”
(coding.smashingmagazine.
com/2007/07/27/css-specificity-
things-you-should-know/) by Vitaly
Friedman. It’s over a decade old, but
the concepts hold true.

As for most web design topics,

the MDN Web Docs site provides

a comprehensive explanation:
developer.mozilla.org/en-US/docs/
Web/CSS/Specificity.

The Universal Selector

The universal element selector (¥) matches any element, like a
wildcard in programming languages. The style rule

* { border: 1px solid gray; }

puts a 1-pixel gray border around every element in the
document. Itis also useful as a contextual selector, as shown in
this example that selects all elements in an “intro” section:

#intro * { color: gray; }

Be aware that every element will be selected with the universal
selector, including some that you might not be expecting

to style. For example, some styles might mess up your form
controls, so if your page contains form inputs, the safest bet is to
avoid the universal selector.

12. Formatting Text 285

A Few More Selector Types

EXERCISE 12-5. Using selectors

This time, we'll add a few more style rules using descendant, ID,
and class selectors combined with the font and color properties
we've learned about so far.

1. I'd like to add some attention-getting color to the “new item!”
elements next to certain menu item names. They are marked up
as strong, so we can apply the color property to the strong
element. Add this rule to the embedded style sheet, save the
file, and reload it in the browser:

strong {
font-style: italic;
color: tomato;

}

That worked, but now the strong element “Very spicy” in the
description is “tomato” red too, and that’s not what | want.
The solution is to use a contextual selector that targets only
the strong elements that appear in dt elements. Remove the
color declaration you just wrote from the strong rule, and
create a new rule that targets only the strong elements within
definition list terms:

dt strong { color: tomato; }

2. Look at the document source, and you will see that the content
has been divided into three unique divs: info, appetizers,
and entrees. We can use these to our advantage when it comes
to styling. For now, let’s do something simple and apply a teal
color to the text in the div with the ID “info”. Because color
inherits, we need to apply the property only to the div and it
will be passed down to the h1 and p:

#info { color: teal; }

3. Now let’s get a little fancier and make the paragraph inside
the “info” section italic in a way that doesn’t affect the other
paragraphs on the page. Again, a contextual selector is the
answer. This rule selects only paragraphs contained within the
info section of the document:

#info p { font-style: italic; }

4. | want to give special treatment to all of the prices on the menu.
Fortunately, they have all been marked up with span elements:

$3.95

So now all we have to do is write a rule using a class selector to
change the font to Georgia or some serif font, make the prices
italic, and gray them back:

.price {
font-family: Georgia, serif;
font-style: italic;
color: gray;

5. Similarly, in the “info” div, | can change the appearance of the
spans that have been marked up as belonging to the “label”
class to make the labels stand out:

.label {
font-weight: bold;
font-variant: small-caps;
font-style: normal;

}

6. Finally, there is a warning at the bottom of the page that | want
to make small and red. It has been given the class “warning,”
so | can use that as a selector to target just that paragraph for
styling. While I'm at it, 'm going to apply the same style to the
sup element (the footnote asterisk) earlier on the page so they
match. Note that I've used a grouped selector, so | don’t need to
write a separate rule.

p.warning, sup {
font-size: small;
color: red;

}

FIGURE 12-11 shows the results of all these changes. We now
have some touches of color and special typography treatments.

Black Goose Bistro « Summer Menu

Baker's Corner, Seekonk, Massachusetts
Hours: MoNDAY THROUGH THURSDAY: 11 to 9, FRIDAY AND SATURDAY; 11 to midnight

Appetizers
This season, we explore the spicy flavors of the southwest in our appetizer collection.
Black bean purses

Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked
until golden. $3.95

Southwestern napoleons with lump crab — new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas.
$7.95

Main courses

Big, bold flavors are the name of the game this summer. Allow us to assist you with finding the
perfect wine.

Jerk rotisserie chicken with fried pl ins — new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce
and served with fried plantains and fresh mango. Very spicy. $12.95

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to
perfection. Served with spicy peanut sauce and jasmine rice. $12.95

Grilled skirt steak with mushroom fricasee
Flavorful skirt steak marinated in asian flavors grilled as you like it”. Served over a blend
of sauteed wild mushrooms with a side of blue cheese mashed potatees. $16.95

* We are required to warn you that undercooked food is a health risk

The current state of the bistro menu.

286 Part lIl. CSS for Presentation

TEXT LINE ADJUSTMENTS

The next batch of text properties has to do with the treatment of whole lines
of text rather than the shapes of characters. They allow web authors to for-
mat web text with indents, extra space between lines (leading), and different
horizontal alignments, similar to print.

Line Height

Values: number | length measurement | percentage | normal
Default: normal
Appliesto: all elements

Inherits: yes

The line-height property defines the minimum distance from baseline to
baseline in text. We saw it earlier as part of the shorthand font property. The
line-height property is said to specify a “minimum” distance because if you
put a tall image or large characters on a line, the height of that line expands
to accommodate it.

A baseline is the imaginary line upon which the bottoms of characters sit.
Setting a line height in CSS is similar to adding leading in traditional type-
setting; however, instead of space being added between lines, the extra space
is split above and below the text. The result is that line-height defines the
height of a line-box in which the text line is vertically centered (FIGURE 12-12).

line-height is set to 2em (twice the text size); the
extra space is divided equally above and below the
Size of 1em for this text text line, centering it vertically in the line height.

[The line-height property defines the minimum distance from baseline to baseline in teE
Baseline .___ A baseline is the imaginary line upon which the bottoms of characters sit. Line height in

CSS is similar to leading in traditional typesetting.

line-height: 2em;

Text lines are centered vertically in the line height.

These examples show three different ways to make the line height twice the
height of the font size:

p { line-height: 2; }
p { line-height: 2em; }
p { line-height: 200%; }

Text Line Adjustments

12. Formatting Text 287

Text Line Adjustments

NOTE

The text-indent property indents just
the first line of a block. If you want space
along the whole side of the text block,
use one of the maxgin or padding prop-
erties to add it.

Designers may be accustomed to specify-
ing indents and margins in tandem, but
to be consistent with how CSS handles
them, margins will be discussed as part
of the box model in Chapter 14.

When a number is specified alone, as shown in the first example, it acts as a
scaling factor that is multiplied by the current font size to calculate the line-
height value.

Line heights can also be specified in one of the CSS length units. Ems and
percentage values are based on the current font size of the element. In the
three examples, if the font size is 16 pixels, the calculated line height would
be 32 pixels (see FIGURE 12-12).

The difference between using a scaling factor (number value) and a relative
value (em or %) is how they inherit. If you set the line height with a scaling
factor for a whole document on the body element, its descendants inherit the
multiplier. If the scaling factor is set to 2 for the body, a 24-pixel headline will
end up with a line height of 48 pixels.

If you set the line-height on the body element using ems or percentages,
its descendants inherit the calculated size based on the body’s font size. For
example, if the line height is set to 1em for the body element (calculated at 16
pixels), a 24-pixel headline inherits the calculated 16-pixel line height, not the
lem value. This is likely not the effect you are after, making number values
a more intuitive option.

Indents

The text-indent property indents the first line of text by a specified amount.

Values: length measurement | percentage
Default: 0
Appliesto: block containers
Inherits: yes
You can specify a length measurement or a percentage value for text-indent.
The results are shown in FIGURE 12-13. Here are a few examples:
p#1 { text-indent: 2em; }
p#2 { text-indent: 25%; }
p#3 { text-indent: -35px; }
Percentage values are calculated based on the width of the parent element,
and they are passed down to their descendant elements as percentage values

(not calculated values). So if a div has a text-indent of 10%, so will all of its
descendants.

In the third example, notice that a negative value was specified, and that’s just
fine. It will cause the first line of text to hang out to the left of the left text
edge (also called a hanging indent).

288 Part lIl. CSS for Presentation

2em EDParagraph 1. The text-indent property indents only the first line
of text by a specified amount. You can specify a length
measurement or a percentage value.

] I I
25% Paragraph 2. The text-indent property indents only
the first line of text by a specified amount. You can specify a length
measurement or a percentage value.

-35px Paragraph 3. The text-indent property indents only the first line of text by
[3 specified amount. You can specify a length measurement or a
percentage value.

Examples of the text-indent property.

Horizontal Text Alignment

You can align text for web pages just as you would in a word processing or
desktop publishing program with the text-align property.

Values: left |right | center | justify | start|end
Default: start
Appliesto: block containers

Inherits: yes

This is a fairly straightforward property to use. The results of the various
CSS2.1 text-align values are shown in FIGURE 12-14.

text-align: left Aligns text on the left margin
text-align: right Aligns text on the right margin
text-align: center Centers the text in the text block

text-align: justify Aligns text on both right and left margins

The CSS Text Module Level 3 added the start and end values, which specify
the side of the line box the text should align to (see Note). This accommo-
dates languages that are written vertically and right to left. For left-to-right
reading languages, start corresponds to left.

Good news—only five more text properties to go! Then we’ll be ready to try
a few of them in the Black Goose Bistro menu.

Text Line Adjustments

If you use a hanging indent, be sure
that there is also a left padding
applied to the element. Otherwise,
the hanging text may disappear off
the left edge of the browser window.

NOTE

The CSS Text Module Level 3 also defines
two new properties related to text align-
ment—text-align-last (for aligning
the last line of text) and text-justify
(for more fine-tuned control over how
space is inserted in justified text).

12. Formatting Text 289

Underlines and Other “Decorations”

NOTE

The CSS3 Text Module includes enhance-
ments to text-decoration, including
text-decoration-line, text-dec-
oration-color, text-decoration-
style, text-decoration-skip, and
text-underline-position. No version
of IE or Edge supports these properties,
but with the exception of -skip, they are
supported in other modern browsers.
See CanlUse.com for specifics.

I've oot laser eves.

text-decoration: underline;

I've got laser eyes.

text-decoration: overline;

Fre-gotlasereyes:

text-decoration: line-through;

text-align: left; Paragraph 1. The text-align property controls the horizontal
alignment of the text within an element. It does not affect the
alignment of the element on the page. The resulting text behavior of
the various values should be fairly intuitive.

text-align: right; Paragraph 2. The text-align property controls the horizontal
alignment of the text within an element. It does not affect the

alignment of the clement on the page.The resulting text behavior of

the various values should be fairly intuitive,

text-align: center; Paragraph 3. The text-align pjoperty controls the horizontal
alignment of the text within ar. element. It does not affect the
alignment of the element on the page.The resulting text behavior of
the various values sh(uld be fairly intuitive.

text-align: justify; [Paragraph 4. The text-align property controls the horizontal
alignment of the text within an element. It does not affect the
alignment of the element on the page The resulting text behavior of
the various values should be fairly intuitive.

Examples of
text-decoration values.

Examples of CSS2.1 text-align values.

UNDERLINES AND OTHER
“DECORATIONS”

If you want to put a line under, over, or through text, or if you’d like to turn
of the underline under links, then text-decoration is the property for you.

Values: none |underline |overline | line-through |blink
Default: none
Appliesto: all elements

Inherits: no, but since lines are drawn across child elements, they may look like
they are “decorated” too

The values for text-decoration are intuitive and are shown in FIGURE 12-15.

underline Underlines the element
overline Draws a line over the text
line-through Draws a line through the text

The most popular use of the text-decoration property is turning off the
underlines that appear automatically under linked text, as shown here:

a { text-decoration: none; }
There are a few cautionary words to be said regarding text-decoration:

* First, if you get rid of the underlines under links, be sure there are other
cues to compensate, such as color and weight.

290 Part lIl. CSS for Presentation

Changing Capitalization

* On the flip side, because underlines are such a strong visual cue to “click
here,” underlining text that is not a link may be misleading and frustrat-
ing. Consider whether italics may be an acceptable alternative.

* Finally, there is no reason to make your text blink. Browser makers agree
and therefore have dropped support for blinking text. IE never supported
it in the first place.

CHANGING CAPITALIZATION

I remember when desktop publishing programs introduced a feature that let
me change the capitalization of text on the fly (OK, 'm dating myself here).
This made it easy to see how my headlines might look in all capital letters
without needing to retype them. CSS includes this feature as well with the
text-transform property.

Values: none | capitalize | lowercase | uppercase | full-width

Default: none

Appliesto: all elements

Inherits: yes

When you apply the text-transform property to a text element, it changes

its capitalization when it renders without changing the way it is typed in the
source. The values are as follows (FIGURE 12-16):

none As it is typed in the source

capitalize Capitalizes the first letter of each word

lowercase Makes all letters lowercase

uppercase Makes all letters uppercase

full-width Chooses a “full-width” version of a character if one exists

(not well supported)

text-transform: none; And I know what you're thinking.
(as it was typed in the source)

text-transform: capitalize; And I Know What You're Thinking.
text-transform: lowercase; and i know what you're thinking.

text-transform: uppercase; AND I KNOW WHAT YOU'RE THINKING.

The text-transform property changes the capitalization of
characters when they are displayed, regardless of how they are typed in the source.

12. Formatting Text

291

Spaced Out

SPACED OUT

The next two text properties are used to insert space between letters (letter-
spacing) or words (word-spacing) when the text is displayed.

Values: length measurement | normal
Default: normal

Appliesto: all elements

Inherits: yes
Values: length measurement | normal
Default: normal

Appliesto: all elements

Inherits: yes

The letter-spacing and word-spacing properties do what they say: add
space between the letters of the text or words in a line, respectively.

FIGURE 12-17 shows the results of letter spacing and word spacing applied to
the simple paragraph shown here:

<p>Black Goose Bistro Summer Menu</p>

Black Goose Bistro Summer Menu

p { letter-spacing: 8px; }

Black Goose Bistro Summer Menu

p { word-spacing: 1.5em; }

letter-spacing (top) and word-spacing (bottom).

It is worth noting that when you specify em measurements, the calculated
size is passed down to child elements, even if they have a smaller font size
than the parent.

In EXERCISE 12-6 later in this chapter, we’ll make one last trip back to the
Black Goose Bistro menu and use the letter-spacing property on h2s.

292 Part lIl. CSS for Presentation

TEXT SHADOW

The text-shadow property adds a “shadow” below your text that makes it
seem to hover or pop out above the page. Since flat-color design has become
the fashion, drop shadows have gone out of style, but they can still be a useful
visual tool, particularly when your text is in front of a patterned or photo-
graphic background.

Text shadows are drawn behind the text but in front of the background and
border if there is one. Text shadows are supported by all current browsers.
Internet Explorer versions 9 and earlier lack support.

Values: ‘horizontal offset’ ‘vertical offset’ ‘blur radius’ ‘color’ | none
Default: none

Appliesto: all elements

Inherits: yes

The value for the text-shadow property is two or three measurements (a hori-
zontal offset, vertical offset, and an optional blur radius) and a color. FIGURE
12-18 shows an example of a minimal text shadow declaration.

ht {

color: darkgreen;
text-shadow: .2em .2em silver;

}

hi {
color: darkgreen;
text-shadow: -.3em -.3em silver;

}

The first value is a horizontal offset that positions the shadow to the right of
the text (a negative value pulls the shadow to the left of the text). The second
measurement is a vertical offset that moves the shadow down by the speci-
fied amount (a negative value moves the shadow up). The declaration ends
with the color specification (silver). If the color is omitted, the text color will
be used.

That should give you an idea for how the first two measurements work, but
that sharp shadow doesn’t look very...well...shadowy. What it needs is a blur
radius measurement. Zero (0) is no blur, and the blur gets softer with higher
values (FIGURE 12-19). Usually, you just have to fiddle with values until you
get the effect you want.

It is possible to apply several text shadows to the same element. If you vary
the position and blur amounts, you can give the text the appearance of mul-
tiple light sources.

Text Shadow

The Jenville Show

text-shadow: .2em .2em silver;

The-Jenville'Show

text-shadow: -.3em -.3em silver;

A minimal text drop
shadow.

The Jenville Show

text-shadow: .2em .2em .lem silver;

The Jenville Show

text-shadow: .2em .2em .3em silver;

Adding a blur radius
to a text drop shadow.

12. Formatting Text 293

Text Shadow

So go have some fun with text shadows, but be careful not to overdo it. Not
only can drop shadows make text difficult to read, but adding a shadow to
everything can slow down page performance (scrolling, mouse interactions,
etc.) as well, which is particularly problematic for mobile browsers without
much processing power. In addition, be careful that your text doesn’t require
a shadow in order to be visible. Folks with non-supporting browsers won't see
a thing. My advice is to use drop shadows as an enhancement in a way that
isn’t critical if they don't appear.

EXERCISE 12-6 gives you a chance to try out more text formatting properties
to put a little polish on the Black Goose Bistro menu.

The Other Text Properties

In the interest of saving space and keeping this
an introductory-level book, | haven’t given these
properties the full treatment, but they are worth
mentioning. Each is labeled with the CSS Level in
which it was introduced.

For even more text-related properties in
development, see the following CSS Text Modules:

¢ (CSS Text Module Level 3:
www.w3.org/TR/css-text-3

¢ (SS Text Decoration Module Level 3:
www.w3.0rg/TR/css-text-decor-3

* CSS Text Module Level 4 (still in Working Draft
and considered experimental):
www.w3.0rg/TR/css-text-4

white-space (CSS2) Specifies how whitespace
in the element source is handled in layout. For
example, the pre value preserves the character
spaces and returns found in the source, similar
to the pre HTML element.

vertical-align (CSS2) Specifies the vertical
alignment of an inline element’s baseline
relative to the baseline of the surrounding text.
Itis also used to set the vertical alignment of
contentin a table cell (td).

word-break and line-break (CSS3) Affects
how text wrapping is calculated within words
and lines, respectively, in various languages,
including East Asian (Chinese, Japanese,
Korean).

text-justify (CSS3) Specifies the mannerin
which space is to be added within and between
words when the text-align property on the
element is set to justify.

text-align-last (CSS3) Specifies how the last
line of a block of text should be justified when
the text-align property on the element is set
to justify. For example, it is often preferable to
have the last line left-justified for justified text to
avoid awkwardly spaced words.

tab-size (CSS3) Specifies the length of the tab
character (Unicode point 0009) in number of
characters or a length measurement.

hyphens (CSS3) Provides control over how text
is hyphenated. manual means hyphenation
happens only when there is a hyphen added in
the source. auto gives control to the browser,
and none turns off hyphenation completely.

overflow-wrap (CSS3) Specifies whether browsers
are allowed to break words to fit text in its
bounding box.

hanging-punctuation (CSS3) Determines
whether the punctuation mark may be outside
the element’s line box at the start or end of a
line. Hanging punctuation can make margins
appear more tidy.

The following properties are in the spec, but should
not be used. Use the dir HTML attribute instead.

direction (CSS3) Specifies the direction in which
the text reads: left to right (1tr) or right to left
(rtl).

unicode-bidi (CSS2) Related to bidirectional
features of Unicode. The Recommendation
states that it allows the author to generate levels
of embedding within the Unicode embedding
algorithm. If you have no idea what this means,
don’t worry. Neither do I.

294 Part lIl. CSS for Presentation

EXERCISE 12-6. Finishing touches

Text Shadow

Let’s add a few finishing touches to the online menu, menu.htmi.

It might be useful to save the file and look at it in the browser after
each step to see the effect of your edits and to make sure you’re on
track. The finished style sheet is provided in the materials folder
for this chapter.

1. First, I have a few global changes to the body element in mind.
I've had a change of heart about the font-family. | think that
a serif font such as Georgia would be more sophisticated and
appropriate for a bistro menu. Let’s also use the 1ine-height
property to open up the text lines and make them easier to read.
Make these updates to the body style rule, as shown:

body {
font-family: Georgia, serif;
font-size: small;
line-height: 1.75em;

}

2. | also want to redesign the “info” section of the document.
Remove the teal color setting by deleting that whole rule. Once
that is done, make the h1 olive green and the paragraph in the
header gray. Add color declarations to the existing rules:

#info—{—cotor+—teal;—— /* delete */
h1 {
font: bold 1.5em "Marko One", Georgia, serif;
color: olive;}
#info p {
font-style: italic;
color: gray;}

3. Next, to imitate a fancy restaurant menu, I’'m going to center a
few key elements on the page with the text-align property.
Write a rule with a grouped selector to center the headings and
the “info” section:

hi, h2, #info {
text-align: center;}

4. | want to make the “Appetizer” and “Main Courses” h2 headings
more eye-catching. Instead of large, bold type, I'm going to
use all uppercase letters, extra letter spacing, and color to call
attention to the headings. Here’s the new rule for h2 elements
that includes all of these changes:

h2 {
font-size: 1em;
text-transform: uppercase;
letter-spacing: .5em;
color: olive;}

5. We're really close now; just a few more tweaks to those
paragraphs right after the h2 headings. Let’s center those too
and make them italic:

h2 + p {
text-align: center;
font-style: italic;}

Note that I've used a next-sibling selector (h2 + p) to select any
paragraph that follows an h2.

6. Next, add a softer color to the menu item names (in dt
elements). I've chosen “sienna,” one of the names from the
CSS3 color module. Note that the strong elements in those dt
elements stay “tomato” red because the color applied to the
strong elements overrides the color inherited by their parents.

dt {
font-weight: bold;
color: sienna;}

7. Finally, for kicks, add a drop shadow under the h1 heading. You
can play around with the values a little to see how it works. | find
it to look a little clunky against a white background, but when
you have a patterned background image, sometimes a drop
shadow provides the little punch you need to make the text
stand out. Notice how small the shadow values are—a little goes
a long way!

h1 {
font: bold 1.5em "Marko One", Georgia, serif;
color: olive;
text-shadow: .05em .05em .lem lightslategray;}

And we’re done! FIGURE 12-20 shows how the menu looks
now—an improvement over the unstyled version, and we used
only text and color properties to do it. Notice that we didn’t touch
a single character of the document markup in the process. That’s
the beauty of keeping style separate from structure.

Black Goose Bistro « Summer Menu

Baker's Corner, Seekonk, Massachusetis

Hounrs: Monpay TuRroUGH THURSDAY: 11 f0 9, FRIDAY AND SATURDAY; 11 to midnight
APPETIZERS
This season, we explore the spicy flavors of the southwest in our appetizer collection.

Black bean purses
Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until golden.
$3.95

Southwestern napoleons with lump crab — new item!

Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas. $7.95
MAIN COURSES

Big, bold flavors are the name of the game this summer. Allow us (o assist you with finding the perfect

wine.

Jerk rotisserie chicken with fried plantains — new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and fragrant jerk sauce and served
with fried plantains and fresh mango. Very spiey. $12.95

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then grilled to perfection. Served
with spicy peanut sauce and jasmine rice. $12.05

Grilled skirt steak with mushroom fricasee
Flavorful skirt steak marinated in asian flavors grilled as you like it". Served over a blend of sauteed
wild mushrooms with a side of blue cheese mashed potatoes. $16.95

food is a health risk.

The formatted Black Goose Bistro menu.

12. Formatting Text 295

Changing List Bullets and Numbers

NOTE

This section documents the CSS2.1
list-style types that are well support-
ed on current browsers. CSS3 extends the
marker functionality shown here, includ-
ing a method for authors to define their
own list styles, allowing for numbering
in many languages (www.w3.0rg/TR/
css3-lists/).

NOTE

CSS3 introduces the @counter-style
rule, which provides box, check, dia-
mond, and dash marker types as well as
the ability to specify your own markers
when a predefined one won'’t do. See the
spec for details.

CHANGING LIST BULLETS AND NUMBERS

Before we close out this chapter on text properties, I want to show you a few
tweaks you can make to bulleted and numbered lists. As you know, browsers
automatically insert bullets before unordered list items, and numbers before
items in ordered lists (the list markers). For the most part, the rendering of
these markers is determined by the browser. However, CSS provides a few
properties that allow authors to choose the type and position of the marker,
or turn them off entirely.

Choosing a Marker

Apply the 1list-style-type property to the ul, ol, or 1i element select the
type of marker that appears before each list item (see Note).

Values: none | disc | circle | square | decimal | decimal-leading-zero |
lower-alpha | upper-alpha | lower-latin | upper-latin | lower-roman
upper-roman | lower-greek

Default: disc

Appliesto: ul,o0l,and 1i (or elements whose display value is 1ist-item)

Inherits: yes

More often than not, developers use the list-style-type property with its
value set to none to remove bullets or numbers altogether. This is handy when
youre using list markup as the foundation for a horizontal navigation menu
or the entries in a web form. You can keep the semantics but get rid of the
pesky markers.

The disc, circle, and square values generate bullet shapes just as brows-
ers have been doing since the beginning of the web itself (FIGURE 12-271).
Unfortunately, there is no way to change the appearance (size, color, etc.) of
generated bullets, so you'e stuck with the browser’s default rendering.

disc circle square
e radish o radish = radish
¢ avocado o avocado = avocado
e pomegranite o pomegranite = pomegranite
¢ cucumber o cucumber = cucumber

¢ persimmon o persimmon = persimmon

The list-style-type values disc, circle, and square.

The remaining keywords (TABLE 12-1) specify various numbering and letter-
ing styles for use with ordered lists.

296 Part lIl. CSS for Presentation

Lettering and numbering system (CSS2.1)

Changing List Bullets and Numbers

List Item Display Role

You may have noticed that the list
style properties apply to “elements

whose display value is 1ist-item’”

Keyword System

decimal 1,2,3,4,5..
decimal-leading-zero 01, 02, 03, 04, 05...
lower-alpha a,b,c,d,e...
upper-alpha A,B,C,DE..

The CSS2.1 specification allows any
element to perform like a list item by

lower-latin

a,b, ¢, d, e... (same as lower-alpha)

setting its display property to list-

upper-latin

A, B, C, D, E... (same as upper-alpha)

item. This property can be applied

to any HTML element or elements in
other XML languages. For example,

you could automatically bullet or

lower-roman 1, i, 1ii, iV V...
upper-roman LILILIV, V...
lower-greek a, B, v, 0, ...

number a series of paragraphs by
setting the display property of

Marker Position

By default, the marker hangs outside the content area for the list item, dis-
playing as a hanging indent. The list-style-position property allows you }
to pull the bullet inside the content area so it runs into the list content.

paragraph (p) elements to list-
item, as shown in this example:

p.lettered {
display: list-item;
list-style-type: upper-alpha;

Values: inside | outside | hanging

Default: outside

Appliesto: ul,o0l,and 1i (or elements whose display value is 1ist-item)
Inherits: yes

I've applied a light green background color to the
list items in FIGURE 12-22 to reveal the boundaries
of their content area boxes.

You can see that when the position is set to out-
side (top), the markers fall outside the content
area.When it is set to inside (bottom), the mark-
ers are tucked into the content area.

1i {background-color: #F99;}

ul#toutside {list-style-position: outside;}

ul#tinside {list-style-position: inside;}
CSS3 adds the hanging value for list-style-
position. it is similar to inside, but the markers
appear outside and abutting the left edge of the
shaded area.

outside

Radish. Praesent in lacinia risus. Morbi urna ipsum, efficitur id erat
pellentesque, tincidunt commodo sem. Phasellus est velit, porttitor vel dignissim
vitae, commodo ut urna.

Avocado. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per
inceptos himenaeos. Curabitur lacinia accumsan est, ut malesuada lorem
consectetur eu.

Pomegranite. Nam euismod a ligula ac bibendum. Aenean ac justo eget lorem
dapibus aliquet. Vestibulum vitae luctus orci, id tincidunt nunc. In a mauris odio.
Duis convallis enim nunc.

inside

* Radish. Praesent in lacinia risus. Morbi urna ipsum, efficitur id erat
pellentesque, tincidunt commodo sem. Phasellus est velit, porttitor vel dignissim
vitae, commodo ut urna.

* Avocado. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per
inceptos himenaeos. Curabitur lacinia accumsan est, ut malesuada lorem
consectetur eu.

* Pomegranite. Nam euismod a ligula ac bibendum. Aenean ac justo eget lorem
dapibus aliquet. Vestibulum vitae luctus orci, id tincidunt nunc. In a mauris odio.
Duis convallis enim nunc.

The list-style-position property.

12. Formatting Text 297

Changing List Bullets and Numbers

Make Your Own Bullets

You can also use your own image as a bullet by using the 1ist-style-image
property.

Values: url(location) | none
Default: none
Appliesto: ul,o0l, and 1i (or elements whose display value is 1ist-item)

Inherits: yes

The value of the list-style-image property is the URL of the image you
want to use as a marker. The list-style-type is set to disc as a backup
in case the image does not display or the property isn't supported by the
browser or other user agent. The result is shown in FIGURE 12-23.
ul {

list-style-type: disc;

list-style-image: url(/images/rainbow.gif);

list-style-position: outside;

}

Puppy dogs
Sugar frogs
Kitten's baby teeth

Using an image as a marker.

There is a list-style shorthand property that combines the values for type,
position, and image, in any order. For example:

ul {
list-style: url(/images/rainbow.gif) disc outside;
}
As for all shorthands, be careful not to override list style properties set earlier in the
style sheet.
- J

Wow! Whatta chapter! We started by looking at properties for specifying
fonts and character shapes followed by a review of all the text-level settings
and effects. You also got to use descendent, ID, and class selectors and looked
a little more closely at specificity. We topped it off with the properties avail-
able for adding some style to lists. I don't expect you to have all of these
properties committed to memory (although many will become second nature
the more you practice), but let’s see how you do on the following questions.

298 Part lIl. CSS for Presentation

TEST YOURSELF

Test Yourself

It’s time to see how well you understand the font properties and selectors
introduced in this chapter. Check Appendix A for the answers if you get stuck.

1. Match the style property with the text samples in FIGURE 12-24.

(-]

® © ¢ © o

a.

b.

-

= 0

—

Look for the good in others and they'll see the good in you.

{font-size: 1.5em;}
{text-transform: capitalize;}

{text-align: right;}

{letter-spacing: 3px;}

{font: bold italic 1.2em Verdana;}
{text-transform: uppercase;}
{text-indent: 2em;}

{font-variant: small-caps;}

default font and size

{font-family: Verdana; font-size: 1.5em;}

Look For The Good In Others And They'll See The Good In You.

Look for the good in others and they'll see the good in you.

Look for the good in others and they'll see the good in you.

Look for the good in others and they'll see the good in you.

Look for the good in others and they'll see the good in you.

LOOK FOR THE GOOD IN OTHERS AND THEY'LL SEE THE GOOD IN YOU.

Look for the good in others and they'll see the good in you.

LOOK FOR THE GOOD IN OTHERS AND THEY'LL SEE THE GOOD IN YOU.

Look for the good in others and they'll see the good in you.

Styled text samples.

12. Formatting Text 299

Test Yourself

2. Here is a chance to get a little practice writing selectors. Using the dia-
gram shown in FIGURE 12-25, write style rules that make each of the ele-
ments described here red (color: red;). Write the selector as efficiently
as possible.

a. All text elements in the document

b. h2 elements

c. h1elements and all paragraphs

d. Elements belonging to the class special
e. All elements in the “intro” section

f. strong elements in the “main” section

g. Extra credit: just the paragraph that appears after an h2

|d|V|d "|ntro |dIVId "main" |

p class="special" ﬁﬁi

Sample document structure.

p class="special"

300 PartlIl. CSS for Presentation

CSS Review: Font and Text Properties

CSS REVIEW: FONT AND TEXT

PROPERTIES

In this chapter, we covered the properties used to format text elements. Here
is a summary in alphabetical order.

Property Description

color Specifies the foreground color (text and borders) for
an element

direction Indicates whether the text reads left-to-right or right-
to-left

font A shorthand property that combines font properties

font-family

Specifies a typeface or generic font family

font-feature-settings

Allows access to lesser-used OpenType features

font-kerning

Controls how browsers implement kerning data
(space between characters)

font-language-override

Controls use of language-specific glyphs

font-size

Specifies the size of the font

font-size-adjust

Matches the x-height of a fallback font with the speci-
fied font

font-stretch

Selects a condensed, normal, or extended font

font-style

Specifies italic or oblique fonts

font-synthesis

Controls whether a browser may simulate bold or
italic fonts

font-variant

Specifies a small-caps font

font-variant-alternates

Selects alternate versions of character glyphs

font-variant-caps

Selects small caps and similar alternates when
available

font-variant-east-asian

Selects alternate glyphs in Chinese, Japanese, and
Korean

font-variant-ligatures

Selects ligatures for certain letter pairs when available

font-variant-numeric

Selects alternate number glyphs

font-variant-position

Selects subscript or superscript character glyphs

font-weight

Specifies the boldness of the font

hanging-punctuation

Indicates whether the punctuation may hang outside
the content box

hyphens

Controls how text is hyphenated

letter-spacing

Inserts space between letters

line-break

Describes rules for breaking lines

line-height

Indicates the distance between baselines of neighbor-
ing text lines

12. Formatting Text

301

CSS Review: Font and Text Properties

Property

Description

list-style-image

Specifies an image to be used as a list marker

list-style-position

Puts a list marker inside or outside the content area

list-style-type

Selects the marker type for list items

overflow-wrap

Specifies whether the browser can break lines within
words to prevent overflow

tab-size

Specifies the length of a tab character

text-align

Indicates the horizontal alignment of text

text-align-last

Specifies how the last line in justified text is aligned

text-decoration

Specifies underlines, overlines, and lines through

text-indent

Specifies the amount of indentation of the first line in

a block

text-justify

Denotes how space is distributed in justified text

text-shadow

Adds a drop shadow under the text

text-transform

Changes the capitalization of text when it displays

unicode-bidi

Works with Unicode bidirectional algorithms

vertical-align

Adjusts the vertical position of inline elements relative
to the baseline

white-space

Specifies how whitespace in the source is displayed

word-break

Specifies whether to break lines within words

word-spacing

Inserts space between words

word-wrap

Indicates whether the browser can break lines within
words to prevent overflow (same as overflow-wrap)

302 PartlIl. CSS for Presentation

COLORS AND
BACKGROUNDS

PLUS MORE SELECTORS AND
EXTERNAL STYLE SHEETS

If you had seen the web back in 1993, you would have found it to be a dreary
affair by today’s standards—every background was gray, and all the text
was black. Then came Netscape Navigator and, with it, a handful of HTML
attributes that allowed rudimentary (but welcome) control over font colors
and backgrounds. For years, we made do. But thankfully, we now have style
sheet properties that have laid those unmentionable presentational attributes
to rest.

We're going to cover a lot of ground in this chapter. Of course, I'll introduce
you to all of the properties for specifying colors and backgrounds. This
chapter also rounds out your collection of selector types and shows you how
to create an external style sheet. Our first order of business, however, is to
explore the options for specifying color in CSS, including a primer on the
nature of color on computer monitors.

SPECIFYING COLOR VALUES

There are two main ways to specify colors in style sheets—with a predefined
color name, as we have been doing so far:

color: red; color: olive; color: blue;

Or, more commonly, with a numeric value that describes a particular RGB
color (the color model on computer monitors). You may have seen color val-
ues that look like these:

color: #FF0000; color: #808000; color: #0OF;

We'll get to all the ins and outs of RGB color in a moment, but first, a short
and sweet section on the standard color names.

CHAPTER

13

IN THIS CHAPTER
CSS color names
RGB color values

Foreground and background
colors

Tiling background images
Color gradients

Pseudo-class, pseudo-element,
and attribute selectors

External style sheets

303

Specifying Color Values

The extended color names, also
known as the X11 color names, were
originally provided with the X Window
System for Unix.

Color Names

The most intuitive way to specify a color is to call it by name. Unfortunately,
you can’t make up just any color name and expect it to work. It has to be one
of the color keywords predefined in the CSS Recommendation. CSS1 and
CSS2 adopted the 16 standard color names originally introduced in HTML
401 CSS2.1 tossed in orange for a total of 17 (FIGURE 13-1).

CSS3 adds support for the extended set of 140 (rather fanciful) color names.
Now we can specify names like burlywood, peachpuff, oldlace, and my long-
time favorite, papayawhip! The extended colors are shown in FIGURE 13-2, but
if you want a more accurate view, point your browser at learningwebdesign.
com/colornames.html. CSS3 also added the transparent keyword, which can
be used with any property that has a color value.

Color names are easy to use—just drop one into place as the value for any
color-related property:
color: silver;

background-color: gray;
border-bottom-color: teal;

black gray silver white
#000000 #808080 #C0COCO #FFFFFF
maroon red purple fuchsia
#800000 #FF0000 #800080 #FFOOFF
green lime olive yellow
#008000 #00FF0O0 #808000 #FFFFOO
navy blue teal aqua
#000080 #0000FF #008080 #OOFFFF

orange (CSS 2.1)
#FFA500

The 17 standard color names in CSS2.1. (Note that “gray” must be
spelled with an “a.”)

304 Part lIl. CSS for Presentation

http://www.learningwebdesign.com/colornames.html
http://www.learningwebdesign.com/colornames.html

Specifying Color Values

aliceblue cornsilk lightskyblue midnightblue snow
240,248,255 255,248,220 135,206,250 255,250,250
FOFSFF FFFEDC 87CEFA FFFAFA

antiquewhite darkviolet pink
250,235,215 148,0,211 245,255,250 255,192,203

FAEBD7 9400D3 FSFFFA FFCOCB

aqua desppink indi lightsteelblue mistyrose plum
0,255,255 255,20,147 176,196,222 255,228,225 221,160,221
QOFFFF FF1493 BOC4DE FFE4EL DDAODD

aguamarine lightyellow moccasin powderblue tan
127,255,212 255,240,240 255,255,224 255,228,181 176,224,230 210,180,140
7FFFD4 FFFOFO FFFFED FFE4B5S BOEOE6 D2B4BC
azure dimgray khaki navajowhite purple

240,255,255 105,105,105 240,230,140 255,222,173 128,0,128

FOFFFF 69,69,69 FOD58C 800080

beige lavender thistle
245,245,220 230,230,250 216,191,216
FSF5DC EGEGFA DBBFD8

bisque firebrick lavenderblush linen oldlace
255,228,196 178,34,34 255,240,245 250,240,230 253,245,230
B22222 FFFOFS FAFOE6 FDF5E6

floralwhite

lawngreen royalblue

255,250,240 124,252,0 65,105,225
FFFAFO 7CFC00 4169E1

blanchedalmond forestgreen lemonchiffon olivedrab saddlebrown

255,255,205 34,139,34 255,250,205 107,142,35 139,69,19
FFFFCD 228B22 FFFACD BB4513

darkmagenta i lightblue white
139,0,139 173,216,230 255,255,255
8B008B 'ADDSE6 FFFFFF
blueviolet darkolivegreen gainsboro wheat
138,43,226 85,107,47 220,220,220 245,222,179
BA2BE2 556B2F DCDCDC F5SDEB3
ghostwhite lightgoldenrodyellow seagreen whitesmoke
248,248,255 250,250,210 46,139,87 245,245,245
F8F8FF FAFAD2 2E8B57 F5F5F5
gold lightcyan palegoldenrod seashell yellow
255,215,0 224,255,255 238,232,170 255,245,238 255,255,0
FFD700 EOFFFF EEEBAA FFFSEE FFFFOO

darkorchid lightgreen palegreen
153,50,204 144,238,144 152,251,152
90EESO 98FB9B
chartreuse lightgrey paleturquoise silver
127,255,0 211,211,211 175,238,238 192,192,192
7FFFO0 D3D3D3 AFEEEE €ococo

lightpink skyblue
255,182,193 135,206,235
FFB6C1 87CEEB

darkslateblue greenyellow lightsalmon papayawhip slateblue
72,61,139 173,255,47 255,160,122 255,239,213 106,90,205
483D8B ADFF2F FFAO7A FFEFDS BASACD

darkslategray honeydew mediumvioletred peachpuff slategray

47,79,79 240,255,240 199,21,133 255,239,213 112,128,144
2F4F4F FOFFFO C71385 FFEFD5 708090

FIGURE 13-2. The 140 extended color names in CSS3. Bear in mind that these look
quite different on a screen.

13. Colors and Backgrounds 305

Specifying Color Values

RGB Color Values

Names are easy, but as you can see, they are limited. By far, the most common
way to specify a color is by its RGB value. It also gives you millions of colors
to choose from.

For those who are not familiar with how computers deal with color, T'll start
with the basics before jumping into the CSS syntax.

A word about RGB color

s y Computers create the colors you see on a monitor by combining three colors
- of light: red, green, and blue. This is known as the RGB color model. You can
Why 2557 i . .

provide recipes (of sorts) for colors by telling the computer how much of
In true RGB color, 8 bits of each color to mix in. The amount of light in each color “channel” is typically
information are deVOt,ed to each C,Olor described on a scale from 0 (none) to 255 (full blast), although it can also be

channel. Because 8 bits can describe ded The ol he th | 255 (100%), the cl
256 shades (25 = 256), colors are provided as a percent. The closer the three values get to 25 6), the closer
measured on a scale from 0 to 255. the resulting color gets to white (FIGURE 13-3). Wondering why the scale is

L J from 0 to 255? See the “Why 255?” sidebar.

Any color you see on your monitor can be described by a series of three
numbers: a red value, a green value, and a blue value. This is one of the ways
that image editors such as Adobe Photoshop keep track of the colors for every
pixel in an image. With the RGB color system, a pleasant lavender can be
described as R:200, G:178, B:230.

Taken together, 255 colors in each channel can define around 16.7 million
color combinations. This color space of millions of colors is known as
Truecolor. There are different ways to encode those colors (that is, convert
them to bytes for computers), and the web uses an encoding called sRGB. So,
if you see an option for saving images as sSRGB in a graphics program, click Yes.

The RGB Color Model

G: 255 B: 255
(100%) (100%)

RGB: 255, 255, 255 RGB: 128,128,128
white gray

RGB: 200, 178, 230
pleasant lavender

Computers create colors on a monitor by mixing different amounts of
red, green, and blue light (thus, RGB). The color in the middle of each diagram shows
what happens when the three color channels are combined. The more light there is in
each channel (i.e., the higher the number value), the closer the combination is to white.

306 Part lIl. CSS for Presentation

Picking a color

There are a number of ways to pick a color and find its RGB color values. One
quick and easy option is to go to Google.com and search “color picker,” and
voila—a full-featured color picker (FIGURE 13-4, left)! If you tend to keep an
image-editing program such as Adobe Photoshop open and handy, you can
use its built-in color picker (FIGURE 13-4, right).

Color Picker (Fereground Color)

o]
new
Cancel
#9beted ie)
rgili55, 232, £32)
L] Add to Swatches
L]
Color Libraries
—
77 | L [as
HEX #90e8e8 —

: (a8 Ju a |18
nes roe(155, 232, 232) 87 "\% b [a0
— (1807, 33%, 81%) . [re8 c25 |%
HsL nei(160°, 63%, 76%) Only Web Colors 6 [222] Mo |%
- e k35%, 65, 0% %) D8 a7 v:[60 |%

1
#[cedess '

A Showless

Google color picker Photoshop color picker

Color pickers such as the one at Google.com (search “color picker”)
and in Photoshop.

Both the Google and image editor color pickers show how the selected color
would be expressed in a variety of color models (to reveal the values in
Google, click “Show color values” below the picker). RGB is the most com-
mon for web design, so we're focusing our attention on that one. HSL (Hue
Saturation Lightness or Luminosity) is another option for specifying color in
style sheets, and we’ll take a look at it in a moment (see Note). CMYK (Cyan
Magenta Yellow blacK) is used primarily for print media, so you won' use it
except perhaps to translate print colors to their screen equivalents.

When you select a color from the spectrum in the color picker, the red, green,
and blue values are listed, as pointed out in FIGURE 13-4. And look next to
the # symbol—those are the same three values, converted to hexadecimal
equivalents so they are ready to go in a style sheet. I'll explain the six-digit
hex values in a moment.

Writing RGB values in style sheets

CSS allows RGB color values to be specified in a number of formats. Going
back to that pleasant lavender, we could add it to a style sheet by listing each
value on a scale from 0 to 255:

color: rgb(200, 178, 230);

You can also list them as percentage values, although that is less common:

color: rgb(78%, 70%, 90%);

Specifying Color Values

The Web Palette

You may come across the terms web
palette or web-safe colors in web
production tools like Dreamweaver
or Photoshop. The web got its start

in the days when computer monitors
typically could display only 256 colors
at a time. The web palette was a
collection of 216 colors that could

be displayed on both Windows and
Macintosh operating systems without
dithering, and thus they were “safe”
for the web. That era is long behind
us, as is the need to restrict our color
choices to the web palette.

NOTE

HSL is not the same as HSB (Hue
Saturation Brightness), another color
model provided in Photoshop and other
image editors.

13. Colors and Backgrounds 307

Specifying Color Values

Specifying RGB Values

There are four formats for providing
RGB values in CSS:

rgb(255, 255, 255)
rgb(100%, 100%, 100%)
#FFFFFF

HFFF
All of these examples specify white.

Handy Hex Values
White = #FFFFFF or #FFF
(the equivalent of 255,255,255)

Black = #000000 or #000
(the equivalent of 0,0,0)

Or, you can provide the six-digit hexadecimal version that we saw in the
color pickers. These six digits represent the same three RGB values, except
they have been converted into hexadecimal (or hex for short) equivalents.
Note that hex RGB values are preceded by the # symbol and do not require
the rgh() notation shown in the previous examples. They may be upper- or
lowercase, but it is recommended that you be consistent:

color: #C8B2E6;
There is one last shorthand way to specify hex color values. If your value hap-
pens to be made up of three pairs of double digits or letters, such as

color: #FFCCO0; or color: #993366;
you can condense each pair down to one digit or letter. It’s easier to type

and to read, and it slightly reduces the size of your file. These examples are
equivalent to the ones just listed:

color: #FCo; or color: #936;

About hexadecimal values

It’s time to clarify what's going on with that six-digit string of characters.
What you're looking at is actually a series of three two-digit numbers, one
each for red, green, and blue. But instead of decimal (base-10, the system we're
used to), these values are written in hexadecimal, or base-16. FIGURE 13-5
shows the structure of the hex RGB value.

Hexadecimal RGB values
must be preceded by the
symbol.
L |] L | L | J

Hex Hex Hex
RED GREEN BLUE
value value value

Hexadecimal RGB values are made up of three two-digit numbers, one
for red, one for green, and one for blue.

The hexadecimal numbering system uses 16 digits: 0-9 and A-F (for repre-
senting the quantities 10—15). FIGURE 13-6 shows how this works. The hex
system is used widely in computing because it reduces the space it takes to
store certain information. For example, the RGB values are reduced from
three to two digits once theyre converted to hexadecimal.

Now that most graphics and web development software provides easy access
to hexadecimal color values (as we saw in FIGURE 13-4), there isn't much need
to translate RGB values to hex yourself, as we needed to do back in the old
days. Should you need to, there are plenty of decimal-to-hexadecimal convert-
ers online.

308 Part lIl. CSS for Presentation

Decmal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

The decimal number 32 The decimal number 42

O is represented as is represented as

sixteens ones
place place 2 sixteens and 0 ones 2 sixteens and 10 ones

The hexadecimal numbering system is base-16.

RGBa Color

RGBa color allows you to specify a color and make it as transparent or as
opaque as you like. The “a” in “RGBa” stands for alpha, which is an additional
channel that controls the level of transparency on a scale from 0 (fully trans-
parent) to 1 (fully opaque). Here’s how it looks written in a style rule:

color: rgba(o, 0, 0, .5);

The first three values in the parentheses are regular old RGB values, in this
case creating the color black. The fourth value, .5, is the transparency level. So
this color is black with 50% transparency. That allows other colors or back-
ground patterns to show through slightly (FIGURE 13-7).

color: rgba(o, 0, 0, .1);
Playing with RGBa color: rgba(o, 0, 0, .5);
Playing with RGBa color: rgba(o, 0, 0, 1);

Headings with various levels of transparency using RGBa values.

HSL Color

CSS3 introduced the ability to specify colors by their HSL values: Hue
(color), Saturation, and Lightness (or Luminosity). In this system, the colors
are spread out around a circle in the order of the rainbow, with red at the
top (12 o'clock) position. Hue values are then measured in degrees around
the circle: red at 0°/360°, green at 120°, and blue at 240°, with other colors
in between. Saturation is a percentage value from 0% (gray) to 100% (color
at full blast). Lightness (or brightness) is also a percentage value from 0%
(darkest) to 100% (lightest).

Specifying Color Values

BROWSER SUPPORT NOTE

Internet Explorer versions 8 and earlier
do not support RGBa color, so if a signifi-
cant percentage of your users have those
browsers, you may want to provide a
fallback. Pick an RGB color that approxi-
mates the look you're going for and list
it first in the style rule. IE ignores the
RGBa value, and supporting browsers
will override the opaque color when they
get to the second declaration.

h1 {
color: rgb(120, 120, 120);
color: rgba(o, 0, 0, .5);

BROWSER SUPPORT NOTE

HSL and HSLa color are not supported in
Internet Explorer versions 8 and earlier,
so use a fallback if you must support
those browsers.

13. Colors and Backgrounds 309

Specifying Color Values

FIGURE 13-8 shows one hue, cyan (located at 180° on the wheel) with its asso-
ciated saturation and lightness levels. You can see why some people find this
system more intuitive to use, because once you lock into a hue, it is easy to
make it stronger, darker, or lighter by increasing or decreasing the percentage
values. RGB values are not intuitive at all, although some practiced designers
develop a feel for them.

HUE: 180° (Cyan)

SATURATION
100% 75% 50% 25% 0%

100%

50%

BRIGHTNESS

25%

FIGURE 13-28. One hue in the HSL color model, with its associated saturation and
lightness values.

In CSS, HSL values are provided as the hue value and two percentages. They
are never converted to hexadecimal values, as may be done for RGB. Here is
that lavender from FIGURE 13-3 as it would be specified using HSL.:

color: hsl(265, 51%, 80%);

Picking HSL color

There are a number of HSL color pickers online. In the Google color picker,
click “Show color values” below the panel to reveal the HSL values for your
selected color. Here are some other cool tools worth checking out:

* A Most Excellent HSL Color Picker by Brandon Mathis (hslpicker.com/)
e HSL Color Picker (www.workwithcolor.com/hsl-color-picker-01.htm)

e HSLa Explorer by Chris Coyier at CSS-Tricks (css-tricks.com/examples/
HSLaExplorer/)

WARNING

Be aware that the HSB color model listed in Photoshop’s color picker is not the same as HSL
and cannot be used for CSS.

310 PartllIl. CSS for Presentation

http://www.workwithcolor.com/hsl-color-picker-01.htm

HSLa color

As with RGB, you can add an alpha channel to set the transparency of HSL
colors, resulting in the HSLa color model. As for RGBa, the fourth value is
the degree of transparency on a scale from 0 (fully transparent) to 1 (fully
opaque). This example specifies a spring green color that is 65% opaque:

color: hsla(70, 60%, 58%, .65);

Summing Up Color Values

It took us a few pages to get here, but the process for picking and specifying
colors in style sheets is actually easy:

* Pick one of the predefined color names,
or

* Use a color picker to select a color and copy down the RGB values (prefer-
ably the six-digit hex values). Put those values in the style rule using one
of the four RGB value formats, and you're done. Or you could use HSL, if
that feels easier to you.

There is one more colorful way to fill an element, and that’s gradients (colors
that fade from one hue to another), but I'm going to save them for the end
of this chapter.

FOREGROUND COLOR

Now that we know how to write color values, let’s get to the color-related
properties. You can specify the foreground and background colors for any
HTML element. There are also border-color properties that take color values,
but we'll get to those in Chapter 14, Thinking Inside the Box.

The foreground of an element consists of its text and border (if one is speci-
fied). You specify a foreground color with the color property, as we saw in
the last chapter when we rolled it out to give text a little pizzazz. Here are the
details for the color property one more time.

Values: color value (name or numeric)

Default: depends on the browser and user’s preferences

Appliesto: all elements

Inherits: yes

In the following example, the foreground of a blockquote element is set to

green with a color name. You can see that applying the color property to the
blockquote element means the color is inherited by the p and em elements it

Foreground Color

13. Colors and Backgrounds 311

Background Color

contains (FIGURE 13-9). The thick dashed border around the whole block-
quote is green as well; however, if we were to apply a border-color property
to this same element, that color would override the green foreground setting.

THE STYLE RULE

blockquote {
border: 4px dashed;
color: green;

}

THE MARKUP

<blockquote>
In the latitude of central New England, cabbages are not secure ...
</blockquote>

In the latitude of central New England, cabbages are I
not secure from injury from frost with less than a
koot of earth thrown over the heads. In mild winters al
Jcovering of half that depth will be sufficient; but as |
we have no prophets to foretell our mild winters, a I
foot of earth is safer than six inches.

Applying a color to the foreground of an element.

BACKGROUND COLOR

Use background-color to apply a background color to any element.

Values: color value (name or numeric) | transparent
Default: transparent
Appliesto: all elements

Inherits: no

A background color fills the canvas behind the element that includes the con-
tent area, and any padding (extra space) added around the content, extending
behind the border out to its outer edge. Let’s see what happens when we use
the background-color property to make the background of the same sample
blockquote light green (FIGURE 13-10):
blockquote {
border: 4px dashed;

color: green;
background-color: #c6de89;

}

312 PartllIl. CSS for Presentation

n the latitude of central New England, cabbages are I
not secure from injury from frost with less than a
Koot of earth thrown over the heads. In mild winters al
[covering of half that depth will be sufficient; but as |
we have no prophets to foretell our mild winters, a I
foot of earth is safer than six inches.

Adding a light green background color to the sample blockquote.

As expected, the background color fills the area behind the text, all the way
to the border. Look closely at the gaps in the border, and you'll see that the
background color goes to its outer edge. But that’s where the background
stops; if we apply a margin around this element, the background will not
extend into the margin. We'll revisit all these components of an element when
we talk about the CSS box model. For now, just know that, by default, if your
border has gaps, the background will show through.

It’s worth noting that background colors do not inherit, but because the
default background setting for all elements is transparent, the parent’s back-
ground color shows through its descendant elements. For example, you can
change the background color of a whole page by applying the background-
color property to the body element and the color will show through all the
elements on the page (see “An Important Exception”).

In addition to setting the color of the whole page, you can change the back-
ground color of any element, both block-level (like the blockquote shown in
the previous example) as well as inline. In this example, I've used the color
and background-color properties to highlight a word marked up as a “glos-
sary” term. You can see in FIGURE 13-11 that the background color fills the
little box created by the inline dfn element.

THE STYLE RULE

.glossary {
color: #0378a9; /* blue */
background-color: yellow;

}

THE MARKUP

<p>Every variety of cabbage had their origin in the wild cabbage of
Europe (<dfn class="glossary"><i>Brassica oleracea</i></dfn>)</p>

Every variety of cabbage had their origin in the wild cabbage
of Europe (Brassica oleracea)

Background Color

When you apply a background to the
body (or more generically, on the root
html) element, it is treated specially.
It doesn’t get clipped to the box, but
instead extends to cover the entire
viewport.

Applying the background-color property to an inline element.

13. Colors and Backgrounds 313

Clipping the Background

Using Color

Here are a few quick tips related to
working with color:

* Limit the number of colors you use

on a page. Nothing creates visual
chaos faster than too many colors.
I tend to choose one dominant
color and one highlight color. |

may also use a couple of shades of

each, but I resist adding too many
different hues.

* When specifying a foreground and
background color, make sure that
there is adequate contrast. People
tend to prefer reading dark text on
very light backgrounds online.

* Keep color-blind users in mind
when selecting colors. Chris
Coyier’s article “Accessibility
Basics: Testing Your Page for
Color Blindness” (css-tricks.com/
accessibility-basics-testing-your-
page-for-color-blindness/) is a
good place to start researching
strategies for color-blind-friendly
design.

Color contributes to both the
aesthetics and usability of a site, so
itis important to get it right. Geri
Coady’s book Color Accessibility
Workflows (A Book Apart) provides
many best practices.

CLIPPING THE BACKGROUND

Traditionally, the background painting area (the area on which fill colors are
applied) of an element extends all the way out to the outer edge of the border,
as we saw in FIGURE 13-10. CSS3 introduced the background-clip property
to give designers more control over where the painting area begins and ends.

Values: border-box | padding-box | content-box
Default: border-box

Appliesto: all elements

Inherits: no

The default border-box value draws the painting area to the outside edge
of the border, as we’ve seen. FIGURE 13-12 shows that padding-box starts the
painting area on the outside edge of the padding area for the element (and to
the inside edge of the border). Finally, content-box allows the background to
fill only the content area for the element.

I can't help but feel like 'm spoiling the surprise of the element box model
and its properties here a little, since I was saving that for the next chapter.
I've added some padding (space between the content and the border) so the
effects of the clip settings will be more apparent.

blockquote {
padding: 1lem; border: 4px dashed; color: green; background-color: #C6DE89;}

r-—~=—"~>~~>""~=~"~=====-=1

| Inthe latitude of central New England, 1

cabbages are not secure from injury from backeround-clip: border-box:
I frost with less than a foot of earth thrown | g p: ’
I over the heads.
S WS |
[=== === = == - -
| In the latitude of central New England, 1

cabbages are not secure from injury from P T s ol .
I frost with less than a foot of earth thrown 1 background-clip: padding-box;
I over the heads. 1
L
- === === = ===
| Inthe latitude of central New England, 1
I cabbages are not secure from injury from I background-clip: content-box;

frost with less than a foot of earth thrown
I over the heads. 1

I |

The background-clip property.

314 PartllIl. CSS for Presentation

https://css-tricks.com/accessibility-basics-testing-your-page-for-color-blindness/
https://css-tricks.com/accessibility-basics-testing-your-page-for-color-blindness/
https://css-tricks.com/accessibility-basics-testing-your-page-for-color-blindness/

PLAYING WITH OPACITY

Earlier, we talked about the RGBa color format, which adds a level of trans-
parency when it is applied to a color or background. There is another way to
make an element slightly see-through, however—the CSS3 opacity property.

opacity

Values: number (0to 1)
Default: 1

Appliesto: all elements
Inherits: no

The value for opacity is a number between 0 (completely transparent) and 1
(completely opaque). A value of .5 gives the element an opacity of 50%. The
opacity setting applies to the entire element—both the foreground and the
background (if one has been set). If you want to affect just one or the other,
use an RGBa color value instead.

In the following code example (and FIGURE 13-13), a heading has been given
a color of gold and a background color of white. When the opacity property
is set, it allows the blue background of the page to show through both the
text and the element box.

h1 {color: gold; background: white; opacity: .25;}
hi {color: gold; background: white; opacity: .5;}
h1 {color: gold; background: white; opacity: 1;}

opacity: .25;

Playing with opacit

opacity: .5;

opacity: 1;

FIGURE 13-13. Setting the opacity on an element affects both the foreground and
background colors.

You may be itching to take these color and background properties out for a
spin, and we will in a moment, but first, I want to introduce you to some of
the fancier CSS selectors and round out your collection. The “At a Glance”
sidebar lists the selectors you should feel comfortable with so far.

Playing with Opacity

The opacity setting applies
to the entire element—both
the foreground and the
background.

BROWSER SUPPORT NOTE

The opacity property is not supported
in Internet Explorer versions 8 and earlier.
If you need to support IES, use a style
rule with Microsoft’s proprietary filter
property, then override it with the stan-
dard opacity style rule.

h1 {
filter:alpha(opacity=50);
opacity: .5;

13. Colors and Backgrounds 315

Pseudo-Class Selectors

Selector Review

Here is a quick summary of the
selector types we've covered already
(“E” stands for “Element”):

Element type selector
E {property: value;}
Grouped selectors
E1, E2, E3 {property: value;}

Descendant selector
E1 E2 {property: value;}

Child selector
E1 > E2 {property: value;}

Next-sibling selector
E1 + E2 {property: value;}

Subsequent-sibling selector

E1 ~ E2 {property: value;}
ID selector

E#id {property: value;}

#id {property: value;}
Class selector

E.class {property: value;}
.class {property: value;}

Universal selector
* {property: value;}

When you alter the appearance of
links and visited links, be sure that
they still look like links.

PSEUDO-CLASS SELECTORS

Have you ever noticed that a link is often one color when you click it and
another color when you go back to that page? That’s because, behind the
scenes, your browser is keeping track of which links have been clicked (or
“visited,” to use the lingo). The browser keeps track of other states too, such
as whether the user’s cursor is over an element (hover state), whether an ele-
ment is the first of its type, whether its the first or last child of its parent, and
whether a form element has been checked or disabled, just to name a few.

In CSS, you can apply styles to elements in these states by using a special kind
of selector called a pseudo-class selector. It’s an odd name, but you can think
of it as though elements in a certain state belong to the same class. However,
the class name isnt in the markup—its something the browser just keeps
track of. So it’s kinda like a class...it’s a pseudo-class.

Pseudo-class selectors are indicated by the colon (:) character. They typically
go immediately after an element name—for example, 1i:first-child.

There are quite a few pseudo-classes in CSS3, and the W3C has been going a
little crazy in the CSS Selector Module Level 4 slinging around new pseudo-
classes, the majority of which have no browser support as of this writing. In
this section, T'll introduce you to the most commonly used and the best sup-
ported as a solid starter kit. You can explore the cutting-edge selectors as you
gain more experience. The full list of CSS selectors (including Level 4), with
descriptions, can be found in Appendix C.

Link Pseudo-Classes

The most basic pseudo-class selectors target links (a elements) based on
whether they have been clicked. Link pseudo-classes are a type of dynamic
pseudo-class because they are applied as the result of the user interacting
with the page rather than something in the markup.

:link Applies a style to unclicked (unvisited) links
visited Applies a style to links that have already been clicked

By default, browsers typically display linked text as blue and links that have
been clicked as purple, but you can change that with a few style rules. There
are limitations on what properties may be applied to :visited links, as
explained in the “Visited Links and Security” sidebar.

In these examples, I've changed the color of unclicked links to maroon and
visited links to gray. It is common for visited links to be a more muted color
than unclicked links:
a:link {
color: maroon;

}
a:visited {
color: gray;

}

316 PartlIl. CSS for Presentation

User Action Pseudo-Classes

Another type of dynamic pseudo-class targets states that result from direct
user actions.

:focus Applies when the element is selected and ready for input
thover Applies when the mouse pointer is over the element
:active Applies when the element (such as a link or button) is in the

process of being clicked or tapped

Focus state

If you've ever used a web form, then you should be familiar with how a brows-
er visually emphasizes a form element when you select it. When an element is
highlighted and ready for input, it is said to have “focus.” The :focus selector
lets you apply custom styles to elements when they are in the focused state.

In this example, when a user selects a text input, it gets a yellow background
color to make it stand out from the other form inputs:

input:focus { background-color: yellow; }

Hover state

The :hover selector is an interesting one. It targets elements while the user’s
mouse pointer is directly over them. You can use the hover state with any ele-
ment, although it is most commonly used with links to give the user visual
feedback that an action is possible. Hover states are also used to trigger pop-
up menus for navigation or for revealing more information about an object
on the page.

This rule gives links a light pink background color while the mouse hovers
over them:
a:hover {

color: maroon;
background-color: #ffd9d9;

}

In the previous chapter, we saw the text-decoration property used to turn
off underlines under links. You could use the :hover selector to make the
underlines appear only “on hover”:

athover {
text-decoration: underline;

}

It is important to note that there is no true hover state on touch-screen
devices such as smartphones and tablets, so hover effects must be used with
care and alternative solutions (see the sidebar “Hover on Touch Devices”).

Pseudo-Class Selectors

Visited Links and Security

Browsers keep track of what links
have been visited, but for some users,
a record of their visited links (which
could be stolen by a malicious site)
may be undesirable. For people in
regions with severe restrictions on
viewing online content, that record

in the wrong hands could even be life
threatening. When it was determined
that visual styles applied to visited
links, as well as the methods
browsers use to keep track of them,
could be used to track users’ viewing
histories, some changes were made
to how visited links are handled.

The first change was to limit the
visual presentation properties

that can be applied to visited

links. Style rules with :visited
pseudo-class selectors may use only
the following properties: color,
background-color, border-
color (and individual side border
properties), and outline-color.
Any other property will be ignored.
Furthermore, you cannot use any
value that makes the link transparent,
including the transparent keyword
and RGBa and HSLa color values.

Under the hood, the DOM mechanism
that keeps track of what links have
been visited will always return a “not
visited” state, even when visited styles
are displayed on the screen. This
keeps browsing history hidden at the
DOM level as well.

The fate of the :visited pseudo-
class is uncertain, so do not apply
styles that are critical to the usability
of your site.

13. Colors and Backgrounds 317

Pseudo-Class Selectors

Active state

Finally, the :active selector applies styles to an element while it is in the
process of being activated. In the case of a link, it is the style that is applied
while it is being clicked or while a fingertip is in contact with it on a touch
screen. This style may be displayed only for an instant, but it can give a subtle
indication that something has happened. In this example, I've brightened up
the color for the active state (from maroon to red):
a:active {
color: red;

background-color: #ffd9d9;
}

Putting It All Together

Web designers commonly provide styles for all of these link states because it
is an easy way to give a nice bit of feedback at every stage of clicking a link
(and it usually improves on the browser defaults). In fact, users have come to
expect this feedback: seeing at a glance which links have been followed, hav-
ing links do something when they point at them, and receiving confirmation
when the links are successfully clicked.

When you apply styles to a elements with all five pseudo-classes, the order in
which they appear is important for them to function properly. For example,
if you put :1link or :visited last, they override the other states, preventing
them from appearing. The required order for link pseudo-classes is :1ink,
:visited, :focus, :hover, :active (LVFHA, which you can remember with
LoVe For Hairy Animals, or the mnemonic device of your choice).

Hover on Touch Devices

On the desktop, the mouse pointer can hover over elements on
the screen, but touch devices respond only when the screen is
actually touched. This can make hover effects problematic on
smartphones and tablets.

When hover effects are applied to a link (an a element), mobile
operating systems may display the hover state styles after a
single tap. To follow the link, the user must tap again. Other
hover-triggered elements, such as pop-up menus, may get stuck
open, requiring the user to tap elsewhere or reload the page

to clear it (not a good user experience, and a deal-breaker for
some designs).

There is no single CSS-based solution to this issue. Always
including :focus and :active state styles along with the
thover styles may help in some situations. Otherwise, your
options are to use JavaScript to program the desired effect

for mobile devices or to avoid the :hover state and stick with
outright clicks. It is possible to serve the hover-free styles in a
style sheet targeted specifically to touch devices.

JavaScript solutions are beyond the scope of this chapter, so |
recommend these resources to get started. Some knowledge of
JavaScript is required.

* “4 novel ways to deal with sticky :hover effects on mobile
devices” (www.javascriptkit.com/dhtmltutors/sticky-hover-
issue-solutions.shtml).

* Search for “hover states on touch devices” on StackOverflow.
com and see questions and answers related to this issue.
Stack Overflow is a forum where programmers can ask
questions and get help from fellow programmers. You'll find a
lot of solutions, but also some dead ends.

318 PartlIl. CSS for Presentation

http://www.javascriptkit.com/dhtmltutors/sticky-hover-issue-solutions.shtml
http://www.javascriptkit.com/dhtmltutors/sticky-hover-issue-solutions.shtml

It is recommended that you provide a :focus style for users who use the
keyboard to tab through links on a page rather than clicking with a mouse.
Applying the same style used for :hover is common, although not required.

To sum things up, the link styles I've shown should look like this in the style
sheet. FIGURE 13-14 shows the results.
a { text-decoration: none; } /* turns underlines off for all links */
a:link { color: maroon; }
a:visited { color: gray; }
a:focus { color: maroon; background-color: #ffdod9; }
athover { color: maroon; background-color: #ffdod9; }

a:active { color: red; background-color: #ffdod9; }

Samples of my work: Samples of my work: Samples of my work:
* Pen and Ink Illustrations * Pen and Ink [Ilustitions e Pen and Ink Illustatris
o Paintings e Paintings Paintings
o Collage * Collage e Collage
a:link a:focus a:active
Links are maroon and not a:hover As the mouse button is
underlined. While the mouse is over the being pressed, the link
link or when the link has turns bright red.

focus, the pink background
color appears.

Changing the colors and backgrounds of links with pseudo-class
selectors.

Other Pseudo-Class Selectors

OK...five CSS3 pseudo-classes down, only 40 more to go! Well, I dont know
about you, but that sounds like it would take a while, and we have other
selector types to explore. However, I do want you to know what is possible
today and what is in the works, so I've tucked the CSS3 pseudo-class selec-
tors into the “More CSS Pseudo-Classes” sidebar. In addition, you can find the
complete list of Level 3 and 4 selectors in Appendix C, CSS Selectors, Level 3
and 4 with brief descriptions.

[also highly recommend reading “An Ultimate Guide to CSS Pseudo-
Classes and Pseudo-Elements” by Ricardo Zea of Smashing Magazine (www.
smashingmagazine.com/2016/05/an-ultimate-quide-to-css-pseudo-classes-and-
pseudo-elements/). He’s done the hard work of providing explanations and
examples of all of the CSS3 pseudo-class selectors in one big roundup.

Pseudo-Class Selectors

Samples of my work:

¢ Pen and Ink Illustrations
e Paintings
e Collage

a:visited

After that link has been
visited, the link is gray.

13. Colors and Backgrounds 319

http://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/
http://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/
http://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/

Pseudo-Element Selectors

More CSS3 Pseudo-Classes

The W3C has been creating all sorts of
interesting ways to select content for
styling based on states the browser keeps
track of on the fly.

CSS3introduced a whole slew of pseudo-
classes, most of which are supported

by browsers today. Of course, Internet
Explorer 8 and earlier lack support, but
you could use the Selectivizr polyfill
(selectivizr.com) to emulate support in

An excellent resource for learning more
about these CSS Level 3 and 4 selectors,
including browser support information, is
(SS4-selectors.com by Nelly Brekardin.

the rare event you need to support IE 6-8.

Structural pseudo-classes

These allow selection based on where
the element is in the structure of the
document (the document tree):

:root

rempty
:first-child
:last-child
:only-child
:first-of-type
:last-of-type
:only-of-type
:nth-child()
:nth-last-child()
:nth-of-type()
:nth-last-of-type()

Input pseudo-classes

These selectors apply to states that are
typical for form inputs:

:enabled
:disabled
:checked

Location pseudo-classes (in addition to
:link and :visited)

:target (fragment identifier)

Linguistic pseudo-class
:lang()

Logical pseudo-class
:not()

NOTE

There are a few properties in this list
that you haven’t seen yet. We'll cover
the box-related properties (margin, pad-
ding, border) in Chapter 14, Thinking
Inside the Box. The float property is
introduced in Chapter 15, Floating and
Positioning.

PSEUDO-ELEMENT SELECTORS

Pseudo-classes aren’t the only kind of pseudo-selectors. There are also four

pseudo-elements that act as though they are inserting fictional elements into
the document structure for styling. In CSS3, pseudo-elements are indicated
by a double colon (::) symbol to differentiate them from pseudo-classes.

However, all browsers support the single-colon syntax (:) as they were
defined in CSS2, so many developers stick with that to ensure backward
compatibility with older browsers.

First Letter and Line

The following pseudo-elements are used to select the first line or the first
letter of text in an element as displayed in the browser.

t:first-line

This selector applies a style rule to the first line of the specified element.
The only properties you can apply, however, are as follows:

color

font properties
background properties
word-spacing
letter-spacing

text-decoration
vertical-align
text-transform
line-height

320 PartlIl. CSS for Presentation

c:first-letter

This applies a style rule to the first letter of the specified element. The
properties you can apply are limited to the following;:

color vertical-align (if float is none)
font properties padding properties

background properties margin properties
letter-spacing border properties

word-spacing line-height

text-decoration float

text-transform

FIGURE 13-15 shows examples of the ::first-line and ::first-letter
pseudo-element selectors.

p::first-line { letter-spacing: 9px; }

p::first-letter { font-size: 300%; color: orange; }

1:first-line In some of the best cabbage-
growing sections of the country, until within a comparatively few
years it was the very general belief that cabbage would not do well
on upland. Accordingly the cabbage patch would be found on the
lowest tillage land of the farm.

::first-letter n some of the best cabbage-growing sections of the country, until

within a comparatively few years it was the very general belief that
cabbage would not do well on upland. Accordingly the cabbage
patch would be found on the lowest tillage land of the farm.

Examples of : :first-1ine and : :first-letter pseudo-element
selectors.

Generated Content with ::before and ::after

You've seen how browsers add bullets and numbers to lists automatically,
even though they are not actually in the HTML source. That is an example of
generated content, content that browsers insert on the fly. It is possible to tell
browsers to generate content before or after any element you like by using the
::before and ::after pseudo-elements (see Note).

Generated content could be used to add icons before list items, to display
URLs next to links when web documents get printed out, to add language-
appropriate quotation marks around a quote, and much more. Here’s a simple
example that inserts an image by using the url() function before the para-
graph and “Thank you.” at the end of the paragraph. Compare the markup
to what you see rendered in the browser (FIGURE 13-16).

Pseudo-Element Selectors

NOTE

Although double colons are specified in
CSS3, you can use single colons for back-
ward compatibility. Browsers are also
required to support single colons going
forward.

13. Colors and Backgrounds 321

Pseudo-Element Selectors

THE STYLES:

p.warning: :before {
content: url(exclamation.png);
margin-right: 6px;

p.warning::after {
content: " Thank you.";
color: red;

}

THE MARKUP

<p class="warning">We are required to warn you that undercooked food is
a health risk.</p>

0 We are required to warn you that undercooked food is a health risk. Thank you.

Generated content added with the : :before and : :after pseudo-
selectors.

There are a few things of note in this example:

* The pseudo-element selector goes immediately after the target element
without any space.

* The pseudo-element rule both inserts the content and specifies how it
should be styled in one declaration block.

* The content property, which provides the content you want inserted, is
required. The selector wont do anything without it.

* If you want spaces between the generated content and the content from
the source document, you must include the character spaces inside the
value’s quotation marks or apply a margin.

If you want to insert an image, such as an icon or other mark, specify the URL
without quotations marks:

li:before { content: url(images/star.png) }

When using generated content, keep in mind that whatever you insert does
not become part of the document’s DOM. It exists in the browser’s display
only and is not accessible to assistive devices like screen readers. It is best to
use generated content for decorations and other “extras” that are not critical
to your meaning and message.

“Learning to Use the :before and :after Pseudo-Elements in CSS” by Louis Lazaris
(www.smashingmagazine.com/2011/07/learning-to-use-the-before-and-after-
pseudo-elements-in-css/).

322 PartlIl. CSS for Presentation

ATTRIBUTE SELECTORS

We're finally in the home stretch with selectors. Attribute selectors target ele-
ments based on attribute names or values, which provides a lot of flexibility
for selecting elements without needing to add a lot of class or id markup.
The CSS3 attribute selectors are listed here:

element[attribute]

The simple attribute selector targets elements with a particular attribute
regardless of its value. The following example selects any image that has
a title attribute.

img[title] {border: 3px solid;}

element[attribute="exact value"]

The exact attribute value selector selects elements with a specific value for
the attribute. This selector matches images with exactly the title value
“first grade”

img[title="first grade"] {border: 3px solid;}

element[attribute~="value"]

The partial attribute value selector (indicated with a tilde, ~) allows you
to specify one part of an attribute value. The following example looks for
the word “grade” in the title, so images with the title value “first grade”
and “second grade” would be selected.

img[title~="grade"] {border: 3px solid;}
element[attribute|="value"]

The hyphen-separated attribute value selector (indicated with a bar, |)
targets hyphen-separated values. This selector matches any link that
points to a document written in a variation on the English language (en),
whether the attribute value is en-us (American English), en-in (Indian
English), en-au-tas (Australian English), and so on.

[hreflang|="en"] {border: 3px solid;}

element[attribute’="first part of the value"]
The beginning substring attribute value selector (indicated with a carat, *)
matches elements whose specified attribute values start in the string of
characters in the selector. This example applies the style only to images
that are found in the /images/icons directory.

img[srcr="/images/icons"] {border: 3px solid;}

element[attribute$="1ast part of the value"]
The ending substring attribute value selector (indicated with a dollar
sign, $) matches elements whose specified attribute values end in the
string of characters in the selector. In this example, you can apply a style
to just the a elements that link to PDF files.

alhref$=".pdf"] {border-bottom: 3px solid;}

Attribute Selectors

Class and ID selectors are just special
types of attribute selectors.

13. Colors and Backgrounds 323

Background Images

NOTE

The proper term for that “URL holder”
is a functional notation. It is the same
syntax used to list decimal and percent-
age RGB values.

element[attribute*="any part of the value"]

The arbitrary substring attribute value selector (indicated with an aster-
isk, *) looks for the provided text string in any part of the attribute value
specified. This rule selects any image that contains the word “February”
somewhere in its title.

img[title*="February"] {border: 3px solid;}

OK, were done with selectors! You've been a real trouper. I think it’s definitely
time to try out foreground and background colors as well as a few of these
new selector types in EXERCISE 13-1 before moving on to background images.

BACKGROUND IMAGES

We've seen how to add images to the content of the document by using the
img element, but most decorative images are added to pages and elements as
backgrounds with CSS. After all, decorations such as tiling background pat-
terns are firmly part of presentation, not structure. We've come a long way
from the days when sites were giant graphics cut up and held together with

tables (shudder).

In this section, we'll look at the collection of properties used to place and
push around background images, starting with the basic background-image

property.

Adding a Background Image

The background-image property adds a background image to any element. Its
primary job is to provide the location of the image file.

Values: url(location of image) | none
Default: none

Appliesto: all elements

Inherits: no

The value of background-image is a sort of URL holder that contains the loca-
tion of the image (see Note).

The URL is relative to wherever the CSS rule is at the time. If the rule is in
an embedded style sheet (a style element in the HTML document), then the
pathname in the URL should be relative to the location of the HTML file.
If the CSS rule is in an external style sheet, then the pathname to the image
should be relative to the location of the .css file.

As an alternative, providing site root relative URLs for images ensures that the
background image can be found regardless of the location of the style rules.

324 Part lIl. CSS for Presentation

Background Images

EXERCISE 13-1. Adding color to a document

In this exercise, we’ll start with a simple black-and-white menu and
give it some personality with foreground and background colors
(FIGURE 13-17). You should have enough experience writing style
rules by this point that I’'m not going to hold your hand as much as
I'have in previous exercises. This time, you write the rules. You can
check your work against the finished style sheet provided with the
materials for this chapter.

Open the file summer-menu.html (get it at learningwebdesign.

com/5e/materials) in a text editor. You will find that there

is already an embedded style sheet that provides basic text

formatting. You'll just need to work on the colors. Feel free to save

the document at any step along the way and view your progress in

a browser.

1. Make the h1 heading purple (R:153, G:51, B:153, or #993399)
by adding a new declaration to the existing h1 rule. Note
that because this value has all double digits, you can use the
condensed version (#939).

2. Make the h2 headings light brown (R:204, G:102, B:0, #cc6600 or
#c60).

3. Make the background of the entire page a light green (R:210,
G:220, B:157, or #d2dc9d). Now might be a nice time to save,
have a look in a browser, and troubleshoot if the background
and headings do not appear in color.

purple muted purple bright purple
R153 G:51,B:153 R:147, G:115, B:147 R:199, G:0, B:242
#993399 or #939 #937393 #C700F2
vibrant purple light green light brown
R:255, G:0, B:255 R:210, G:220, B:157 R:204, G:102, B:0
#FFOOFF #D2DC9D #CC6600 or #C60

4. Make the background of the header white with 50%
transparency (R:255, G:255, B:255, .5) so a hint of the background
color shows through.

5. I've already added a rule that turns underlines off under links
(text-decoration:none), so we'll be relying on color to make
the links pop. Write a rule that makes links the same purple as
the h1 (#939).

6. Make visited links a muted purple (#937393).

7. When the mouse is placed over links, make the text a brighter
purple (#c700f2) and add a white background color (#fff).
This will look a little like the links are lighting up when the
mouse is pointing at it. Use these same style rules for when the
links are in focus.

8. As the mouse is being clicked (or tapped on a touch device),
add a white background color and make the text turn a vibrant
purple (#ffooff). Make sure that all of your link pseudo-classes
are in the correct order.

When you are done, your page should look like FIGURE 13-17.
We'll be adding background images to this page later, so if you'd
like to continue experimenting with different colors on different
elements, make a copy of this document and give it a new name.
Remember that the Google color picker is an easy destination for
colors and their RGB equivalents.

WARNING

Don't forget the # character before hex values. The rule won’t work
without it.

Black Goose Bistro » Summer Menu

‘Baker's Comer, Seekon, Massachuserts
Houns: Moway misovcs THRsowvs 1 .9, Frinay axb SArvmoays 1 to midaight

MAIN COURSES

plantains and fresh mango. Very spicy. $12.95
‘Shrimp sate kebahe with peanut sauce
‘Skewers of shrianp marinated in lem~=—

The Black Goose Bistro menu page with colors applied.

13. Colors and Backgrounds 325

Background Images

Background Properties

The properties related to the
background are:

background-color
background-image
background-repeat
background-position
background-attachment
background-clip
background-size
background

Tiling Background Images

When working with background

images, keep these guidelines and

tips in mind:

* Use asimple image that won’t
interfere with the legibility of the
text over it.

* Always provide a background-
color value that matches the
primary color of the background
image. If the background image
fails to display, at least the overall
design of the page will be similar.
This is particularly important if
the text color would be illegible
against the browser’s default white
background.

¢ As usual for the web, keep the file
size of background images as small
as possible.

The root directory is indicated by a slash at the beginning of the URL. For
example:

background-image: url(/images/background.jpg);

The downside, as for all site root relative URLs, is that you won’t be able to
test it locally (from your own computer) unless you have it set up as a server.

These examples and FIGURE 13-18 show background images applied behind
a whole page (body) and a single blockquote element with padding and a
border applied.

body {

background-image: url(star.png);
}

blockquote {
background-image: url(dot.png);
padding: 2em;
border: 4px dashed;

7 Tiing Bacugrouna
o aQx L]
Cabbages and Cauliflowers:
How to Grow Them
James J. H. Gregory

THE ORIGIN OF CABBAGE.
Botanists tell us that all of the Cabbage familv. which includes not onlv everv varietv of cabbage. Red.
White, and [Thing background x
cabbage of : (o an -
growing wi
confined to
Thus throuy
vegetables |
individualit
of other spc
feallmg1 ka | this reason I believe that the office of the head is similar to and as necessary as that of the

ears, there
z’wu f;ct i leaves which unwrap from around the blossom buds of our fruit trees. It is true that the
England by paralle] cannot be fully maintained, as the leaves which make up the cabbage head do not to
brought. Tk an equal degree unfold (particularly is this true of hard heads); yet they exhibit a vitality of
el thei hich is seen in the deey lor th 1 in, and th
farthea @Rl cir own, which is scen in the deeper green color the outer leaves soon attain, and the

change from tenderness to toughness in their structure,
star.png dot.png
150 x 150 pixels 50 x 50 pixels
Tiling background images added with the background-image
property.

326 Part lIl. CSS for Presentation

Here you can see the default behavior of background-image. The image starts
in the top-left corner and tiles horizontally and vertically until the entire ele-
ment is filled (although you’ll learn how to change that in a moment). Like
background colors, tiling background images fill the area behind the content
area, fill the extra padding space around the content, and extend to the outer
edge of the border (if there is one). You can change the background painting
area with the background-clip property.

If you provide both a background-color and a background-image to an ele-
ment, the image is placed on top of the color. In fact, it is recommended that
you do provide a backup color that is similar in hue, in the event that the
image fails to download.

Now you can try your hand at adding a tiling background image to a page
in EXERCISE 13-2.

EXERCISE 13-2. Adding a tiling background image

Background Images

In this exercise, we're going to add a simple tiling background
image to the menu. The images provided for this exercise should
be in the images directory.

Add a declaration to the body style rule that makes the image
bullseye.png tile in the background of the page. Be sure to include
the pathname relative to the style sheet (in this case, the current
HTML document).

background-image: url(images/bullseye.png);

Easy, isn’t it? When you save and view the page in the browser, it
should look like FIGURE 13-19.

Black Goose Bistro » Summer Menu

‘Baker's Corner, Seekonk, Massachusetts

Hours: MonpaY THROUGH THURSDAY: 11 o 9, FRIDAY AND SaTURDAY; 11 to midnight

Appetizers
Main Courses
Traditional Toasts

Dessert Selection

APPETIZERS

This season, we explore the spicy flavors of the southwest in our appetizer collection.

Black bean purses

Spiey black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until golden. $3.95

Southwestern napoleons with lump erab — new item!

Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas. $7.95

MAIN COURSES

| want to point out that bullseye.png is a slightly transparent PNG
graphic, so it blends into any background color. Try temporarily
changing the background-color for the body element by adding
a second background-color declaration lower in the stack so it
overrides the previous one. Play around with different colors and
notice how the circles blend in. When you are done experimenting,
delete the second declaration so the background is green again
and you're ready to go for upcoming exercises.

Big, bold flavors are the name of the game this summer. Allow us to assist you with finding the perfect wine.

ins — new item!

Jerk roti ie chicken with fried

fresh mango. Very spicy. $12.95

don isseric, flavored with spicy and fragrant jerk sauce and served with fried plantains and

The menu with a simple tiling background image.

13. Colors and Backgrounds 327

Background Images

BROWSER SUPPORT NOTE

Internet Explorer 8 and earlier do not
support the space and round keywords
for background-repeat.

Background Repeating

As we saw in FIGURE 13-18, images tile left and right, up and down, when
left to their own devices. You can change this behavior with the background-
repeat property.

Values: repeat | no-repeat | repeat-x | repeat-y | space | round
Default: repeat
Appliesto: all elements

Inherits: no

If you want a background image to appear just once, use the no-repeat key-
word value:
body {

background-image: url(star.png);
background-repeat: no-repeat;

}

You can also restrict the image to tiling only horizontally (repeat-x) or verti-
cally (repeat-y), as shown in these examples:
body {

background-image: url(star.png);
background-repeat: repeat-x;

}

body {
background-image: url(star.png);
background-repeat: repeat-y;

}

FIGURE 13-20 shows examples of each of these keyword values. Notice that
in all the examples, the tiling begins in the top-left corner of the element (or
browser window when an image is applied to the body element). In the next
section, I'll show you how to change that.

The remaining keyword values, space and round, attempt to fill the available
background painting area an even number of times.

When background-repeat is set to space, the browser calculates how many
background images can fit across the width and height of the background
area, then adds equal amounts of space between each image. The result is
even rows and columns and no clipped images (FIGURE 13-21).

The round keyword makes the browser squish the background image
horizontally and vertically (not necessarily proportionally) to fit in the back-
ground area an even number of times (FIGURE 13-21).

Let’s try out some background repeating patterns in EXERCISE 13-3.

328 Part lIl. CSS for Presentation

Background Images

Cabbages and Cauliflowers:

no-repeat How to Grow Them
James J. H. Gregory
THE NDIOIN OF CARRACT
pr— f
Botar) ax a
cabba
sprou. [
green Cabbages and Cauliflowers:
and o
repeat-x andg How to Grow Them
Thus James J. H. Gregory
garde
sport
THE ORIGIN OF CABBAGE.
Botanists tell us that all of the Cabbage family, which includes not only every variety of
A eT— x — - bin
= = sland,
hore,
Cabbages and Cauliflowers:
- t
re peat y How to Grow Them lese
nd, at
James J. H. Gregory |

THE ORIGIN OF CABBAGE.

Botanists tell us that all of the Cabbage family, which includes not only every variety of
cabbage, Red, White, and Savoy, but all the cauliflower, broccoli, kale, and brussels
sprouts, had their origin in the wild cabbage of Europe (Brassica oleracea), a plant with
green, wavy leaves, much resembling charlock, found growing wild at Dover in England,
and other parts of Europe. This plant, says McIntosh, is mostly confined to the sea-shore,
and grows only on chalky or calcareous soils.

Thus through the wisdom of the Great Father of us all, who occasionally in his great
garden allows vegetables to sport into a higher form of life, and grants 1o some of these
sports sufficient streny ividuality to enable them to perpetuate

Turning off automatic tiling with no-repeat (top), applying
horizontal-axis tiling with repeat-x (middle), and applying vertical-axis tiling with
repeat-y (bottom).

Cabbages and Cauliflowers:

Space How to Grow Them
James J. H. Gregory

THE ORIGIN OF CABBAGE.

e s Cabbages and Cauliflowers:
round ——— e —

garde How to Grow Them

these

thems James J. H. Gregory

the he

Kale,

isolat THE ORIGIN OF CABEAGE.

Botanists tell us that all of the Cabbage family, which includes not only every.
variety of cabbage, Red, White, and Savoy, but all the cauliflower, broccoli, kale,
and brussels sprouts, had their origin in the wild cabbage of Europe (Brassica
oleracea), a plant with green, wavy leaves, much resembling charlock, found
growing wild at Dover in England, and other parts of Europe. This plant, says

Examples of space and round keywords for background-repeat.
The “space” example would be less clunky if the background color matched the image,
but I've left it white to better demonstrate how the space value works.

13. Colors and Backgrounds 329

Background Images

EXERCISE 13-3. Controlling tile direction

Now let’s try some slightly more sophisticated tiling on the Summer Menu page. This time
we'll add a tiling background just along the top edge of the header element.

1. In the header rule, add the image purpledot.png and set it to repeat horizontally only:

header {

}

margin-top: 0;

padding: 3em lem 2em 1lem;

text-align: center;

background-color: rgba(255,255,255,.5);
background-image: url(images/purpledot.png);
background-repeat: repeat-x;

2. Save the file and look at it in the browser. It should look something like FIGURE 13-22.
I recommend resizing your browser window wider and narrower and paying attention to
the position of the background pattern. See how it's always anchored on the left? You're
going to learn how to adjust position next. Try changing the style rule to make the dot
repeat vertically only; then make it not repeat at all (set it back to repeat-x and save
when you’re done).

Black Goose Bistro » Summer Menu

Baker's Corner, Seekonk, Massachusetts

Hours: Moxpay TirouGn THURSDAY; 11 10 8, Frinay anp Saturoay; 11 to midnight

Appetizers
Main Courses
Traditional Toasts

Dessert Selection

APPETIZERS
This season, we explare the spicy flavors of the southwest in our appetizer collection.
Black bean purses
Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until golden. $3.05

Southwestern napoleons with lump crab — rew item!
Layers of light lamp crab meat, bean and corn salsa, and our handmade flour tortillas. $7:.95

Adding a horizontal tiling image to the header.

3. Finally, try out the space and round repeat values on the body background image and
see if you like the effect. Note that the tiles are evenly spaced within the body of the
document, not just the viewport, so you may see some cut-off circles at the bottom
edge of your browser. Delete the background-repeat declaration so it goes back to the
default repeat for upcoming exercises:

body {

}

Eackground-repeat : space;

330 PartlIl. CSS for Presentation

Background Position

The background-position property specifies the position of the origin image
in the background. You can think of the origin image as the first image that
is placed in the background from which tiling images extend. Here is the
property and its various values.

Values: length measurement | percentage | left | center | right | top | bottom
Default: 0% 0% (same as left top)
Appliesto: all elements

Inherits: no

To position the origin image, provide horizontal and vertical values that
describe where to place it. There are a variety of ways to do it.

Keyword positioning
The keyword values (left, right, top, bottom, and center) position the
origin image relative to the outer edges of the element’s padding. For

example, left positions the image all the way to the left edge of the back-
ground area. The default origin position corresponds to left top.

Keywords are typically used in pairs, as in these examples:

background-position: left bottom;

background-position: right center;
The keywords may appear in any order. If you provide only one keyword,
the missing keyword is assumed to be center. Thus, background-position:
right has the same effect as background-position: right center.

Length measurements

Specifying position using length measurements such as pixels or ems
indicates an amount of offset from the top-left corner of the element
to the top-left corner of the background origin image. When you are
providing length values, the horizontal measurement always goes first.
Specifying negative values is allowed and causes the image to hang out-
side the visible background area.

This example positions the top-left corner of the image 200 pixels from
the left edge and 50 pixels down from the top edge of the element (or
more specifically, the padding edge by default):

background-position: 200px 50px;

Percentages

Percentage values are provided in horizontal/vertical pairs, with 0% 0%
corresponding to the top-left corner and 100% 100% corresponding to the
bottom-right corner. As with length values, the horizontal measurement
always goes first.

Background Images

13. Colors and Backgrounds 331

Background Images

Background Edge Offsets

The CSS3 specification also includes
a four-part syntax for background-
position that allows you to specify
an offset (in length or percentage
from a particular edge). This is the
syntax:

background-position:
edge-keyword offset
edge-keyword offset;
In this example, an origin image is
positioned 50 pixels from the right
edge and 50 pixels from the bottom
of the element’s positioning area:

background-position:
right 50px bottom 50px;
This four-part syntax is not supported
by IE 8 and earlier, Safari and i0S
Safari 6 and earlier, and Android 4.3
and earlier.

It is important to note that the percentage value applies to both the canvas
area and the image itself. A horizontal value of 25% positions the point
25% from the left edge of the image at a point that is 25% from the left
edge of the background positioning area. A vertical value of 100% posi-
tions the bottom edge of the image at the bottom edge of the positioning
area.

background-position: 25% 100%;
As with keywords, if you provide only one percentage, the other is

assumed to be 50% (centered).

FIGURE 13-23 shows the results of each of the aforementioned background-
position examples with the background-repeat set to no-repeat for clarity. It is

For this reason I believe that the office of the head is similar to and as
necessary as that of the leaves which unwrap from around the blossom buds
of our fruit trees. It is true that the paralle] cannot be fully maintained, as the
leaves which make up the cabbage head do ot to an cqual degree unfold bac kgrou nd- pos ition: left bottom ;
(particularly is this true of hard heads): yet they exhibit a vitality of their own,
which is seen in the deeper green color the outer leaves soon attain, and the
change from tenderness to toughness in their structure.

For this reason I believe that the office of the head is similar to and as

necessary as that of the leaves which unwrap from around the blossom buds bac kground -pos ition: rlght center;
of our fruit trees. It is true that the parallel cannot be fully maintained, as the
leaves which make up the cabbage head do not to an cqual degree unfold or

(particularly is this true of hard heads): yet they exhibit a vitality of their own,
which is seen in the deeper green color the outer leaves soon attain, and the

background-position: right;

change from tendemess to toughness in their structure.

A 300pX --eeeennnees »
x
o
o
[l For this reason I believe that the office of the head is similar to and as
necessary as that of the leaves which unwrap from around the blossom buds

of our fruit trees. It is true that the parallel cannot be fully maintained, as the
leaves which make up the cabbage head do ot to an equal degree unfold
(particularly is this true of hard heads): yet they exhibit a vitality of their own,
which is seen in the deeper green color the outer leaves soon attain, and the

background-position: 300px 50px;

change from tendemness to toughness in their structure.

For this reason I pelieve that the office of the head is similar to and as
necessary as that/of the leaves which unwrap from around the blossom buds
of our fruit trees,It is true that the paralle] cannot be fully maintained, as the
leaves which make up the cabbage head do ot to an equal degree unfold bac kground -pos ition: 25% 100%;
(particularly is this true of hard heads); yet they exhibit a vitality of their own,
which is seen in the deeper green color the outer leaves soon attain, and the
change from to toughness in their structure.

25%

Positioning a non-repeating background image. If these background
images were allowed to repeat, they would extend left and right and/or up and down
from the initial positions.

332 Partlll. CSS for Presentation

Background Images

possible to position the origin image and let it tile from there, in both direc-
tions or just horizontally or vertically When the image tiles, the position of
the initial image might not be obvious, but you can use background-position
to make a tile pattern start at a point other than the left edge of the image.
This might be used to keep a background pattern centered and symmetrical.

Background Position Origin

Notice in FIGURE 13-23 that when the origin image was placed in the corner
of an element, it was placed inside the border (only repeated images extend
under the border to its outer edge). This is the default position, but you can background-origin is not supported
change it with the background-origin property. by Internet Explorer 8 and earlier

BROWSER SUPPORT NOTE

Values: border-box | padding-box | content-box
Default: padding-box
Appliesto: all elements

Inherits: no

This property defines the boundaries of the background positioning area in
the same way background-clip defined the background painting area. You
can set the boundaries to the border-box (so the origin image is placed under
the outer edge of the border, padding-box (outer edge of the padding, just
inside the border), or content-box (the actual content area of the element).
These terms will become more meaningful once you get more familiar with
the box model in the next chapter. In the meantime, FIGURE 13-24 shows the
results of each of the keyword options.

border-box padding-box content-box
'IIIIIIIIIIIIIIIIII rlIIIIIIIIIIIIIIII rllllllllllllll.ll
. . .
3 For this reason I believe that the o For this reason I believe that t . For this reason I believe that 1
& the leaves which unwrap from = the leaves which unwrap fror = theleaves which unwrap fror
: parallel cannot be fully main : parallel cannot be fully ma’ : parallel cannot be fully ma’
: to an equal degree unfold (: to an equal degree unfolc : to an equal degree unfolc
: of their own, which is see : of their own, which is s/ : of their own, which is s
: change from tenderness t - change from tenderness - change from tenderness
. . .
hsssssssnnsnnnnnn hssssssssnnnnnnn. hsssssssnsnnnnnn

Examples of background-origin keywords.

Before we move on to the remaining background properties, check out
EXERCISE 13-4 to get a feel for background positioning.

13. Colors and Backgrounds 333

Background Images

EXERCISE 13-4. Positioning background images

Let’s have some fun with the position of the background image
in the menu. First we're going to make some subtle adjustments
to the background images that are already there, and then we’ll
swap them out for a whole different background and play around
some more. We are still working with the summer-menu.html
document, which should have repeating tile patterns in the body
and header elements.

1. 'm thinking that because the main elements of the menu are
centered, it would be nice if the background patterns stayed
centered, too. Add this declaration to both the body and header
rules; then save and look at it in the browser.

background-position: center top;

You may not notice the difference until you resize the browser
wide and narrow again. Now the pattern is anchored in the
center and reveals more or less on both edges, not just the right
edge as before.

2. For kicks, alter the background-position values so that the
purple dots are along the bottom edge of the header (center
bottom). (That doesn’t look so good; I'm putting mine back to
top.) Then try moving bullseye.png down 200 pixels (center
200px). Notice that the pattern still fills the entire screen—we
moved the origin image down, but the background is still set to
tile in all directions. FIGURE 13-25 shows the result of these
changes.

3. That looks good, but let’s get rid of the background on the
body for now. I want to show you a little trick. During the design
process, | prefer to hide styles in comments instead of deleting
them entirely. That way, | don’t need to remember them or type
them in again; I only have to remove the comment indicators,
and they’re back. When the design is done and it’s time to
publish, I strip unused styles out to keep the file size down.

Black Goose Bistro « Summer Menu

e roiseri
lantains and fresh mango. Very spicy. $12.95
‘Shrimp sate kebabs with peanut sauce

Centered background pattern

Here’s how to hide declarations as CSS comments:
body {

background-color: #d2dc9d;
/* background-image: url(images/bullseye.png);
background-position: center 200px; */

}

4. Now, add the blackgoose.png image (also a semi-transparent
PNG) to the background of the page. Set it to not repeat, and
center it at the top of the page:

background-image: url(images/blackgoose.png);
background-repeat: no-repeat;
background-position: center top;

Take a look in the browser window and watch the background
scroll up with the content when you scroll the page.

5. lwant you to get a feel for the various position keywords and
numeric values. Try each of these out and look at it in the
browser. Be sure to scroll the page and watch what happens.
Note that when you provide a percentage or keyword to
the vertical position, it is based on the height of the entire
document, not just the browser window. You can try your own
variations as well.

background-position: right top;
background-position: right bottom;
background-position: left 50%;
background-position: center 100px;

6. Leave the image positioned at center 100px so you are ready
to go for the next exercise. Your page should look like the one
shown on the right in FIGURE 13-25.

Black Goose Bistro « Summer Menu

‘Baker's Comer, Seckonk, Mossashusetis
Houase SRYNY 11 tomidnight

This season, apper

3795

MAIN COURSES

plantsins and fresh mango. Very spicy. $12.95
Shrimp sate kebabs with peanut sauce

Positioned non-repeating image

The results of positioning the origin image in the tiling background patterns (left) and positioning a single

background logo (right).

334 PartlIl. CSS for Presentation

Background Attachment

In the previous exercise, I asked you to scroll the page and watch what hap-
pens to the background image. As expected, it scrolls along with the docu-
ment and off the top of the browser window, which is its default behavior.
However, you can use the background-attachment property to free the back-
ground from the content and allow it to stay fixed in one position while the
rest of the content scrolls.

Values: scroll | fixed | local
Default: scroll
Appliesto: all elements

Inherits: no

With the background-attachment property, you have the choice of whether the
background image scrolls with the content or stays in a fixed position. When
an image is fixed, it stays in the same position relative to the viewport of the
browser (as opposed to being relative to the element it fills). You'll see what I
mean in a minute (and you can try it yourself in EXERCISE 13-5).

In the following example, a large, non-tiling image is placed in the back-
ground of the whole document (the body element). By default, when the
document scrolls, the image scrolls too, moving up and off the page, as shown
in FIGURE 13-26. However, if you set the value of background-attachment to
fixed, it stays where it is initially placed, and the text scrolls up over it.
body {
background-image: url(images/bigstar.gif);
background-repeat: no-repeat;

background-position: center 300px;
background-attachment: fixed;

}

The local value, which was added in CSS3, is useful when an element has
its own scrolling mechanism. Instead of scrolling with the viewport’s scroller,
local makes the background image fixed to the content of the scrolling ele-
ment. This keyword is not supported in IE8 and earlier and may also be
problematic on mobile browsers.

Background Images

Cabbages and Cauliflowers:
‘How to Grow Them

James J. H. Gregory

THE ORIGIN OF CABBAGE.

Botanists tell s that all of the Cabbage family, which ineludes pot only every
variety of cabbage. Red, White, and Savoy, butal the califlower, broceoli, kale,
and brusels sprous, hd theicorgin in the wild cabbage of Europe (Brassica
lant with green, wavy | d
growing wild at Dover in England, and other parts of Eutope. This plani, says
Melntosh, is mostly confined t0 the sea-shore, and grows anly on chalky or
callareous soils.

“Thus through the wisdomof the Great Father of us all, who occasionally in his

e gerdn liows JEEables st ko ighe (e, e s 1

some of these sports sufficient strength of individualiy to enable them

pepetu hemaolfO,und, i, o bleod ek indtviualyi bt ofover

. we have the heading cabbage in ts numerous varieties, the creamy

Culfiower, th feathery ki, he <ol or. Ou g o tounds o i

of seed that had there lant that
frmseel i ey iy

Alarge non-repeating background image
in the body of the document.

o brusels sprous, b e uigl I thyid CABBAGEH Euvope (Brasicn
lercea). lan with grshi iy Jesvesoch m!unhlm@ charicck found
rowing wild at Dover in England, and other pacts of Exope. This plan
Micliash, s mosly conf{ R a-sioeE Mibgrows (o1 on iy o
calearcous soils.

“Thus through the wisdom of the Great Father of us all, who occasionally in his
great garden allows vegetables (o sport into a higher form of life, and grants (o
some of these sports sufficient strength of individuality to enable them (o
perpetuate themselyes, nd, at times, o blend their individuality with that of other
sports, we have the heading cabbage in its numerous varietes, the creamy
cauliflower, the feathery kale, the curled savay, On my own grounds from a strain
of e tha N b grown e for e, e ecenly came aplnt s
about two foct n height,
ith sl Bead s sach oo The calevaed ctbbag waa et ntoduced (i
England by the Romans, and from there nearly all the kinds cultivated in this
country were originally brought. Those which we consider as peculiarly American
variciics, made 50 by

imported sorts. The characteristics of these varieties will be given further on

'WHAT A CABBAGE IS.

1f we cut vertically through the middle of the head, we shall find it made up of
successive layers of leaves, which grow smaller and smaller, almost ad infnitum
Now, if we take a fruit bud from an apple-tree and make a similar scction of it, we.
shall find the same strueture. 1f we observe the development of the (wo, us spring
audvances, we shall find another similerity (the looser the head the closer will be

background-attachment: scroll;

By default, the background image is
attached to the body element and scrolls
off the page when the content scrolls.

Now,if we take a fruit bud from an applestree and make a similar section of it, we
shal find the same structure. If we observe the development of the two, as spring
advances, we shall find another similarity (the looser the head the closer will be
the resemiblance),—the outer leaves of each will unwrap and unfold, and a flower
stem will push out from ach. Here we see that a cabbage is a bud, a seed bud (as.
all fruit buds. seed et in
CE e Playing but u secondary par).the office of the leaves
eing to cover, protect, and afterwards nouish the young seed shoot, The outer
omvtagi e e pead e o SO R i i
surcound the growing fruit bud, nd that office coses with the first yea, as docs
that of the leaves surounding fruit buds, when cach dic-and drop off. In my
Tocality the more orless clearly the analog;

the heads of cabbage and the buds of trces, for when they speak of small heads
they frequently call them *buds.” That the elose wrapped leaves which make the
cabbage head and surround the seed germ, situaied justin the middle of the head
at he termination of the SWUATP, are mecessary for its protection and nutrition when
young, is proved, I think, by the fact that those eabbages. the heads. of which are
much decayed, when set Out for seed, no matter how sound the seed germ may be
at the ead of the stump, never make o large o healthy a sced shoot s those do
the heads of e, after push they die.

Fo this reason I believe that the office of the head is simillr to and as necessary as
thatof the lcaves which unwrap from around the blossom buds of our fruit trecs. It
s true that the parallel canno be fully maintained, as the leaves which make up
the cabbage head do not to an cqual degree unfold (particularly is this truc of hard
beads): yet they exhibita vitality of their own, which is seen in the desper green
color the outer leaves soon aiain, and the change from tenderness (o toughness in

background-attachment: fixed;

When background-attachment is set to
fixed, the image stays in its position
relative to the browser viewing area and
does not scroll with the content.

Preventing the

background image from scrolling with
the background-attachment property.

13. Colors and Backgrounds 335

Background Images

EXERCISE 13-5.
Fixed position

When we last left the bistro menu, we
had applied a large, non-repeating logo
image to the background of the page.
We'll leave it just like that, but we'll use
the background-attachment property
to keep it in the same place even when
the page scrolls:

body {
background-image: url(images/
blackgoose.png);
background-repeat: no-repeat;
background-position: center
100px;
background-attachment: fixed;

}

Save the document, open it in

the browser, and try scrolling. The
background image stays put in the
viewing area of the browser. Cool, huh?

For extra credit, see what happens when
you fix the attachment of the dot pattern
in the header. (Spoiler: it stays in the
same place, but only within the header
itself. When the header slides out of
view, so does its background.)

Background Size

OK, we have just one more background image property to cover before we
wrap it all up with the background shorthand property. So far, the background
images we've seen are displayed at the actual size of the image itself. You can
change the size of the image by using the background-size property.

Values: length | percentage | auto | cover | contain
Default: auto

Appliesto: all elements

Inherits: no

There are several ways to specify the size of the background image. Perhaps
the most straightforward is to specify the dimensions in length units such as
pixels or ems. As usual, when two values are provided, the first one is used as
the horizontal measurement. If you provide just one value, it is used as the
horizontal measurement, and the vertical value is set to auto.

This example resizes the target.png background image, which has an intrinsic
size of 300 pixels by 300 pixels (FIGURE 13-27):
header {

background-image: url(images/target.png);
background-size: 600px 150px;

}

Percentage values are calculated based on the background positioning area,
which by default runs to the inside edge of the border, but may have been
altered with background-origin—something to keep in mind. So a horizontal
value of 50% does not make the image half its width; rather, it sizes it to 50%
of the width of the positioning area (FIGURE 13-27). Again, the horizontal
value goes first. It is OK to mix percentage and length values, as shown in
this example:
header {
background-image: url(images/target.png);
background-size: 50% 10em;

}

The auto keyword resizes the image in whatever direction is necessary to
maintain its proportions. Bitmapped images such as GIF, JPEG, and PNG
have intrinsic proportions, so they will always stay proportional when one
sizing value is set to auto. Some images, such as SVG and CSS gradients, don’t
have intrinsic proportions. In that case, auto sets the width or height to 100%
of the width or height of the background positioning area.

The cover and contain keywords are interesting additions in CSS3. When
you set the background size to cover, the browser resizes a background image
large enough to reach all the sides of the background positioning area. There
will be only one image because it fills the whole element, and it is likely that

336 Part lIl. CSS for Presentation

Background Images

target.png
300 x 300 pixels

WARNING

When sizing a bitmapped image such as
a GIF or PNG larger, you run the risk that
it will end up blurry and pixelated. Use
background sizing with care.

background-size: 600px 300px; background-size: 50% 10em;

FIGURE 13-27. Resizing a background image with specific length units and
percentages.

portions of the image will fall outside the positioning area if the proportions
of the image and the positioning area do not match (FIGURE 13-28).

By contrast, contain sizes the image just large enough to fill either the width
or the height of the positioning area (depending on the proportions of the
image). The whole image will be visible and “contained” within the back-
ground area (FIGURE 13-28). If there is leftover space, the background image
repeats unless background-repeat is set to no-repeat.

divitA {

background-image: url(target.png);
background-size: cover; }

divitB {
background-image: url(target.png);
background-size: contain; }

e same strocture. If we observe the
ity (the looser the head the eloser will
out from cach

be

background-size: cover; background-size: contain;

The entire background area of the element The image is sized proportionally so it fits
is covered, and the image maintains its entirely in the element. There may be room
proportions even if it is clipped. left over for tiling (as shown).

FIGURE 13-28. Examples of the cover and contain background size keywords.

13. Colors and Backgrounds 337

The Shorthand background Property

Watch Out for Overrides

The background property is efficient,
but use it carefully. We've addressed
this before, but it bears repeating.
Because background is a shorthand
property, when you omit a value, that
property will be reset to its default. Be
careful that you do not accidentally
override style rules earlier in the style
sheet with a later shorthand rule that
reverts your settings to their defaults.

In this example, the background
image dots.gif will not be applied to
h3 elements because by omitting the
value for background-image, you
essentially set that value to none:

hi, h2, h3 {

background: red url(dots.gif)
repeat-x;

}

h3 {

background: green;

To override particular properties, use
the specific background property
you intend to change. For example,
if the intent in the preceding
example were to change just the
background color of h3 elements,
the background-color property
would be the correct choice.

THE SHORTHAND BACKGROUND
PROPERTY

You can use the handy background property to specify all of your background
styles in one declaration.

Values: background-color background-image background-repeat
background-attachment background-position background-clip
background-origin background-size

Default: see individual properties

Appliesto: all elements

Inherits: no

The value of the background property is a list of values that would be provid-
ed for the individual background properties previously listed. For example,
this one background rule

body { background: white url(star.png) no-repeat right top fixed; }

replaces this rule with five separate declarations:

body {
background-color: white;
background-image: url(star.png);
background-repeat: no-repeat;
background-position: right top;
background-attachment: fixed;

}

All of the property values for background are optional and may appear in any
order. The only restriction is that when you are providing the coordinates for
the background-position property, the horizontal value must appear first,
immediately followed by the vertical value. As with any shorthand property,
be aware that if any value is omitted, it will be reset to its default value. See
the “Watch Out for Overrides” sidebar.

In EXERCISE 13-6, you can convert your long-winded background properties
to a single declaration with background.

EXERCISE 13-6. Convert to shorthand property

This one is easy. Replace all of the background-related declarations
in the body of the bistro menu with a single background property
declaration:

body {
font-family: Georgia, serif;
font-size: 100%;

line-height: 175%;

margin: 0 15%;

background: #d2dc9d url(images/blackgoose.png)
no-repeat center 100px fixed;

}

Do the same for the header element, and you’re done.

338 Part lIl. CSS for Presentation

Multiple Backgrounds

CSS3 introduced the ability to apply multiple background images to a single
element. To apply multiple values for background-image, put them in a list
separated by commas. Additional background-related property values also go
in comma-separated lists; the first value listed applies to the first image, the
second value to the second, and so on.

Although CSS declarations usually work on a “last one wins” rule, for mul-
tiple background images, whichever is listed last goes on the bottom, and
each image prior in the list layers on top of it. You can think of them like
Photoshop layers in that they get stacked in the order in which they appear in
the list. Put another way, the image defined by the first value will go in front,
and others line up behind it, in the order in which they are listed.
body {
background-image:

background-position:
background-repeat:

.-

Alternatively, you can take advantage of the background shorthand property
to make the rule simpler. Now the background property has three value series,
separated by commas:

body {
background:

, url(image2.png), url(image3.png);
, center center, right bottom;
, ho-repeat, no-repeat;

url(image2.png) center center no-repeat,
url(image3.png) right bottom no-repeat;

}

FIGURE 13-29 shows the result. The big, orange 1 is positioned in the top-
left corner, the 2 is centered vertically and horizontally, and the 3 is in the
bottom-right corner. All three background images share the background
positioning area of one body element. Try it out for yourself in EXERCISE 13-7.

Cabbage Recipes
From The Whitehouse Cookbook (1887)

CABBAGE WITH CREAM.

o Py A whea t i ot put i the

a0 ry 1 ligh brown, addiag o
FRENCI! WAY OF COOKING CABBAGE.
Chopeokd i

st be rversed wWhen troed ot o be seeved
SOURCROUT.

 Juniper bemics i L
acy .

and reglaced by fieb, iguar besoenes el y day Reaew
sourcrout will e eady fo use. C

properly choned again. These procautions st ot be neglectot

o
1 e e foe a ot By tat i i<

The Shorthand background Property

Three separate background images added to the body element.

BROWSER SUPPORT NOTE

Internet Explorer 8 and earlier do not
support multiple background images
and will entirely ignore any background
declaration with more than one value.
The fix is to choose one background-
image for the element as a fallback for IE
and other non-supporting browsers, and
then specify the multiple background
rules that override it:

body {
/* for non-supporting browsers */

background: url(image fallback.
png) top left no-repeat;
/* multiple backgrounds */
background:

url(imagel.png) left top
no-repeat,

url(image2.png) center center
no-repeat,

url(image3.png) right bottom
no-repeat;
/* background color */
background-color: papayawhip;

}

13. Colors and Backgrounds 339

Like a Rainbow (Gradients)

EXERCISE 13-7. Multiple background images

In this exercise, we'll give multiple background images a try (be
sure you aren’t using an old version of IE, or this won’t work).

I'd like the dot pattern in the header to run along the left and

right sides. | also have a little goose silhouette (gooseshadow.png)
that might look cute walking along the bottom of the header. I'm
making this example friendly for non-supporting browsers (IE8 and
earlier) by providing a fallback declaration with just one image and
separating out the background-color declaration so it doesn’t
get overridden. If IE8 is not a concern, you don’t need the fallback.

You can see in the example that we are placing three images in a
single header: dots on the left side, dots on the right, and a goose

Black Goose Bistro Summer Menu

Baker's Corner, Seekonk, Massachusetts

Hours: MONDAY THROUGH THURSDAY: 11 t0 9, FRIDAY AND SATURDAY; 11 to midnight

Desse

APPETIZERS
This season, we explore the spicy flavors of the southiwest in our appetizer collection.

Black bean purses
Spicy black bean and a blend of mexican cheeses wrapped in sheets of phyllo and baked until
golden. $3.05

with lump crab — new item!

at the bottom.
header {

Eackground: url(images/purpledot.png) center top

repeat-x;
background:

Layers of light lump crab meat, bean and corn salsa, and our handmade flour tortillas. $7.95

The bistro menu header with two rows of
dots and a small goose graphic in the header element.

url(images/purpledot.png) left top repeat-y,

url(images/purpledot.png) right top repeat-y,

url(images/gooseshadow.png) 90% bottom no-repeat;
background-color: rgba(255,255,255,.5);

}

FIGURE 13-30 shows the final result. Meh, | liked it better before,

but you get the idea.

LIKE A RAINBOW (GRADIENTS)

A gradient is a transition from one color to another, sometimes through mul-
tiple colors. In the past, the only way to put a gradient on a web page was to
create one in an image-editing program and add the resulting image with CSS.

Now we can specify color gradients by using CSS notation alone, leaving the
task of rendering color blends to the browser. Although they are specified
with code, gradients are images. They just happen to be generated on the fly.
A gradient image has no intrinsic size or proportions; the size matches the
element it gets applied to. Gradients can be applied anywhere an image may
be applied: background-image, border-image, and list-style-image. We'll
stick with background-image examples in this chapter.

There are two types of gradients:

* Linear gradients change colors along a line, from one edge of the element
to the other.

* Radial gradients start at a point and spread outward in a circular or
elliptical shape.

340 PartlIl. CSS for Presentation

Linear Gradients

The linear-gradient() notation provides the angle of the gradient line
and one or more points along that line where the pure color is positioned
(color stops). You can use color names or any of the numerical color values
discussed earlier in the chapter, including transparency. The angle of the gra-
dient line is specified in degrees (ndeg) or with keywords. With degrees, 0deg
points upward, and positive angles go around clockwise so that 90deg points
to the right. Therefore, if you want to go from aqua on the top edge to green
on the bottom edge, set the rotation to 180deg:

background-image: linear-gradient(180deg, aqua, green);

The keywords describe direction in increments of 90° (to top, to right, to
bottom, to left). Our 180deg gradient could also be specified with the to
bottom keyword. The result is shown in FIGURE 13-31 (top):

background-image: linear-gradient(to bottom, aqua, green);

You can use the “to” syntax to point to corners as well. The following gradi-
ent would be drawn from the bottom-left corner to the top-right corner. The
resulting angle of a gradient drawn between corners is determined by the
aspect ratio of the box.

background-image: linear-gradient(to top right, aqua, green);

In the following example, the gradient now goes from left to right (90deg) and
includes a third color, orange, which appears 25% of the way across the gradi-
ent line (FIGURE 13-31, middle). You can see that the placement of the color
stop is indicated after the color value. You can use percentages or any length
measurement. The first and last color stops don't require positions because
they are set to 0% and 100%, respectively, by default.

background-image: linear-gradient(9odeg, yellow, orange 25%, purple);

You certainly aren’t limited to right angles. Specify any degree you like to
make the linear gradient head in that direction. You can also specify as many
colors as you like. If no positions are specified, the colors are spaced evenly
across the length of the gradient line. If you position the last color stop short
of the end of the gradient line (such as the blue at 50% in this example), the
last color continues to the end of the gradient line (FIGURE 13-31, bottom):

background-image: linear-gradient(54deg, red, orange, yellow, green,
blue 50%);

Gradients offer both advantages and disadvantages when it comes to performance.
On the plus side, they do not require an extra call to the server and require fewer
bytes to download than images. On the other hand, all that rendering on the fly
requires time and processing power that can hurt performance. Radial gradients are
the worst culprits. They can be particularly problematic on mobile devices, where
processing power may be limited. Consider serving a separate style sheet without
gradients to mobile devices.

Like a Rainbow (Gradients)

13. Colors and Backgrounds 341

Like a Rainbow (Gradients)

FIGURE 13-322. A3-D button made
with only CSS.

linear-gradient(180deg, aqua, green);

or

linear-gradient(to bottom, aqua, green);

linear-gradient(90deg, yellow, orange 25%, purple);

yellow orange purple
(0%) (25%) (100%)

linear-gradient(54deg, red, orange, yellow, green, blue 50%);

blue begins 50%
along gradient line

FIGURE 13-31. Examples of linear gradients.

These examples are pretty garish, but if you choose your colors and stops
right, gradients are a nice way to give elements subtle shading and a 3-D
appearance. The button in FIGURE 13-32 uses a background gradient to
achieve a 3-D look without graphics.

a.button-like {

background: linear-gradient(to bottom, #e2e2e2 0%, #dbdbdb 50%,
#didid1 51%, #fefefe 100%);

}

That concludes our quick-and-dirty tour of linear gradients. You should
know that I really only scratched the surface of linear gradient behavior and

342 PartllIl. CSS for Presentation

possibilities, so you may want to check out the resources in the “Further
Reading” sidebar. It’s time to move on to radial gradients.

Radial Gradients

Radial gradients, like the name says, radiate out from a point in a circle along
a gradient ray (like a gradient line, but it always points outward from the
center). At minimum, a radial gradient requires two color stops, as shown in
this example:

background-image: radial-gradient(yellow, green);
By default, the gradient fills the available background area, and its center is

positioned in the center of the element (FIGURE 13-33). The result is an ellipse
if the containing element is a rectangle and a circle if the element is square.

FIGURE 13-33. Aminimal radial gradient with default size and position.

That looks pretty spiffy already, but you don't have to settle for the default.
The radial-gradient() notation allows you to specify the shape, size, and
center position of the gradient:

Shape
In most cases, the shape of the radial gradient will result from the shape
of the element or an explicit size you apply to it, but you can also specify
the shape by using the circle or ellipse keywords. When you make a
gradient a circle (without conflicting size specifications), it stays circular
even when it is in a rectangular element (FIGURE 13-34, top).

background-image: radial-gradient(circle, yellow, green);
Size

The size of the radial gradient can be specified in length units or percent-
ages, which apply to the gradient ray, or with keywords. If you supply just
one length, it is used for both width and height, resulting in a circle. When
you provide two lengths, the first one is the horizontal measurement and
the second is vertical (FIGURE 13-34, middle). For ellipses, you can provide
percentage values as well, or mix percentages with length values.

background-image: radial-gradient(200px 80px, aqua, green);

Like a Rainbow (Gradients)

B FURTHER READING

The most in-depth coverage of CSS
gradient syntax that I've read is in Eric
Meyer’s book, Colors, Backgrounds,
and Gradients (O’Reilly). The same
content is available in CSS: The
Definitive Guide, by Eric Meyer and
Estelle Weyl (also from O'Reilly).
Online, | recommend these overviews
and tutorials:

* “CSS Gradients” by Chris Coyier
(css-tricks.com/css3-gradients))

* “Using CSS Gradients” at MDN
Web Docs (developer.mozilla.
org/en-US/docs/Web/CSS/CSS_
Images/Using_CSS_gradients)

* “CSS3 Gradients,” part of the CSS
Mine e-book by Martin Michalek
(www.cssmine.com/ebook/css3-
gradients)

13. Colors and Backgrounds 343

https://css-tricks.com/css3-gradients/

Like a Rainbow (Gradients)

radial-gradient(circle, yellow, green);

radial-gradient(200px 80px, aqua, green);

radial-gradient(farthest-side at right bottom, yellow, orange 50%, purple);

FIGURE 13-34. Examples of sizing and positioning radial gradients.

There are also four keywords—closest-side, closest-corner, farthest-
side, and farthest-corner—that set the length of the gradient ray rela-
tive to points on the containing element.

Position

By default, the center of the gradient is positioned at center center, but
you can change that by using the positioning syntax we covered for the
background-position property. The syntax is the same, but it should be
preceded by the at keyword, as in this example (FIGURE 13-34, bottom).
Notice that in this example, I have included an additional color stop of
orange at the 50% mark.

background-image: radial-gradient(farthest-side at right bottom,
yellow, orange 50%, purple);

344 Part lIl. CSS for Presentation

Repeating Gradients

If youd like your gradient pattern to repeat, use the repeating-linear-gra-
dient() or repeating-radial-gradient() notation. The syntax is the same
as for single gradients, but adding “repeating-” causes the pattern to repeat
the color stops infinitely in both directions. This is commonly used to create
interesting striped patterns. In this simple example, a gradient from white to
silver (light gray) repeats every 30 pixels because the silver color stop is set to
30px (FIGURE 13-35, top):

background: repeating-linear-gradient(to bottom, white, silver 30px);
This example makes a diagonal pattern of orange and white stripes (FIGURE

13-35, bottom). The edges are sharp because the white stripe starts at exactly
the point where the orange one ends (at 12px) with no fading:

background: repeating-linear-gradient(45deg, orange, orange 12px, white
12px, white 24px);

repeating-linear-gradient(to bottom, white, silver 30px);

repeating-linear-gradient(45deg, orange, orange 12px, white 12px, white 24px);

Repeating gradient pattern.

Browser Support and Vendor Prefixes

All of the major browsers started adding support for the standard gradient
syntax between 2012 and 2013 (see Browser Support Note), so they’ve been
reliable for a good number of years. However, if you need to support older
browsers, you can do so using each browser’s proprietary gradient syntax
with a vendor prefix (see the “Vendor Prefixes” sidebar). For Internet Explorer
9 and earlier, you can use its proprietary filter function. Or, go the progres-
sive enhancement route and use a solid color as a fallback.

Like a Rainbow (Gradients)

BROWSER SUPPORT NOTE

Standard gradient syntax is supported in
Internet Explorer 10+, Edge, Firefox 16+,
Chrome 26+, Safari 6.1+, iOS 7.1+, and
Android 4.4+

13. Colors and Backgrounds 345

Like a Rainbow (Gradients)

Vendor Prefixes

Browser makers usually start tinkering with proprietary solutions for cutting-edge
web technologies before the specs are fully settled. For many years, they kept their
experimentation separate from the final implementation by adding a vendor prefix
(or browser prefix) to the property or function name. The prefix indicates that the
implementation is proprietary and still a work in progress. For example, while Safari
was implementing text-wrap shapes, it used its own -webkit- prefixed version of the
standard shape-outside property:

-webkit-shape-outside: url(cube.png);
TABLE 13-1 lists the prefixes used by the major browsers.

Browser vendor prefixes

Prefix Organization Most popular browsers

-ms- Microsoft Internet Explorer

-moz- Mozilla Foundation Firefox, Camino, SeaMonkey

-o- Opera Software Opera, Opera Mini, Opera Mobile

-webkit- | Originally Apple; Safari, Chrome, Android, Silk,
now open source BlackBerry, WebOS, many others

Vendor prefixes allowed developers to start using cool new CSS features on the
browsers that supported them, which was a plus for moving web design and

the specification forward. On the downside, the whole system turned out to be
complicated and often misused. In the end, the browser makers agreed to put the
prefix system to rest and not release any more proprietary properties.

These days, browsers hide experimental features behind “flags” (options you can turn
on or off) or in separate technology preview releases that developers can access for
testing purposes only. When a feature seems stable, it is made public in the formal
browser release. We'll look at methods for testing for individual CSS features in
Chapter 19, More CSS Techniques.

However, there are a few CSS properties and features that came into vogue during
the prefix era that still require prefixes in order to work in older browsers, should you
choose to support them. Gradient syntax is one of those features.

Prefixing Tools

Writing all those redundant prefixed properties is a big pain, but fortunately, there are
some tools that will generate them for you automatically.

If you use one of the CSS preprocessor syntaxes (like Sass, LESS, or Stylus), you can
take advantage of their prefixing “mixins.” We’ll talk more about preprocessors in
Chapter 19.

If you write your CSS in the standard syntax, you can run it through a postprocessor
like AutoPrefixer when you are done. Autoprefixer parses your styles, then
automatically adds prefixes just for the properties and notations that need them.
The prefixing happens as part of a “build step” via a build tool like Grunt. For a good
overview, see “Autoprefixer: A Postprocessor Dealing with Vendor Prefixes in the Best
Possible Way” at CSS-Tricks (css-tricks.com/autoprefixer/). I'll talk more about build
tools in Chapter 20, Modern Web Development Tools.

346 Part lIl. CSS for Presentation

A gradient for all browsers

The following example shows the yellow-to-green linear gradient written to
address every browser, past and present, with the Internet Explorer filter
equivalent thrown in for good measure. Notice that there are differences in
syntax. Where the CSS3 spec uses the to bottom keyword, most of the others
use top. A very old version used by WebKit browsers used -webkit-gradient
for both linear and radial gradients, but it was quickly replaced with separate
functions. Another difference not evident in this example is that in the old
syntax, 0deg pointed to the right edge, not to the top edge as was standard-
ized in CSS3, and the angles increased counterclockwise.

This is a serious chunk of code for a single gradient, and thankfully, we are
very close to this no longer being necessary:

background: #ffffoo; /* 0ld browsers */

background: -moz-linear-gradient(top, #ffffoo 0%, #00ff00 100%);

/* FF3.6+ */

background: -webkit-gradient(linear, left top, left bottom, color-

stop (0%, #ffff00), color-stop(100%,#00ff00));

/* Chrome,Safarig+ */

background: -webkit-linear-gradient(top, #ffffoo 0%,#00ff00 100%);

/* Chrome10+,Safaris.1+ */

background: -o-linear-gradient(top, #ffffoo 0%,#00ffo0 100%);

/* Opera 11.10+ */

background: -ms-linear-gradient(top, #ffffoo 0%,#00ff00 100%);

/* IE10+ */

background: linear-gradient(to bottom, #ffffoo 0%,#00ff00 100%);

/* W3C Standard */

filter: progid:DXImageTransform.Microsoft.gradient(

startColorstr="#ffff0o0', endColorstr="#00ff00',GradientType=0);

/* 1E6-9 */
In upcoming chapters, whenever a property requires vendor prefixes, I will
be sure to note it. Otherwise, you can assume that the standard CSS is all

you need.

Designing Gradients

That last code example was a doozy! Vendor prefixes aside, just the task of
describing gradients can be daunting. Although it is not impossible to write
the code by hand, I recommend you do what I do—use an online gradient
tool. One option is the Ultimate CSS Gradient Generator from Colorzilla
(www.colorzilla.com/gradient-editor/), shown in FIGURE 13-36. Simply enter as
many color stops as youd like, slide the sliders around until you get the look
you want, and then copy the code. That’s exactly what I did to get the example
we just looked at. The CSS Gradient Generator by Virtuosoft is another fine
option that also includes support for repeating gradients (www.virtuosoft.eu/
tools/css-gradient-generator)).

Like a Rainbow (Gradients)

13. Colors and Backgrounds 347

http://www.colorzilla.com/gradient-editor/

Finally, External Style Sheets

"= (CSS3 Patterns Gallery

FIGURE 13-37. CSS3 Patterns
Gallery assembled by Lea Verou
(lea.verou.me/css3patterns). You may
also enjoy Lea’s book, CSS Secrets:
Better Solutions to Everyday Web
Design Problems (O'Reilly).

Ultimate CSS Gradient Generator

A powerful Photoshop-like CSS gradient editor from ColorZilla.
For Firefox For Chrome Gradient Generator

Preview

Orientation: | vertical 4 ¢ Size: 370 X 50 IE

css switch to scss

/* Permalink = use to edit and share this gradient:

Name: Biue Gloss Default save I http://colorzilla.com/gradient-
editor/#1e5799+0,2989d8+50,207cca+51,7db9e8+100; Bluew
“/
background: #1e5789; /+ 0ld browsers =/
background: -moz-linear-gradient(top, #165799 0%,
#2989d8 50%, #207cca 51%, #7db9e8 100%); /* FF3.6-
15 =/
~webkit-11 (top, #1e5799
0%,#298948 50%,#207cca 51%,#7db9e8 1008); /+
@ a Chromel0-25,Safaris.1-6 */
background: linear-gradient(to bottom, #1e5799
. 0%,#2989d8 508,#207cca 51%,#7db%es 1008); /* W3C,
J hue/saturation 4 reverse importcss <= import image IE10+, FF16+, Chrome26+, Operal2+, Safari7+ »/
= filter: progid:DX ai
startColorstr='#1e5799",
dcol '#7db9es " 3 /% TE6-9 *
Stops db9es)3 /+ IB6-9 +/
Color format:| hex + ¥ Comments
Opacity: ¥ Location: % delete
== Link to, save or share the current gradient using its permalink.
Color: Location: % delete

CEI 0D © o R

FIGURE 13-36. The Ultimate CSS Gradient Generator (www.colorzilla.com/gradient-
editor) makes creating CSS gradients a breeze.

If you want your mind blown, take a look at the wild background patterns
made with gradients assembled by Lea Verou in her CSS3 Patterns Gallery
(lea.verou.me/css3patterns) (FIGURE 13-37). It’s inspirational, and you can
take a peek at the code used to create them.

FINALLY, EXTERNAL STYLE SHEETS

Back in Chapter 11, Introducing Cascading Style Sheets, I told you that there
are three ways to connect style sheets to an HTML document: inline with
the style attribute, embedded with the style element, and as an external .css
document linked to or imported into the document. In this section, we finally
get to that third option.

External style sheets are by far the most powerful way to use CSS because you
can make style changes across an entire site simply by editing a single style
sheet document. That is the advantage to having all the style information in
one place, and not mixed in with the document source.

Furthermore, because a single style document is downloaded and cached
by the browser for the whole site, there is less code to download with every
document, resulting in better performance.

First, a little bit about the style sheet document itself. An external style sheet
is a plain-text document with at least one style sheet rule. It may not include
any HTML tags (there’s no reason to include them, anyway). It may contain

348 Part lIl. CSS for Presentation

http://www.colorzilla.com/gradient-editor
http://www.colorzilla.com/gradient-editor

comments, but they must use the CSS comment syntax that you've seen
already:

/* This is the end of the section */

The style sheet should be named with the .css suffix (there are some excep-
tions to this rule, but youre unlikely to encounter them as a beginner). It
may also begin with the @charset at-rule to declare the character encoding,
although you really need to do that only if you are using an encoding other
than UTF-8. If you use @charset, it must be the first element in the style
sheet, with no characters, including comments or style rules, preceding it.

FIGURE 13-38 shows how a short style sheet document looks in my text editor.

-
@charset "UTF-8" -
body { font-family: Georgia, serif;
font-size: 108%;
line-height: 175%; }

hl { font-size: 1.5em;
color: purple;}

dt { font-weight: bold; }
strong { font-style: italic; }
h2 { font: bold lem Georgia, serif;
text—transform: uppercase;
letter-spacing: B8px;
color: purple;}
dt strong { color: maroon; }
header p { font-style: italic; color: gray;}
header, h2, #appetizers p { text-align: center; }

tappetizers p, { font-style: italic; }

.price { font-style: italic;
font-family: Georgia, serif; }

.label { font-weight: bold;
font-variant: small-caps;
font-style: normal; }

p.warning, sup { font-size: x-small;
color: red; }

External style sheets contain only CSS rules and comments in a
plain-text document.

There are two ways to apply an external style sheet: the link element and an
@import rule. Let’s look at both of these attachment methods.

Using the link Element

The 1link element defines a relationship between the current document and
an external resource. By far, its most popular use is to link to style sheets. The
link element goes in the head of the document, as shown here:
<head>
<title>Titles are required.</title>

<link rel="stylesheet" href="/path/stylesheet.css">
</head>

You need to include two attributes in the link element:

Finally, External Style Sheets

13. Colors and Backgrounds 349

Finally, External Style Sheets

EXERCISE 13-8.
Making an external
style sheet

Itis OK to use an embedded style

sheet while designing a page, but it is
probably best moved to an external
style sheet once the design is finished so
it can be reused by multiple documents
in the site. We'll do just that for the
summer menu style sheet.

1. Open the latest version of summer-
menu.html. Select and cut all of the
rules within the style element, but
leave the <style>...</style>
tags because we'll be using them in a
moment.

2. Create a new plain ASCII text
document and paste all of the style
rules. Make sure that no markup got
in there by accident.

3. Save this document as menustyles.css
in the same directory as the summer-
menu.html document.

4. Now, back in summer-menu.html,
add an @import rule to attach the
external style sheet:

<style>

@import url(menustyles.css);

</style>
Save the file and reload it in the
browser. It should look exactly the
same as it did when the style sheet
was embedded. If not, go back and
make sure that everything matches
the examples.

5. Delete the whole style element, and
this time we’ll add the style sheet with
a link element in the head of the
document.

<link rel="stylesheet"

href="menustyles.css">
Again, test your work by saving the
document and taking a look at it in
the browser.

rel="stylesheet"

Defines the linked document’s relation to the current document. The
value of the rel attribute is always stylesheet when you are linking to a
style sheet.

href="url"

Provides the location of the .css file.

You can include multiple link elements to different style sheets, and they’ll
all apply. If there are conflicts, whichever one is listed last will override previ-
ous settings, because of the rule order and the cascade.

Importing with @import

The other method for attaching an external style sheet to a document is to
import it with an @import rule. The @import at-rule is another type of rule
you can add to a style sheet, either in an external .css style sheet document,
or right in the style element, as shown in the following example:
<head>
<style>
@import url("/path/stylesheet.css");
p { font-face: Verdana;}
</style>
<title>Titles are required.</title>
</head>

In this example, a relative URL is shown, but it could also be an absolute URL
(beginning with http://). The @import rule must go at the beginning of the
style sheet before any selectors. You can import more than one style sheet, and
they all will apply, but rules from the last style sheet listed take precedence
over earlier ones.

You can also limit a style sheet’s import to specific media types (such as
screen, print, or projection, to name a few) or viewing environments (orien-
tation, screen size, etc.) using media queries. Media queries are a method for
applying styles based on the medium used to display the document. They
appear after the @import rule in a comma-separated list. For example, if you
have created a style sheet that should be imported and used only when the
document is printed, use this rule:

@import url(print styles.css) print;

Or to serve a special style sheet just for small devices, you could also query
the viewport:

@import url(small device.css) screen and (max-width: 320px;);

We'll talk a lot more about media queries in Chapter 17, Responsive Web
Design, but I mention them here as they are relevant to importing style sheets.

You can try both the link and @import methods in EXERCISE 13-8.

350 Part lIl. CSS for Presentation

Using Modular Style Sheets

Because you can compile information from multiple external style sheets,
modular style sheets have become a popular technique for style management.
Many developers keep styles they frequently reuse—such as typography
treatments, layout rules, or form-related styles—in separate style sheets, then
combine them in mix-and-match fashion using @import rules. Again, the
@import rules need to go before rules that use selectors.

Here’s an example of a style sheet that imports multiple external style sheets:

/* basic typography */
@import url("type.css");

/* form inputs */
@import url("forms.css");

/* navigation */
@import url("list-nav.css");

/* site-specific styles */
body { background: orange; }

/* more style rules */

This is a good technique to keep in mind as you build experience in creating
sites. You'll find that there are some solutions that work well for you, and it
is nice not to have to reinvent the wheel for every new site. Modular style
sheets are a good time-saving and organizational device; however, they can
be a problem for performance and caching,.

If you use this method, it is recommended that you compile all of the styles
into a single document before delivering them to a browser. Not to worry, you
don’t need to do it manually; there are tools out there that will do it for you.
The LESS and Sass CSS preprocessors (which will be formally introduced in
Chapter 20) are just two tools that offer compiling functionality.

WRAPPING IT UP

We've covered a lot of ground (or background, to be more accurate) in this
chapter. We looked at ways to set the foreground and background colors for
an element by using various numeric systems and color names. We looked at
options for adjusting the level of transparency with the opacity property and
RGBa, and HSLa color spaces. We spent a long time exploring the various
ways to add a background image and adjust how it repeats, where the origin
image is placed, and how it is sized. We saw how linear and radial gradients
can be used as background images as well. Along the way, you picked up
pseudo-class, pseudo-element, and attribute selectors and looked at ways to
attach external style sheets. I think that’s enough for one chapter! See how
much you remember with this little quiz.

Wrapping It Up

NOTE

You can also supply the URL without the
url() notation:

@import "/path/style.css";
Again, absolute pathnames, beginning
at the root, will ensure that the .css docu-
ment will always be found.

13. Colors and Backgrounds 351

Test Yourself

TEST YOURSELF

This time I'll test your background prowess entirely with matching and
multiple-choice questions. Answers appear in Appendix A.

1. Which of these areas gets filled with a background color by default?
a. The area behind the content
b. Any padding added around the content
c. The area under the border
d. The margin space around the element
e. All of the above
f. aandb
g a,bandc

2. Which of these is not a way to specify the color white in CSS?
a. #FFFFFF
b. #FFF
c. rgb(255, 255, 255)
d. rgb(FF, FF, FF)
e. white

f. rgb(100%, 100%, 100%)

3. Match the pseudo-class with the elements it targets.

a. a:link 1. Links that have already been clicked

b. a:visited 2. An element that is highlighted and ready for input

c. a:hover 3. An element that is the first child element of its parent
d. a:active 4. A link with the mouse pointer over it
e. :focus 3. Links that have not yet been visited

f. :first-child 6. A link that is in the process of being clicked

352 PartllIl. CSS for Presentation

Test Yourself

4. Match the following rules with their respective samples as shown in
FIGURE 13-39. All of the samples in the figure use the same source docu-
ment, consisting of one paragraph element to which some padding and a
border have been applied.

Houhing, 00 ey s, of B f pcogh ol sathe

promply rplaced. s s s when oy promply selsced

FIGURE 13-39. Samples for Question 4.

a. body {
background-image: url(graphic.gif);

b. p{
background-image: url(graphic.gif);
background-repeat: no-repeat;
background-position: 50% 0%;

}
c. body {
background-image: url(graphic.gif);
background-repeat: repeat-x;
}
d p{
background: url(graphic.gif) no-repeat right center;
}
e. body {
background-image: url(graphic.gif);
background-repeat: repeat-y;
¥
f. body {
background: url(graphic.gif) no-repeat right center;

}

13. Colors and Backgrounds 353

CSS Review: Color and Background Properties

CSS REVIEW: COLOR AND BACKGROUND
PROPERTIES

Here is a summary of the properties covered in this chapter, in alphabetical

order.

Property Description

background Shorthand property that combines background properties

background-attachment | Specifies whether the background image scrolls or is
fixed

background-clip Specifies how far the background image should extend

background-color Specifies the background color for an element

background-image Provides the location of an image to use as a background

background-origin Determines how the background-position is calculated
(from edge of border, padding, or content box)

background-position Specifies the location of the origin background image

background-repeat Specifies whether and how a background image repeats
(tiles)

background-size Specifies the size of the background image

color Specifies the foreground (text and border) color

opacity Specifies the transparency level of the foreground and
background

354 Part lIl. CSS for Presentation

THINKING INSIDE
E BOX

In Chapter 11, Introducing Cascading Style Sheets, I described the box model
as one of the fundamental concepts of CSS. According to the box model,
every element in a document generates a box to which properties such as
width, height, padding, borders, and margins can be applied. You probably
already have a feel for how element boxes work from adding backgrounds to
elements. This chapter covers all the box-related properties, beginning with
an overview of the components of an element box, and then taking on the
box properties from the inside out: content dimensions, padding, borders,
and margins.

THE ELEMENT BOX

As we've seen, every element in a document, both block-level and inline,
generates a rectangular element box. The components of an element box are
diagrammed in FIGURE 14-1. Pay attention to the new terminology—it will
be helpful in keeping things straight later in the chapter.

Outeredge Border Inner edge

Margin area

| Padding area

Content area

FIGURE 14-1. The parts of an element box according to the CSS box model.

CHAPTER

14

IN THIS CHAPTER

The parts of an element box
Setting box dimensions
Padding

Borders

Outlines

Margins

Assigning display roles

Adding a drop shadow

355

Specifying Box Dimensions

Content area
At the core of the element box is the content itself. In FIGURE 14-1, the
content area is indicated by a white box.

Inner edges

The edges of the content area are referred to as the inner edges of the ele-
ment box. Although the inner edges are made distinct by a color change
in FIGURE 14-1, in real pages, the edge of the content area is invisible.

Padding

The padding is the area between the content area and an optional border.
In the diagram, the padding area is indicated by a yellow-orange color.
Padding is optional.

Border
The border is a line (or stylized line) that surrounds the element and its
padding. Borders are also optional.

Margin
The margin is an optional amount of space added on the outside of the
border. In the diagram, the margin is indicated with light-blue shading,
but in reality, margins are always transparent, allowing the background of
the parent element to show through.

Outer edge

The outside edges of the margin area make up the outer edges of the
element box. This is the total area the element takes up on the page, and
it includes the width of the content area plus the total amount of pad-
ding, border, and margins applied to the element. The outer edge in the
diagram is indicated with a dotted line, but in real web pages, the edge of
the margin is invisible.

All elements have these box components; however, as you will see, some
properties behave differently based on whether the element is block or
inline. In fact, we'll see some of those differences right away as we look at
box dimensions.

SPECIFYING BOX DIMENSIONS

Values: length | percentage | auto
Default: auto
Appliesto: block-level elements and replaced inline elements (such as images)

Inherits: no

356 Part lIl. CSS for Presentation

Values: length | percentage | auto

Default: auto

Appliesto: block-level elements and replaced inline elements (such as images)
Inherits: no

Values: content-box | border-box

Default: content-box

Appliesto: all elements

Inherits: no

By default, the width and height of a block element are calculated automati-
cally by the browser (thus the default auto value). The box will be as wide as
the browser window or other containing block element, and as tall as neces-
sary to fit the content. However, you can use the width and height properties
to make the content area of an element a specific width or height.

Unfortunately, setting box dimensions is not as simple as just dropping those
properties in your style sheet. You have to know exactly which part of the
element box you are sizing.

There are two ways to specify the size of an element. The default method—
introduced way back in CSS1—applies the width and height values to the
content box. That means that the resulting size of the element will be the
dimensions you specify plus the amount of padding and borders that have
been added to the element. The other method—introduced as part of the
box-sizing property in CSS3—applies the width and height values to the
border box, which includes the content, padding, and border. With this
method, the resulting visible element box, including padding and borders,
will be exactly the dimensions you specify. Were going to get familiar with
both methods in this section.

Regardless of the method you choose, you can specify the width and height
only for block-level elements and non-text inline elements such as images.
The width and height properties do not apply to inline text (non-replaced)
elements and are ignored by the browser. In other words, you cannot specify
the width and height of an anchor (a) or strong element (see Note).

Sizing the Content Box

By default (that is, if you do not include a box-sizing rule in your styles), the
width and height properties are applied to the content box. That is the way
all current browsers interpret width and height values, but you can explicitly
specify this behavior by setting box-sizing: content-box.

Specifying Box Dimensions

BROWSER SUPPORT TIP

The major browsers began supporting
the box-sizing property in 2011 and
2012. For browsers released prior to that
(Chrome <10, Safari <5.1, Safari i0S <5.1,
or Android <4.3), there is the prefixed ver-
sion -webkit-box-sizing, but at this
point, the prefix is considered no longer
necessary. Internet Explorer 6 and 7 do
not support box-sizing at all, but they
are fairly extinct.

NOTE

Actually, there is a way to apply width
and height properties to inline elements
such as anchors (a): by forcing them
to behave as block elements with the
display property, covered at the end of
this chapter.

14. Thinking Inside the Box 357

Specifying Box Dimensions

In the following example and in FIGURE 14-2, a simple box is given a width
of 500 pixels and a height of 150 pixels, with 20 pixels of padding, a 5-pixel
border, and a 20-pixel margin all around. In the default content box model,
the width and height values are applied to the content area only.
pi
background: #f2f5d5;
width: 500px;
height: 150px;
padding: 20px;
border: 5px solid gray;
margin: 20px;
}
The resulting width of the visible element box ends up being 550 pixels: the
content plus 40px padding (20px left and right) and 10px of border (5px left
and right).

Visible element box =
5px + 20px + 500px width + 20px + 5px = 550 pixels
When you throw in 40 pixels of margin, the width of the entire element box

is 590 pixels. Knowing the resulting size of your elements is critical to getting
layouts to behave predictably.

Element box =
20px + 5px + 20px + 500px width + 20px + 5px + 20px = 590 pixels

content-box model

20px 5px 20px width: 500px 20px 5px 20px

,,,

This week I am extremely excited about a new cooking technique called sous |
Vide. In sous vide cooking, you submerge the food (usually vacuum-sealed in |
‘plaslic) into a water bath that is precisely set to the target temperature you
want the food to be cooked to.

height: 150px

<«——— Total visible box width =550px ——>

<«—————— Total element width =590px —— >

Specifying the width and height with the content-box model.

Using the border-box Model

The other way to specify the size of an element is to apply width and height
dimensions to the entire visible box, including the padding and border.
Because this is not the default browser behavior, you need to explicitly set
box-sizing: border-box in the style sheet.

358 Part lIl. CSS for Presentation

Specifying Box Dimensions

Let’s look at the same paragraph example from the previous section and see
what happens when we make it 500 pixels using the border-box method
(FIGURE 14-3). All other style declarations for the box stay the same.

p{

"Box—sizing: border-box;
width: 500px;
height: 150px;

}

Now the width of the visible box is 500 pixels (compare to 550 pixels in the
content-box model), and the total element widh is 540px. Many develop-
ers find the border-box model to be a more intuitive way to size elements.
It is particularly helpful for specifying widths in percentages, which is a
cornerstone of responsive design. For example, you can make two columns
50% wide and know that they will fit next to each other without having to
mess around with adding calculated padding and border widths to the mix
(although you still need to account for margins).

border-box model

20px width: 500px; 20px

This week I am extremely excited about a new cooking technique
called sous vide. In sous vide cooking, you submerge the food (usually
vacuum-sealed in plastic) into a water bath that is precisely set to the
target temperature you want the food to be cooked to.

<« Totalvisible box width =500px ———

<«——— Total element width = 540px — >

box-sizing: content-box;
width: 500px;

This week I am extremely excited about a new cooking technique called sous

vide. In sous vide cooking, you submerge the food (usually vacuum-sealed in

plastic) into a water bath that is precisely set to the target temperature you
vacuum-sealed in plastic) into a water bath that is precisely set to the
target temperature you want the food to be cooked to.

box-sizing: border-box;
width: 500px;

Sizing an element with the border-box method. The bottom diagram
compares the resulting boxes from each sizing method.

14. Thinking Inside the Box 359

Specifying Box Dimensions

Maximum and Minimum
Dimensions

If you want to set a limit on the
size of a block element, use the
max- and min- width and height
properties.

) H

)
Values: length | percentage | none

These properties work with block-
level and replaced elements (like
images) only. When the content-
box model is used, the value applies
to the content area only, so if you
apply padding, borders, or margins,
it will make the overall element box
larger, even if a max-width or max-
height property has been specified.
Note also that IE8 does not support
box-sizing on elements with max-/
min- sizes.

WARNING

Avoid using max- and min- widths
and heights with the border-box
model. They are known to cause
browser problems.

In fact, many developers simply set everything in the document to use the
border-box model by setting it on the root (html) element, then setting all
other elements to inherit, like this:

html {box-sizing: border-box;}
*, *:before, *:after {box-sizing: inherit;}

For more information on this technique, read Chris Coyier’s article “Inheriting
box-sizing Probably Slightly Better Best-Practice” (css-tricks.com/inheriting-
box-sizing-probably-slightly-better-best-practice).

Specifying Height

The height property works just the same as width. In general practice, it is
less common to specify the height of elements. It is more in keeping with
the nature of the medium to allow the height to be calculated automatically,
allowing the element box to change based on the font size, user settings, or
other factors. If you do specify a height for an element containing text, be
sure to also consider what happens should the content not fit. Fortunately,
CSS gives you some options, as we'll see in the next section.

Handling Overflow

When an element is sized too small for its contents, you can specify what to
do with the content that doesn't fit by using the overflow property.

Values: visible | hidden | scroll | auto

Default: visible

Appliesto: block-level elements and replaced inline elements (such as images)
Inherits: no

FIGURE 14-4 demonstrates the predefined values for overflow. In the figure,
the various values are applied to an element that is 150 pixels square. The
background color makes the edges of the content area apparent.
visible
The default value is visible, which allows the content to hang out over
the element box so that it all can be seen.

hidden
When overflow is set to hidden, the content that does not fit gets clipped
off and does not appear beyond the edges of the element’s content area.
scroll

When scroll is specified, scrollbars are added to the element box to
let users scroll through the content. Be aware that they may become

360 Part lIl. CSS for Presentation

visible

Applying the masks to
the glasses is the most
labor-intensive part of
the process. Not only
do you have to
measure, place, and
burnish on each mask,
but you also need to
completely cover the
remainder of the glass
in heavy paper. Any
exposed areas (even
inside) will get
scratched by the flying
sand, so it has to be a
good seal.

hidden

Applying the masks to
the glasses is the most
labor-intensive part of
the process. Not only
do you have to
measure, place, and
burnish on each mask,
but you also need to
completely cover the

ramaindar Af tha Alace

scroll

IGUUI IS HIBIVE parL
the process. Not only
do you have to
measure, place, and
burnish on each mask,
but you also need to
completely cover the
remainder of the glass
in heavy paper. Any
exposed areas (even

auto (short text)

Applying the masks to

the glasses is the most
labor-intensive part of

the process.

Options for handling content overflow. The scroll and auto options
have narrow gray scrollbars to the right of the text (as rendered on macOS).

visible only when you click the element to scroll it. There is an issue
with this value on old i0S (<4), Android (<2.3), and a few other older
mobile browsers, so it may be worthwhile to use a simpler alternative to
overflow:scroll for mobile.

auto

The auto value allows the browser to decide how to handle overflow. In
most cases, scrollbars are added only when the content doesn fit and

they are needed.

PADDING

Padding is the space between the content area and the border (or the place
the border would be if one isn't specified). I find it helpful to add padding
to elements when using a background color or a border. It gives the content
a little breathing room, and prevents the border or edge of the background
from bumping right up against the text.

You can add padding to the individual sides of any element (block-level or
inline). There is also a shorthand padding property that lets you add padding

on all sides at once.

b

Values: length | percentage
Default: 0

Appliesto: all elements
Inherits: no

Padding

auto (long text)

Applying the masks to
the glasses is the mos
labor-intensive part of
the process. Not only
do you have to
measure, place, and
burnish on each mask,
but you also need to
completely cover the

nnnnnnnn nf Fhna Aalaee

14. Thinking Inside the Box 361

Padding

Values: length | percentage
Default: 0
Appliesto: all elements

Inherits: no

The padding-top, padding-right, padding-bottom, and padding-left proper-
ties specify an amount of padding for each side of an element, as shown in
this example and FIGURE 14-5 (note that I've also added a background color
to make the outer edges of the padding area apparent).
blockquote {

padding-top: 2em;

padding-right: 4em;

padding-bottom: 2em;

padding-left: 4em;

background-color: #D098D4; /* light green */

2em

4em This week I am extremely excited about a new, 4em
cooking technique called sous vide. In sous vide
cooking, you submerge the food (usually vacuum-
sealed in plastic) into a water bath that is
precisely set to the target temperature you want
the food to be cooked to.

2em

Adding padding around the content of an element.

Specify padding in any of the CSS length units (em and px are the most com-
mon) or as a percentage of the width of the parent element. Yes, the parent’s
width is used as the basis, even for top and bottom padding. If the width of
the parent element changes, so will the padding values on all sides of the
child element, which makes percentage values somewhat tricky to manage.

The Shorthand padding Property

As an alternative to setting padding one side at a time, you can use the short-
hand padding property to add padding all around the element. The syntax is
interesting; you can specify four, three, two, or one value for a single padding
property. Let’s see how that works, starting with four values.

When you supply four padding values, they are applied to each side in
clockwise order, starting at the top. Some people use the mnemonic device
“TRouBLe” for the order Top Right Bottom Left. This is a common syntax for
applying shorthand values in CSS, so take a careful look:

362 Part lIl. CSS for Presentation

padding: top right bottom left;

Using the padding property, we could reproduce the padding specified with
the four individual properties in the previous example like this:
blockquote {

padding: 2em 4em 2em 4em;
background-color: #D098D4;

If the left and right padding are the same, you can shorten it by supplying
only three values. The value for “right” (the second value in the string) will
be mirrored and used for “left” as well. It is as though the browser assumes
the “left” value is missing, so it just uses the “right” value on both sides. The
syntax for three values is as follows:

padding: top right/left bottom;

This rule would be equivalent to the previous example because the padding
on both the left and right edges of the element is set to 4em:
blockquote {
padding: 2em 4em 2em;

background-color: #D098D4;
}

Continuing with this pattern, if you provide only two values, the first one is
used for the top and the bottom edges, and the second one is used for the left
and right edges:

padding: top/bottom right/left;

Again, the same effect achieved by the previous two examples could be
accomplished with this rule:
blockquote {
padding: 2em 4em;
background-color: #D098D4;
}

Note that all of the previous examples have the same visual effect as shown
in FIGURE 14-5.

Finally, if you provide just one value, it will be applied to all four sides of the
element. This declaration applies 15 pixels of padding on all sides of a div
element:
div#tannouncement {
padding: 15px;
border: 1px solid;

}

Get a feel for adding padding to elements in EXERCISE 14-1.

Padding

Shorthand Values

1value
padding: 10px;
Applied to all sides.

2 values

padding: 10px 6px;

First is top and bottom; second is
left and right.

3 values

padding: 10px 6px 4px;

First is top; second is left and right;
third is bottom.

4 values
padding: 10px 6px 4px 10pXx;
Applied clockwise to top, right,

bottom, and left edges consecutively
(TRBL).

14. Thinking Inside the Box 363

Padding

NOTE

This design uses a Google web font
called Stint. You will need to have an
internet connection in order to see it.
If you are working offline, you will see
Georgia or some serif font instead, which
is just fine for these purposes, but your
page won't look exactly like the ones in
the figures.

Fresh from the Oven

BREADS

EXERCISE 14-1. Adding a little padding

In this exercise, we’'ll begin adding box properties to improve the appearance of a site for
the fictional Black Goose Bakery. I've given you a head start by marking up the source
(bakery.html). Unlike pages in previous exercises, the bakery page uses an external style
sheet, bakery-styles.css. Everything we will be doing to format this site over the next few
chapters happens in the CSS file, so you should never need edit the HTML document;
however, that is the file you will open in the browser to see the results of your style
changes. All the files are available at learningwebdesign.com/5e/materials.

FIGURE 14-6 shows before and after shots of the site. It's going to take several exercises
over three chapters to get there, and padding is just the beginning. In Chapter 16, CSS
Layout with Flexbox and Grid, we’ll turn that ugly navigation list into a nice navigation
menu bar (in the meantime, please avert your eyes) and give the page a two-column
layout suitable for larger screens.

Start by getting familiar with the source document. Open bakery.html in a browser and

a text editor to see what you’ve got to work with. The style sheet has been added with

an @import rule in the style element. The document has been marked up with header
(including a nav section), main, aside, and footer sections.

Now take a look at bakery-styles.css in your text editor. | used comments in the style
sheet to organize the styles related to each section (bonus points for you if you keep
the styles organized as you go along!). You will find styles for text formatting, colors, and
backgrounds—all properties that we've covered so far in this book, so they should look
familiar. Now let’s add some rules to bakery-styles.css to add padding to the elements.

Fresh from the Oven Hours
MONDAY: 5am to 3pm

| BREADS TuEsDAY. 5am to 3pm

LEARN MORE ABOUT OUR BAKING PROCESS...

[MUFFINS

L E

‘)}jy.‘

Before and after shots of the Black Goose Bakery site.

364 Part lIl. CSS for Presentation

http://www.learningwebdesign.com/5e/materials

Padding

1. Thefirst thing we'll do is to set the box-sizing model to border-box for all the
elements in the document. Add these new rules to the existing style element. This will
make measurements simpler going forward.

html {

box-sizing: border-box;
}
*

{

box-sizing: inherit;

. Now find the styles for the header and give it a height. It will fill 100% of the width of
the page by default, so the width is taken care of. | picked 15em for the height because
it seemed tall enough to accommodate the content and show a nice amount of the
croissant background image, but you can play around with it.

header {
height: 15em;
}

. The main section is going to need a little padding, so add 1em of padding on all sides.
You can add this declaration after the existing main styles.

main {

padding: lem; MUFFINS

v e

. Next, we'll get a little fancier with the aside element (“Hours”). We'll need extra
padding on the left side for the tiling scallop background image to be visible.
There are several approaches to applying different padding amounts to each side,
but I'm going to do it in a way that gives you experience deliberately overriding

earlier declarations. lemon-poppyseed, and chocolate. Our muffins are mad

Every day, we offer a large select

Use the padding shorthand property to add 1em of padding on all sides of the LEARN MORE ABOUT HOW WE MAKE GUR MUEFINS. .
aside element. Then write a second declaration that adds 45 pixels of padding
on just the left side. Because the padding-left declaration comes second, it will

override the 1em setting applied with the shorthand. Hours
aside { MONDAY: 5am to 3pm
TUESDAY: 5am to 3pm
padding: lem,; WEDNESDAY: 5am to 3pm
padding-left: 45pX; THURSDAY: 5am to 3pm

FRIDAY: 5am to 3pm

SATURDAY: 6am to 4pm

. Finally, that footer is looking skinny and cramped. Let’s add padding, which will
increase the height of the footer and give the content some space.

foorer { =
All content cof

padding: 1em;

SUNDAY: 6am to 4pm

. Save the bakery-styles.css document, and then open (or reload) bakery.html in . The_shaded Qe indi;ate the
the browser to see the result of your work. The changes at this point are pretty padding added tomain (blue), aside (pink),

e : o and footer (yellow). Colors added for demo
subtle. FIGURE 14-7 highlights the padding additions. purposes but wouldr't render in the browser.

14. Thinking Inside the Box 365

Borders

Bottom Borders Instead
of Underlines

Turning off link underlines and
replacing them with a custom
bottom border is a common design
technique. It lightens the look of links
while still making them stand out
from ordinary text.

BORDERS

A border is simply a line drawn around the content area and its (optional)
padding. You can choose from eight border styles and make them any width
and color you like. Borders can be applied all around the element or just on a
particular side or sides. CSS3 introduced properties for rounding the corners
or applying images to borders. We'll start our border exploration with the
various border styles.

Border Style

The style is the most important of the border properties because, according
to the CSS specification, if there is no border style specified, the border does
not exist (the default is none). In other words, you must always declare the
style of the border, or the other border properties will be ignored.

Border styles can be applied one side at a time or with the shorthand border-
style property.

)

Values: none | solid | hidden | dotted | dashed | double | groove | ridge | inset |
outset
Default: none

Appliesto: all elements

Inherits: no

Values: none | solid | hidden | dotted | dashed | double | groove | ridge | inset |
outset

Default: none

Appliesto: all elements

Inherits: no

The value of the border-style property is one of 10 keywords describing the
available border styles, as shown in FIGURE 14-8. The value hidden is equiva-
lent to none.

Use the side-specific border style properties (border-top-style, border-
right-style, border-bottom-style, and border-left-style) to apply a style
to one side of the element. If you do not specify a width, the default medium
width will be used. If there is no color specified, the border uses the fore-
ground color of the element (same as the text).

In the following example, I've applied a different style to each side of an ele-
ment to show the single-side border properties in action (FIGURE 14-9).

366 Part lIl. CSS for Presentation

none solid double

dotted + dashed groove
b e m ;

ridge inset outset

The available border styles (shown at the default medium width).

divitsilly {
border-top-style: solid;
border-right-style: dashed;
border-bottom-style: double;
border-left-style: dotted;
width: 300px;
height: 100px;

}

The border-style shorthand property works on the clockwise (TRouBLe)
system described for padding earlier. You can supply four values for all four
sides or fewer values when the left/right and top/bottom borders are the
same. The silly border effect in the previous example could also be specified
with the border-style property as shown here, and the result would be the

same as shown in FIGURE 14-9:

border-style: solid dashed double dotted;

four
different
sides

Border styles applied to individual sides of an element.

Borders

14. Thinking Inside the Box 367

Borders

Border Width (Thickness)

Use one of the border-width properties to specify the thickness of the border.
Once again, you can target each side of the element with a single-side prop-
erty, or specify several sides at once in clockwise order with the shorthand
border-width property.

Values: length | thin | medium | thick
Default: medium

Appliesto: all elements

Inherits: no
Values: length | thin | medium | thick
Default: medium

Appliesto: all elements

Inherits: no

The most common way to specify the width of borders is using a pixel or
em measurement; however, you can also specify one of the keywords (thin,
medium, or thick) and leave the rendering up to the browser.

I've included a mix of values in this example (FIGURE 14-10). Notice that I've
also included the border-style property because if I didn’t, the border would
not render at all:
divithelp {
border-top-width: thin;
border-right-width: medium;

il border-bottom-width: thick;
border-left-width: 12px;
border-style: solid;

.fOUI’ width: 300px;
different height: 100px;
12px widths medium }
or:
divithelp {
border-width: thin medium thick 12px;
thick border-style: solid;
width: 300px;
height: 100px;
Specifying the width of borders. }

368 Part lIl. CSS for Presentation

Borders

Border Color

Border colors are specified in the same way: via the side-specific properties N
or the border-color shorthand property. When you specify a border color, it

overrides the foreground color as set by the color property for the element. _
Setting border-color to

transparent allows the background
to show through the border, yet

’ holds the width of the border as
Values: color name or RGB/HSL value | transparent specified. This may be useful when
you're creating rollover (:hover)
effects with borders, because the
Appliesto: all elements space where the border will appear is
maintained even when the mouse is

Default: the value of the color property for the element

Inherits: no not over the element.

- J
Values: color name or RGB/HSL value | transparent
Default: the value of the color property for the element

Appliesto: all elements

Inherits: no

You know all about specifying color values, and you should be getting used
to the shorthand properties as well, so I'll keep this example short and sweet
(FIGURE 14-11). Here, I've provided two values for the shorthand border-color
property to make the top and bottom of a div maroon and the left and right
sides aqua:
divi#tspecial {

border-color: maroon aqua;

border-style: solid;

border-width: 6px;

width: 300px;

height: 100px;

maroon on the top and bottom;
aqua on the sides

Specifying the color of borders.

14. Thinking Inside the Box 369

Borders

CSS Outlines

Another type of rule you can draw around an element is an outline. Outlines look like
borders, and the syntax is the same, but there is an important difference. Outlines,
unlike borders, are not calculated in the width of the element box. They just lay on
top, not interfering with anything. Outlines are drawn on the outside edge of the
border (if one is specified) and overlap the margin.

Because outlines do not affect layout, they’re a great tool for checking your design.
You can turn them on and off without affecting width measurements to see where
and how element boxes are positioned.

The outline properties are similar to border properties with one important difference:
It is not possible to specify outlines for particular sides of the element box—it’s all or
nothing.

Values: auto | solid | none | dotted | dashed | double | groove | ridge |
inset | outset

Default: none

These are the same as the border -style values, with the addition of auto, which
lets the browser choose the style. Also, you cannot set the outline-style to
hidden.

Values: length | thin | medium | thick
Default: medium
Same as border-width values.

Values: color name or RGB/HSL value | invert
Default: invert

The default invert value applies the inverse of the background color to the outline,
but it has very little browser support.

Values: length
Default: 0

By default, the outline is drawn just outside the border edge. outline-offset
moves the outline beyond the border by a specified length.

Values: outline-style outline-width outline-color
Default: Defaults of individual properties

The shorthand outline property combines values for outline-style, outline-
width, and outline-color. Remember that you can specify them only for all sides
of the element at once.

divitstory { outline: 2px dashed red; }

370 PartllIl. CSS for Presentation

Combining Style, Width, and Color

The authors of CSS didn't skimp when it came to border shortcuts. They also
created properties for providing style, width, and color values in one declara-
tion, one side at a time. You can specify the appearance of specific sides, or
use the border property to change all four sides at once.

b b b

Values: border-style border-width border-color
Default: defaults for each property

Appliesto: all elements

Inherits: no

Values: border-style border-width border-color
Default: defaults for each property

Appliesto: all elements
Inherits: no
The values for border and the side-specific border properties may include

style, width, and color values in any order. You do not need to declare all
three, but if the border style value is omitted, no border will render.

The border shorthand property works a bit differently than the other short-
hand properties that we’ve covered in that it takes one set of values and always
applies them to all four sides of the element. In other words, it does not use
the clockwise TRBL system that we’ve seen with other shorthand properties.

Here is a smattering of valid border shortcut examples to give you an idea of
how they work:

h1 { border-left: red .5em solid; } /* left border only */
h2 { border-bottom: 1px solid; } /* bottom border only */
p.example { border: 2px dotted #663; } /* all four sides */

Rounded Corners with border-radius

Perhaps youd like your element boxes to look a little softer and rounder.
Well, then, the border-radius property is for you! There are individual corner
properties as well as a border-radius shorthand.

Values: length | percentage
Default: 0
Appliesto: all elements

Inherits: no

Borders

14. Thinking Inside the Box

371

Borders

p{
width: 200px;
height: 100px;
background: darkorange;

}

border-radius: 1em;

border-radius: 50px;

border-top-right-radius: 50px;

border-top-left-radius: 1em;
border-top-right-radius: 2em;
border-bottom-right-radius: 1em;
border-bottom-left: 2em;

FIGURE 14-12. Make the corners
of element boxes rounded with the
border-radius properties.

border-radius

Values: 1,2, 3, or 4 length or percentage values
Default: 0

Appliesto: all elements

Inherits: no

To round off the corner of an element, simply apply one of the border-radius
properties, but keep in mind that you will see the result only if the element
has a border or background color. Values are typically provided in ems or pix-
els. Percentages are allowed and are nice for keeping the curve proportional to
the box should it resize, but you may run into some browser inconsistencies.

You can target the corners individually or use the shorthand border-radius
property. If you provide one value for border-radius, it is applied to all four
corners. Four values are applied clockwise, starting in the top-left corner
(top-left, top-right, bottom-right, bottom-left). When you supply two values,
the first one is used for top-left and bottom-right, and the second is for the
other two corners.

Compare the border-radius values to the resulting boxes in FIGURE 14-12.
You can achieve many different effects, from slightly softened corners to a
long capsule shape, depending on how you set the values.

BROWSER SUPPORT NOTE

All browsers have been supporting border-radius properties using the standard syntax
(that is, without prefixes) since about 2010. There are prefixed properties for Firefox <3.6
and Safari <5.0, but they’re so old it’s probably not worth worrying about. Internet Explorer
8 and earlier, however, do not support border-radius at all. But in this case, chances are
the usability of your site doesn’t depend on rounded corners, so this is a good opportunity
to practice progressive enhancement: non-supporting browsers get perfectly acceptable
square corners, and all modern browsers get a little something extra.

Elliptical corners

So far, the corners we've made are sections of perfect circles, but you can also
make a corner elliptical by specifying two values: the first for the horizontal
radius and the second for the vertical radius (see FIGURE 14-13, ® and ®).

O border-top-right-radius: 100px 50px;

O border-top-right-radius: 50px 20px;
border-top-left-radius: 50px 20px;

If you want to use the shorthand property, the horizontal and vertical radii
get separated by a slash (otherwise, theyd be confused for different corner
values). The following example sets the horizontal radius on all corners to
60px and the vertical radius to 40px (FIGURE 14-13, ®):

© border-radius: 60px / 40px;

372 Partlll. CSS for Presentation

If you want to see something really nutty, take a look at a border-radius
shorthand property that specifies a different ellipse for each of the four
corners. All of the horizontal values are lined up on the left of the slash in
clockwise order (top-left, top-right, bottom-right, bottom-left), and all of the
corresponding vertical values are lined up on the right (FIGURE 14-13, @):

© border-radius: 36px 40px 60px 20px / 12px 10px 30px 36px;

0 0

border-top-right-radius: 100px 50px; border-top-right-radius: 50px 20px;
border-top-left-radius: 50px 20px;

(C] o

border-radius:
36px 40px 60px 20px/12px 10px 30px 36px;

border-radius: 60px / 40px;

FIGURE 14-13. Applying elliptical corners to boxes.

Now it’s time to try your hand at borders. EXERCISE 14-2 will not only give
you some practice, but it should also give you some ideas on the ways borders
can be used to add visual interest to designs.

EXERCISE 14-2. Border tricks

Borders

In this exercise, we’ll have some fun with borders on the Black
Goose Bakery page. In addition to putting borders around content
sections of the page, we'll use borders to beef up the headlines
and as an alternative to underlines under links.

1. Open bakery-styles.css in a text editor if it isn’t already. We'll
start with the basics by using the shorthand border property to
add a tan double rule around the main element. Add the new
declaration to the existing rule for main:

main {
Badding: lem;

border: double 4px #EADDC4;
}

2. Now try out some border-radius properties to add generous
rounded corners to the main and aside sections. A 25-pixel
radius should do. Pixels are my choice over ems here because |
don’t want the radius to scale with the text. Start by adding this
declaration to the styles for main:

border-radius: 25px;

And give just the top-right corner of the aside a matching
rounded corner:

aside {

border-top-right-radius: 25px;

}

©

14. Thinking Inside the Box 373

Borders

EXERCISE 14-2. Continued

3. Just for fun (and practice), we’ll add a decorative border on two sides of the baked
goods headings (h3). Find the existing rule for h3 elements and add a declaration that
adds a 1-pixel solid rule on the top of the headline. Add another that adds a thicker
3-pixel solid rule on the left. | want the borders to be the same color as the text, so we
don’t need to specify the border-color. Finally, to prevent the text from bumping into
the left border, add a little bit of padding (1em) to the left of the headline content:

h3 {

border-top: 1px solid;
border-left: 3px solid;
padding-left: 1em;

4. The last thing we'll do is to replace the standard underline with a decorative bottom
border under links. Start by turning off the underline for all links. Add this rule in the
“link styles” section of the style sheet:

a{
text-decoration: none;
}
Then add a 1-pixel dotted border to the bottom edge of links:
a {

text-decoration: none;
border-bottom: 1px dotted;

}

As is often the case when you add a border to an element, it is a good idea to also add a
little padding to keep things from bumping together:
a{
text-decoration: none;

border-bottom: 1px dotted;
padding-bottom: .2em;

Now you can save the style sheet and reload bakery.html in the browser. FIGURE 14-14
shows a detail of how your page should be looking so far.

| MUFFINS

Every day, we offer a large selection of muffins, including blueberry,
multi-berry, bran, corn, lemon-poppyseed, and chocolate. Our muffins are made from scratch

each day. Stop by to see our seasonal muffin flavorsl

LEARN MORE ABOUT HOW WE MAKE OUR MUFFINS...

Hours

The results of our border additions.

374

Part Ill. CSS for Presentation

Borders

-

Picture-Perfect Borders

CSS3introduced the border-image-* properties, which let
you fill in the sides and corners of a border box with an image
of your choice, as shown in FIGURE 14-15.

Border images are applied with a collection of five properties:
* border-image-source indicates the location of the image

* border-image-slice divides the image into nine sections
using offset measurements

* border-image-width specifies the width of the border area

* border-image-repeat specifies whether the image should
stretch or repeat along the sides

* border-image-outset pushes the border away from the
content by the specified amount

There is also a shorthand border-image property that

combines the individual properties in the following syntax:
border-image: source slice / width / outset
repeat;

The style rules for the image border in FIGURE 14-15 are as

follows:

border: 5px solid #d1214a; /* red */
border-image: url(fancyframe.png) 55 fill / 55px /
25px stretch;

fancyframe.png

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nullam eget metus porta,
tristique elit et, vulputate tellus. Nam nec
feugiat mauris. Morbi et eleifend sapien.
Donec dolor mauris, eleifend quis arcu at,

commodo tempus mi. Vivamus tincidunt
purus vel leo dignissim ornare. Praesent vel
tincidunt elit. Interdum et malesuada fames ac
ante ipsum primis in faucibus. Ut ut leo quis
neque pulvinar efficitur.

With border image

The border shorthand provides a fallback style for the border
should the image not load or if the border-image isn’t
supported by the browser.

The border-image rule tells the browser to apply the image
fancyframe.png to the border, slice it 55 pixels from the edges,
and use the center of the image to fill the center of the box.
The width of the border area is 55px, and the image should be
pushed toward the margins by 25px. Finally, the image areas
that make up the sides should stretch to fill the width and
height of the box.

That's not much of an explanation, | know, but I've written an

article, “Border Images,” which goes into more detail. You

can download it at learningwebdesign.com/articles/. For even

more information on border images, check out these resources:

* The CSS Background and Borders Module Level 3 (www.
w3.0rg/TR/css3-background/#the-border-image-source)

* The border-image listing on CSS-Tricks (css-tricks.com/
almanac/properties/b/border-image/), for a less dense
explanation

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nullam eget metus porta,
tristique elit et, vulputate tellus. Nam nec
feugiat mauris. Morbi et eleifend sapien.
Donec dolor mauris, eleifend quis arcu at,
commodo tempus mi. Vivamus tincidunt
purus vel leo dignissim ornare. Praesent vel
tincidunt elit. Interdum et malesuada fames ac
ante ipsum primis in faucibus. Ut ut leo quis
neque pulvinar efficitur.

Without border image

FIGURE 14-15. Examples of a border image applied to a box.

14. Thinking Inside the Box 375

https://css-tricks.com/almanac/properties/b/border-image/
https://css-tricks.com/almanac/properties/b/border-image/

Margins

Browser Default Margins

You may have noticed that space

is added automatically around
headings, paragraphs, and other
block elements. That’s the browser’s
default style sheet at work, applying
margin amounts above and below
those elements.

It's good to keep in mind that the
browser is applying its own values
for margins and padding behind the
scenes. These values will be used
unless you specifically override them
with your own style rules.

If you are working on a design and
coming across mysterious amounts
of space that you didn’t add, the
browser’s default styles may be

the culprit. To troubleshoot, |
recommend using your browser’s
Web Inspector tool, which will show
you the source of all the styles
applied to the element. Or if you just
don’t want to worry about browser
styles at all, one solution is to reset
the padding and margins for all
elements to zero, which is discussed
in the “CSS Reset” section in
Chapter 19, More CSS Techniques.

Centering with auto
Margins

Setting the margin to auto on the left
and right sides of a sized element has

the effect of centering the element in
its container.

MARGINS

A margin is an optional amount of space that you can add on the outside of
the border. Margins keep elements from bumping into one another or the
edge of the browser window or viewport.

The side-specific and shorthand margin properties work much like the pad-
ding properties we've looked at already; however, margins have some special
behaviors to be aware of.

b b b

Values: length | percentage | auto
Default: auto

Appliesto: all elements

Inherits: no

Values: length | percentage | auto
Default: auto

Appliesto: all elements

Inherits: no

The margin properties are very straightforward to use. You can either specify
an amount of margin to appear on each side of the element or use the margin
property to specify all sides at once.

The shorthand margin property works the same as the padding shorthand.
When you supply four values, they are applied in clockwise order (top, right,
bottom, left) to the sides of the element. If you supply three values, the middle
value applies to both the left and right sides. When two values are provided,
the first is used for the top and bottom, and the second applies to the left and
right edges. Finally, one value will be applied to all four sides of the element.

As with most web measurements, ems, pixels, and percentages are the most
common ways to specify margins. Be aware, however, that if you specify a
percentage value, it is calculated based on the width of the parent element. If
the parent’s width changes, so will the margins on all four sides of the child
element (padding has this behavior as well). The auto keyword allows the
browser to fill in the amount of margin necessary to fit or fill the available
space (see Power Tool sidebar).

FIGURE 14-16 shows the results of the following margin examples. I've added
a red border to the elements in the examples to make their boundaries more
clear. The dotted rules were added in the figure illustration to indicate the
outer edges of the margins for clarity purposes only, but they are not some-
thing you’d see in the browser.

376 PartlIl. CSS for Presentation

O p#A {

margin: 4em;
border: 2px solid red;
background: #e2f3f5;

}
O p#B {

margin-top: 2em;
margin-right: 250px;
margin-bottom: 1em;
margin-left: 4em;
border: 2px solid red;
background: #e2f3f5;

}
©® body {

margin: 0 20%;
border: 3px solid red;
background-color: #e2f3f5;

4em |In four or five days, if the weather is propitious, the young plants will begin to break|
iground, presenting at the surface two leaves, which together make nearly a square, like
the first leaves of turnips or radishes.

hich toget
turnips or ra

In four or five days, if the weather is propitious, the young plants|
ill begin to break ground, presenting at the surface two leaves,

her make nearly a square, like the first leaves off

dishes.

[T™he Projact Gutansarg eBoo:

> @

20%

x

'What a Cabbage Is

lIf we cut vertically through the middle of the head, we shall find it made|
up of successive layers of leaves, which grow smaller and smaller, almost]
lad infinitum. Now, if we take a fruit bud from an apple-tree and make 2|
similar section of it, we shall find the same structure. If we observe the]
development of the two, as spring advances, we shall find another
similarity (the looser the head the closer will be the resemblance),— the

uter leaves of each will unwrap and unfold, and a flower stem will push

ut from each. Here we see that a cabbage is a bud, a seed bud (as all}
ifruit buds may be termed, the production of seed being the primary object]
lin nature, the fruit enclosing it playing but a secondary part), the office of|
|the leaves being to cover, protect, and afterwards nourish the young seed|
shoot. The outer leaves which surround the head appear to have the same

ffice as the leaves which surround the growing fruit bud, and that office}
closes with the first year, as does that of the leaves surrounding fruit buds,
when each die and drop off. In my locality the public must have|
perceived more or less clearly the analogy between the heads of cabbage
and the buds of trees, for when they speak of small heads they frequently]
call them "buds." That the close wrapped leaves which make the cabbage]
head and surround the seed germ, situated just in the middle of the head|
jat the termination of the stump, are necessary for its protection and|
nutrition when young, is proved, I think, by the fact that those cabbages|
the heads of which are much decayed, when set out for seed, no matter|

ar 5

20%

Applying margins to the body and to individual elements.

Margins

14. Thinking Inside the Box 377

Margins

Collapsing Margins

When spacing between and around
elements behaves unpredictably,
collapsing margins are often to
blame. Here are a few articles that
dig deep into collapsing margin
behavior. Although they were written
long ago, the information is still solid
and may help you understand what is
happening behind the scenes in your
layouts.

e “No Margin for Error” by Andy
Budd (www.andybudd.com/
archives/2003/11/no_margin_for_
error)

¢ “Uncollapsing Margins” by Eric
Meyer (www.complexspiral.
com/publications/uncollapsing-
margins)

Take a look at Example @ in FIGURE 14-16. Here I've applied the margin
property to the body element of the document. For this particular design, I
set the top margin to zero (0) so the body starts flush against the top edge of
the browser window. Adding equal amounts of margin to the left and right
sides of the body keeps the content of the page centered and gives it a little
breathing room.

Margin Behavior

Although it is easy to write rules that apply margin amounts around HTML
elements, it is important to be familiar with some of the quirks of margin
behavior.

Collapsing margins

The most significant margin behavior to be aware of is that the top and bot-
tom margins of neighboring elements collapse. This means that instead of
accumulating, adjacent margins overlap, and only the largest value is used.

Using the two paragraphs from the previous figure as an example, if the top
element has a bottom margin of 4em, and the following element has a top
margin of 2em, the resulting margin space between elements does not add
up to 6ems Rather, the margins collapse and the resulting margin between
the paragraphs will be 4em, the largest specified value. This is demonstrated
in FIGURE 14-17.

The only time top and bottom margins dont collapse is for floated or
absolutely positioned elements (we’ll get to that in Chapter 15, Floating and
Positioning). Margins on the left and right sides never collapse, so theyre nice
and predictable.

[Collapsing Margin Exampla

iground, presenting at the surface two leaves, which together make nearly a square, like
the first leaves of turnips or radishes.

'
'
'
i In four or five days, if the weather is propitious, the young plants will begin to break
'
'
'

In four or five days, if the weather is propitious, the young plants|
will begin to break ground, presenting at the surface two leaves,|
which together make nearly a square, like the first leaves off
turnips or radishes.

Vertical margins of neighboring elements collapse so that only the
larger value is used.

378 PartlIl. CSS for Presentation

http://www.andybudd.com/archives/2003/11/no_margin_for_error/
http://www.andybudd.com/archives/2003/11/no_margin_for_error/
http://www.andybudd.com/archives/2003/11/no_margin_for_error/

Margins on inline elements

You can apply top and bottom margins to inline text elements (or “non-
replaced inline elements,” to use the proper CSS terminology), but it won't
add vertical space above and below the element, and the height of the line
will not change. However, when you apply left and right margins to inline
text elements, margin space will be held clear before and after the text in the
flow of the element, even if that element breaks over several lines.

Just to keep things interesting, margins on replaced inline elements, such as
images, do render on all sides, and therefore do affect the height of the line.
See FIGURE 14-18 for examples of each.

em { margin: 2em; }

In four or five days, if the weather is propitious, the young

plants will begin to! ,,,,,,,,Jr presenting at the

surface two leaves, which together make nearly a square, like
the first leaves of turnips or radishes.

img { margin: 2em; }

plants will begin to break ground, presenting at
the surface two leaves, which together make nearly a square,
like the first leaves of turnips or radishes.

Examples of margins on inline elements. Only horizontal margins are
rendered on non-replaced elements (top). Margins are rendered on all sides of replaced
elements such as images.

Negative margins

It is worth noting that it is possible to specify negative values for margins.
When you apply a negative margin, the content, padding, and border are
moved in the opposite direction that would have resulted from a positive
margin value.

I'll make this clear with an example. FIGURE 14-19 shows two neighboring
paragraphs with different-colored borders applied to show their boundaries.
In the left view, I've added a 3em bottom margin to the top paragraph, which
has the effect of pushing the following paragraph down by that amount. If
[specify a negative value (—3em), the following element moves up by that
amount and overlaps the element with the negative margin.

Margins

14. Thinking Inside the Box 379

Assigning Display Types

p.top { margin-bottom: 3em; }

p.top { margin-bottom: -3em; }

Pushes the following paragraph down by 3 ems. The following element moves up by 3 ems.

In four or five days, if the weather is propitious, In four or five days, if the weather is propitious,
the young plants will begin to break ground, the young plants will begin to break ground,
presenting at the surface two leaves, which presenting at the surface two leaves, which
together make nearly a square, like the first together make nearly a square, like the first
leaves of turnips or radishes. [EaVes of tulhips o radishes:a!

FIGURE 14-19. Using negative margins.

This may seem like a strange thing to do, and in fact, you probably wouldnt
make blocks of text overlap as shown. The point here is that you can use
margins with both positive and negative values to move elements around on
the page. This is the basis of some older CSS layout techniques.

Now let’s use margins to add some space between parts of the Black Goose
Bakery home page in EXERCISE 14-3.

ASSIGNING DISPLAY TYPES

As long as we're talking about boxes and the CSS layout model, this is a good
time to introduce the display property. You should already be familiar with
the display behavior of block and inline elements. Although HTML assigns
display behaviors (or display types, to use the latest CSS term) to the ele-
ments it defines, there are other XML-based languages that can use CSS that
don’t do the same. For this reason, the display property was created to allow
authors to specify how elements should behave in layouts.

display

Values: inline|block | run-in|flex | grid | flow | flow-root | list-item |
table | table-row-group | table-header-group | table-footer-group |
table-row | table-cell | table-column-group | table-column |
table-caption | ruby | ruby-base | ruby-text | ruby-base-container |
ruby-text-container | inline-block | inline-table | inline-flex |
inline-grid | contents | none

Default: inline

Appliesto: all elements

Inherits: yes

380 Part lIl. CSS for Presentation

Assigning Display Types

EXERCISE 14-3. Adding margin space around elements

It's time to adjust the margins around the elements on the bakery
page. We'll start by adjusting margins on the whole document, and
then make tweaks to each section from top to bottom. You should
have bakery-styles.css open in a text editor.

1. Itis a common practice to set the margin for the body element
to zero, thus clearing out the browser’s default margin setting.
Add this margin declaration to the body styles, and then save
the file and open it in a browser. You'll see that the elements
now go to the very edge of the window with no space between.

body {

margin: 0;

}

NOTE

When the value is 0, you don’t need to provide a specific unit.

2. If you are a careful observer, you may have noticed that there is
still a bit of whitespace above the colored navigation bar. That
happens to be the top margin of the ul list pushing the whole
nav element down from the top edge of the browser. Let’s take
care of that. Add a new style rule in the “nav styles” section of
the style sheet:

nav ul {
margin: 0;

}

3. Margins are good for nudging elements around in the layout. For
example, | think I'd like to move the h1 with the logotype down
a bit, so I'll add a margin to its top edge. | played around with a
few values before deciding on 1.5em for this new style rule:

header h1 {
margin-top: 1.5em;

I'd like the intro paragraph in the header to be a little closer to
the logotype, so let’s get wacky and use a negative top margin to
pull it up. Add this declaration to the existing style rule:

header p {
margin-top: -12px;
4. Give the main section a 2.5% margin on all sides:
main {

margin: 2.5%;

}

5. Add a little extra space above the h3 headings in the main area.

I've chosen 2.5em, but you can play around with different values
to see what you like best:

h3 {

margin-top: 2.5em;

. Finally, add some space around the aside. This time, we’ll do

different amounts on each side for kicks. Put 1em on the top,
2.5% on the right side, 0 on the bottom, and 10% margin on the
left. 'm going to let you do this one yourself. Can you make all
those changes with one declaration? If you want to check your
work, my finished version of the Black Goose Bakery page so far
is available with the exercise materials for this chapter.

. Save the style sheet again, and reload the page in the browser.
It should look like the one in FIGURE 14-20. This isn’t the most
beautiful design, particularly if your browser window is set wide.
However, if you resize your browser window narrow, you'll find
that it wouldn’t be too bad as the small-screen version in a
responsive design. (Bet you can’t wait for the Responsive Web
Design chapter to learn how to fix this!)

Fresh from the Oven

[BREADS

Fresh from the Oven

| BREADS

LN

»

The Black Goose Bakery home page after

padding, borders, and margins are added.

14. Thinking Inside the Box 381

Box Drop Shadows

WARNING

Bear in mind that changing the presen-
tation of an HTML element with the CSS
display property does not change the
definition of that element as block-level
or inline in HTML. Putting a block-level
element within an inline element will
always be invalid, regardless of its dis-
play role.

“Five Ways to Hide Elements in CSS”
by Baljeet Rathi (www.sitepoint.com/
five-ways-to-hide-elements-in-css)
compares various methods for hiding
content, including display: none.

BROWSER SUPPORT NOTE

Browsers released before 2011 require
vendor prefixes for box-shadow. Box
shadows are not supported at all in
Internet Explorer versions 8 and earlier.
This is a case for progressive enhance-
ment—it is likely that a box without a
shadow will be just fine for users clinging
to old browser versions.

The display property defines the type of element box an element generates
in the layout. In addition to the familiar inline and block display types, you
can also make elements display as list items or the various parts of a table.
There are also a number of values for ruby annotation for East Asian lan-
guages. As you can see from the list of values, there are a lot of display types,
but there are only a few that are used in everyday practice.

Display type assignment is useful for achieving layout effects while keeping
the semantics of the HTML source intact. For example, it is common practice
to make 1i elements (which usually display with the characteristics of block
elements) display as inline elements to turn a list into a horizontal navigation
bar. You may also make an otherwise inline a (anchor) element display as a
block in order to give it a specific width and height:

ul.navigation 1i { display: inline; }
ul.navigation 1i a { display: block; }

Another useful value for the display property is none, which removes the
content from the normal flow entirely Unlike visibility: hidden, which
just makes the element invisible but keeps the space it would have occupied
blank, display: none removes the content, and the space it would have occu-
pied is closed up.

One popular use of display: none is to prevent certain content in the source
document from displaying in specific media, such as when the page is print-
ed or displayed on devices with small screens. For example, you could display
URLs for links in a document when it is printed, but not when it is displayed
on a computer screen where the links are interactive.

Be aware that content that has its display set to none still downloads with
the document. Setting some content to display:none for devices with small
screens may keep the page shorter, but it is not doing anything to reduce data
usage or download times.

BOX DROP SHADOWS

We've arrived at the last stop on the element box tour. In Chapter 12,
Formatting Text, you learned about the text-shadow property, which adds a
drop shadow to text. The box-shadow property applies a drop shadow around
the entire visible element box (excluding the margin).

Values: ‘horizontal offset’ ‘vertical offset’ ‘blur distance’ ‘spread distance’ color
inset | none

Default: none

Appliesto: all elements

Inherits: no

382 PartllIl. CSS for Presentation

http://www.sitepoint.com/five-ways-to-hide-elements-in-css
http://www.sitepoint.com/five-ways-to-hide-elements-in-css

The value of the box-shadow property should seem familiar to you after work-
ing with text-shadow: specify the horizontal and vertical offset distances, the
amount the shadow should blur, and a color. For box shadows, you can also
specify a spread amount, which increases (or decreases with negative values)
the size of the shadow. By default, the shadow color is the same as the fore-
ground color of the element, but specifying a color overrides it.

FIGURE 14-21 shows the results of the following code examples. ® adds a
simple box shadow 6 pixels to the right and 6 pixels down, without blur or
spread. ® adds a blur value of 5 pixels, and ® shows the effect of a 10-pixel
spread value. Box shadows are always applied to the area outside the border of
the element (or the place it would be if a border isn't specified). If the element
has a transparent or translucent background, you will not see the box shadow
in the area behind the element.

® box-shadow: 6px 6px gray;

® box-shadow: 6px 6px S5px gray; /* 5 pixel blur */

@ box-shadow: 6px 6px 5px 10px gray; /* 5px blur, 10px spread */
You can make the shadow render inside the edges of the visible element box

by adding the inset keyword to the rule. This makes it look like the ele-
ment is pressed into the screen (FIGURE 14-22).

box-shadow: inset 6px 6px 5px gray;

Box Drop Shadows

Adding drop
shadows around an element with the
box-shadow property.

An inset box shadow renders on the inside of the element box.

As for text-shadow, you can specify multiple box shadows on an element by
providing the values in a comma-separated list. The values that come first get
placed on top, and subsequent shadows are placed behind it in the order in
which they appear in the list.

WARNING

Box shadows, text shadows, and gra-
dients take a lot of processor power
because you are shifting the burden of
interpreting and rendering them onto
the browser. The more you use, the slow-
er performance will be, and as we all
know, performance is everything on the
web. So go easy on them.

14. Thinking Inside the Box 383

Test Yourself

* Outer margin edges are indicated
by dotted blue lines.

¢ All necessary measurements are
provided in blue.

¢ Borders are either black or red.

TEST YOURSELF

At this point, you should have a good feel for element boxes and how to
manipulate the space within and around them. In the next chapter, we’ll start
moving the boxes around on the page, but first, why not get some practice at
writing rules for padding, borders, and margins in the following test?

In this test, your task is to write the declarations that create the effects shown
in each example in FIGURE 14-23 (see Useful Hints). All the paragraphs shown
here share a rule that sets the dimensions and the background color for each
paragraph. You just need to provide the box-related property declarations.
Answers, as always, appear in Appendix A.

0

0

CSS REVIEW: BOX PROPERTIES

Property Description
border A shorthand property that combines border properties
border-top Combines border properties for each side of the element

border-right
border-bottom
border-left

border-color

Shorthand property for specifying the color of borders

border-top-color
border-right-color
border-bottom-color
border-left-color

Specifies the border color for each side of the element

border-image

Adds an image inside the border area

border-image-outset

How far the border image should be positioned away from the border area.

border-image-repeat

The manner in which the image fills the sides of the border

border-image-slice

The points at which the border image should be divided into corners and sides

border-image-source

The location of the image file to be used for the border image

Table continues...

384 Part lIl. CSS for Presentation

CSS Review: Box Properties

. 2em

Lorem ipsum dolor sit amet, All of the samplesm u 0 ol T :

isci . . orem ipsum dolor sit amet,
idiisnninisiel a_dlplscmg ol this exercise start consecteriuer adipiscing elit.
Praesent porttitor venenatis t styled h Lorermn ipsum dolor sit amet] ipl 9 =
mi. Nunc semper, orci a outstyled as shown v " . Praesent porttitor venenatis
dipiscing tempus, magna here and share the coneactatorgadipisc pojgen: mi. MNunc semper, orci a
:u:::scvagrius nisl:.)l ’impergiet ties listed o esent fpo o fRvencnatts adi.piscing tem;?ust magna

7 roperties liste a
fermentum nisi erat vel arcu. prop plh Cws SEnpdh SRl g nulla wvarius nisl, imperdiet =

below. adipiscing tempus, magnal
nulla varius nisl, imperdiet]
fermentum nisi erat vel arcu.

2em

= [J]
fermentum nisi erat vel arcu.

p { background-color: #C2F670;
width: 200px; 2em
height: 200px;}

. 4 pixel .
4 pixels pixets 4 pixels

2em

Lorem ipsum dolor sit amet, Lorem ipsum dolor sit amet,

lem :
Lorem ipsum dolor sit amet, 1

consectetuer adipiscing elit.
Praesent porttitor venenatis
mi. Nunc semper, orci a
adipiscing tempus, magna

consectetuer adipiscing elit.
Praesent porttitor venenatis
mi. Nunc semper, orci a
adipiscing tempus, magna

consectetuer adipiscing elit.
Praesent porttitor venenatis |
mi. Nunc semper, orcl a
adipiscing tempus, magna

2em

|
|
|
|
I 6€m termentum nisi erat vel arcu._y 6em
|
|
|

nulla varius nisl, imperdiet £ nulla varius nisl, imperdiet nulla wvarius nisl, imperdietgl
fermenturmn nisi erat vel arcu. g fermentum nisi erat vel arcu.
1
|
1
[gt e - e ol
2em 2em lem

2 pixels

3 lem
Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.
Praesent porttitor venenatis
mi. MNunc semper, orci a

"o adipiscing tempus, magna o
(Same amount of £ nulla varius nisl, imperdiet X (Same amount of
margin on left o fermentum nisi erat vel arcu. marg]n on left
and right sides) and right sides)

lem

Write the declarations for these examples.

14. Thinking Inside the Box 385

CSS Review: Box Properties

Property

Description

border-image-width

The width of the space the border image should occupy

border-radius

Shorthand property for rounding the corners of the visible element box

border-top-left-radius
border-top-right-radius

border-bottom-right-radius border-

bottom-left-radius

Specifies the radius curve for each individual corner

border-style

Shorthand property for specifying the style of borders

border-top-style
border-right-style
border-bottom-style
border-left-style

Specifies the border style for each side of the element

border-width

Shorthand property for specifying the width of borders

border-top-width
border-right-width
border-bottom-width
border-left-width

Specifies the border width for each side of the element

box-sizing Specifies whether width and height dimensions apply to the content box or the
border box

box-shadow Adds a drop shadow around the visible element box

display Defines the type of element box an element generates

height Specifies the height of the element’s content box or border box

margin Shorthand property for specifying margin space around an element

margin-top Specifies the margin amount for each side of the element

margin-right
margin-bottom
margin-left

max-height Specifies the maximum height of an element

max-width Specifies the maximum width of an element

min-height Specifies the minimum height of an element

min-width Specifies the minimum width of an element

outline Shorthand property for adding an outline around an element

outline-color

Sets the color of the outline

outline-offset

Sets space between an outline and the outer edge of the border

outline-style

Sets the style of the outline

outline-width

Sets the width of the outline

overflow

Specifies how to handle content that doesn fit in the content area

padding

Shorthand property for specifying space between the content area and the border

padding-top
padding-right
padding-bottom
padding-left

Specifies the padding amount for each side of the element

width

Specifies the width of an element’s content box or border box

386 Part lIl. CSS for Presentation

FLOATING AND
POSITIONING

At this point, you've learned dozens of CSS properties that let you change
the appearance of text elements and the boxes they generate. But so far, we've
merely been formatting elements as they appear in the flow of the document.

In this chapter, we'll look at floating and positioning, the CSS methods
for breaking out of the normal flow and arranging elements on the page.
Floating an element moves it to the left or right and allows the following text
to wrap around it. Positioning is a way to specify the location of an element
anywhere on the page with pixel precision.

Before we start moving elements around, let’s be sure we are well acquainted
with how they behave in the normal flow.

NORMAL FLOW

We've covered the normal flow in previous chapters, but it’s worth a refresher.
In the CSS layout model, text elements are laid out from top to bottom in the
order in which they appear in the source, and from left to right in left-to-right
reading languages (see Note). Block elements stack up on top of one another
and fill the available width of the browser window or other containing ele-
ment. Inline elements and text characters line up next to one another to fill
the block elements.

When the window or containing element resizes, the block elements expand
or contract to the new width, and the inline content reflows to fit as shown
in FIGURE 15-1.

Objects in the normal flow affect the layout of the objects around them. This
is the behavior you've come to expect in web pages—elements don’t overlap
or bunch up. They make room for one another.

CHAPTER

15

IN THIS CHAPTER

Floating elements to the
left and right

Clearing floated elements
Containing floated elements
Creating text-wrap shapes
Relative positioning

Absolute positioning and
containing blocks

Fixed positioning

NOTE

For right-to-left reading languages such
as Arabic and Hebrew, the normal flow is
top to bottom and right to left.

387

Floating

Inline content reflows to fit the width of the block.

Blocks are laid out in 2 L]
the order in which abcdefghijklmnopqrstuvwxyz abcdefghijkl
Egiy;caeppearlnthe <p> mnopqrstuv
. WXyz
Each block starts on a <p>
new line. <h1> |
P
p> <p>
)
\ <p>
Blocks fill the available width.

One more example of the normal flow behavior.

We've seen all of this before, but in this chapter we’ll be paying attention to
whether elements are in the flow or removed from the flow. Floating and
positioning change the relationship of elements to the normal flow in dif-
ferent ways. Let’s first look at the special behavior of floated elements (or
“floats” for short).

FLOATING

Simply stated, the float property moves an element as far as possible to the
left or right, allowing the following content to wrap around it. It is a unique
feature built into CSS with some interesting behaviors.

Values: left | right | none

Default: none

Appliesto: all elements

Inherits: no

The best way to explain floating is to demonstrate it. In this example, the
float property is applied to an img element to float it to the right. FIGURE

15-2 shows how the paragraph and the contained image are rendered by
default (top) and how it looks when the float property is applied (bottom).

THE MARKUP

<p> After the cream is frozen rather
stiff,..

THE STYLES
img {
float: right;
}

388 Part lIl. CSS for Presentation

Inline image in the normal flow f Space next to image is held clear

After the cream is frozen rather stiff, prepare a tub or bucket of
coarsely chopped ice, with one-half less salt than you use for freezing. To each ten

pounds of ice allow one quart of rock salt. Sprinkle a little rock salt in the bottom of your
bucket or tub, then put over a layer of cracked ice, another layer of salt and cracked ice,
and on this stand your mold, which is not filled, but is covered with a lid, and pack it all
around, leaving the top, of course, to pack later on. Take your freezer near this tub.
Remove the lid from the mold, and pack in the cream, smoothing it down until you have
filled it to overflowing. Smooth the top with a spatula or limber knife, put over a sheet of
waxed paper and adjust the lid.

Image moves over, and text
Inline image floated to the right wraps around it \

After the cream is frozen rather stiff, prepare a tub or bucket of
coarsely chopped ice, with one-half less salt than you use for
freezing. To each ten pounds of ice allow one quart of rock salt.
Sprinkle a little rock salt in the bottom of your bucket or tub,
then put over a layer of cracked ice, another layer of salt and
cracked ice, and on this stand your mold, which is not filled, but
is covered with a lid, and pack it all around, leaving the top, of
course, to pack later on. Take your freezer near this tub.
Remove the lid from the mold, and pack in the cream,
smoothing it down until you have filled it to overflowing. Smooth the top with a spatula or
limber knife, put over a sheet of waxed paper and adjust the lid.

The layout of an image in the normal flow (top), and with the float
property applied (bottom).

That's a nice effect. We've gotten rid of a lot of wasted space on the page, but
now the text is bumping right up against the image. How do you think you
would add some space between the image element and the surrounding text?
If you guessed “add a margin,” youre absolutely right. I'll add 1em of space on
all sides of the image with the margin property (FIGURE 15-3). You can begin
to see how the box properties work together to improve page layout.

img {
float: right;
margin: lem;

}

Indicates outer margin edge

(dotted line does not appear in the browser) \

After the cream is frozen rather stiff, prepare a tub or
bucket of coarsely chopped ice, with one-half less salt than
you use for freezing. To each ten pounds of ice allow one
your bucket or tub, then put over a layer of cracked ice, i
another layer of salt and cracked ice, and on this stand your!
mold, which is not filled, but is covered with a lid, and pack |
it all around, leaving the top, of course, to pack later on.
Take your freezer near this tub. Remove the lid from the
mold, and pack in the cream, smoothing it down until you . _______________________}
have filled it to overflowing. Smooth the top with a spatula or limber knife, put over a
sheet of waxed paper and adjust the lid.

Adding a lem margin around the floated image.

Floating

15. Floating and Positioning 389

Floating

The previous two figures demonstrate some key behaviors of floated elements:

A floated element is like an island in a stream.

First and foremost, you can see that the image is removed from its posi-
tion in the normal flow yet continues to influence the surrounding
content. The subsequent paragraph text reflows to make room for the
floated img element. One popular analogy compares floats to islands in a
stream—they are not in the flow, but the stream has to flow around them.
This behavior is unique to floated elements.

Floats stay in the content area of the containing element.

It is also important to note that the floated image is placed within the
content area (the inner edges) of the paragraph that contains it. It does
not extend into the padding area of the paragraph.

Margins are maintained.

In addition, margins are held on all sides of the floated image, as indicated
in FIGURE 15-3 by the dotted line. In other words, the entire element box,
from outer edge to outer edge, is floated.

Floating Inline and Block elements

Those are the basics, so now let’s look at more examples and explore addi-
tional floating behaviors. It is possible to float any HTML element, both
inline and block-level, as we'll see in the following examples.

Floating an inline text element

In the previous example, we floated an inline image element. This time, let’s
look at what happens when you float an inline text (non-replaced) element—
in this case, a span of text (FIGURE 15-4).

THE MARKUP

<p>TIP: Make sure that your packing tub or bucket
has a hole below the top of the mold so the water will drain
off.After the cream is frozen rather stiff, prepare a tub or
bucket of..</p>

THE STYLES

span.tip {
float: right;
margin: lem;
width: 200px;
color: #fff;
background-color: lightseagreen;
padding: 1lem;

390 Part lIl. CSS for Presentation

After the cream is frozen rather stiff, prepare a tub or
bucket of coarsely chopped ice, with one-half less salt
than you use for freezing. To each ten pounds of ice allow
one quart of rock salt. Sprinkle a little rock salt in the
bottom of your bucket or tub, then put over a layer of
cracked ice, another layer of salt and cracked ice, and on
this stand your mold, which is not filled, but is covered
with a lid, and pack it all around, leaving the top, of
course, to pack later on. Take your freezer near this tub. Remove the lid from the mold,
and pack in the cream, smoothing it down until you have filled it to overflowing. Smooth
the top with a spatula or limber knife, put over a sheet of waxed paper and adjust the lid.

TIP: Make sure that
your packing tub or
bucket has a hole below

the top of the mold so
the water will drain off.

Floating an inline text (non-replaced) element.

At a glance, it is behaving the same as the floated image, which is what we’d
expect. But there are some subtle things at work here that bear pointing out:

Always provide a width for floated text elements.

First, you'll notice that the style rule that floats the span includes the
width property. It is necessary to specify a width for a floated text element
because without one, its box is sized wide enough to fit its content (auto).
For short phrases that are narrower than the container, that might not be
an issue. However, for longer, wrapped text, the box expands to the width
of the container, making it so wide that there wouldn’t be room to wrap
anything around it. Images have an inherent width, so we didnt need to
specify a width in the previous example (although we certainly could have).

Floated inline elements behave as block elements.

Notice that the margin is held on all four sides of the floated span text,
even though top and bottom margins are usually not rendered on inline
elements (see FIGURE 14-20 in the previous chapter). That is because all
floated elements behave like block elements. Once you float an inline
element, it follows the display rules for block-level elements, and margins
are rendered on all four sides.

Margins on floated elements do not collapse.

In the normal flow, abutting top and bottom margins collapse (overlap),
but margins for floated elements are maintained on all sides as specified.

Floating block elements

Let’s look at what happens when you float a block within the normal flow.
In this example, the whole second paragraph element is floated to the left
(FIGURE 15-5).

THE MARKUP

<p>If you wish to pack ice cream...</p>

<p id="float">After the ice cream is rather stiff,...</p>
<p>Make sure that your packing tub or bucket...</p>

<p>As cold water is warmer than the ordinary...</p>

Floating

15. Floating and Positioning 391

Floating

THE STYLES

p {

border: 2px red solid;
}

#float {
float: left;
width: 300px;
margin: lem;
background: white;

If you wish to pack ice cream and serve

it in forms or shapes, it must be molded after the freezing. The

handiest of all of these molds is either the brick or the melon mold.

|After the cream is frozen rather stiff,
lprepare a tub or bucket of coarsely
chopped ice, with one-half less salt
{than you use for freezing. To each
ten pounds of ice allow one quart of
rock salt. Sprinkle a little rock salt in

;Remove the lid from the mold, and pack in the cream, smoothing it
}down until you have filled it to overflowing. Smooth the top with a
ispatula or limber knife, put over a sheet of waxed paper and adjust
ithe lid. Have a strip of muslin or cheese cloth dipped in hot paraffin
lor suet and quickly bind the seam of the lid. This will remove all
\danger of salt water entering the pudding. Now cover the mold
thoroughly with ice and salt.

i

the bottom of your bucket or tub,

{“lthen put over a layer of cracked ice,
@nother layer of salt and cracked ice,
land on this stand your mold, which
lis not filled, but is covered with a lid,
land pack it all around, leaving the

Make sure that your packing tub or bucket has a hole below the top
of the mold, so that the salt water will be drained off. If you are
1na:king in small molds, each mold, as fast as it is closed, should be
\wrapped in wax paper and put down into the salt and ice. These
\must be filled quickly and packed.

i

I_top, of course, to pack later on. Take

lyour freezer near this tub.

lthe cold water spigot, then quickly wipe

IAs cold water is warmer than the ordinary freezing mixture, after
iyou lift the can or mold, wipe off the salt, hold it for a minute under

the top and bottom and remove the lid. Loosen the pudding with a

limber knife, hold the mold a little slanting, give it a shake, and nine times out of ten it will come out quickly,
having the perfect shape of the can or mold. If the cream still sticks and refuses to come out, wipe the mold

ith a towel wrung from warm water. Hat water spoils the gloss of puddings, and unless you know exactly
how to use it, the cream is too much melted to garnish.

If you wish to pack ice cream and serve it in forms or shapes, it must be molded after the freezing. The
handiest of all of these molds is either the brick or the melon mold.

After the cream is frozen rather stiff,
prepare a tub or bucket of coarsely
chopped ice, with one-half less salt
than you use for freezing. To each
ten pounds of ice allow ene quart of
rock salt. Sprinkle a little rock salt in
the bottom of your bucket or tub,
then put over a layer of cracked ice,
another layer of salt and cracked ice,
and on this stand your mold, which
is not filled, but is covered with a lid,
and pack it all around, leaving the
top, of course, to pack later on. Take
your freezer near this tub.

Remove the lid from the mold, and pack in the cream, smoothing it
down until you have filled it to overflowing. Smooth the top with a
spatula or limber knife, put over a sheet of waxed paper and adjust
the lid. Have a strip of muslin or cheese cloth dipped in hot paraffin
or suet and quickly bind the seam of the lid. This will remove all
danger of salt water entering the pudding. Now cover the mold
thoroughly with ice and salt.

Make sure that your packing tub or bucket has a hole below the top
of the mold, so that the salt water will be drained off. If you are
packing in small molds, each mold, as fast as it is closed, should be
wrapped in wax paper and put down into the salt and ice. These
must be filled quickly and packed.

As cold water is warmer than the ordinary freezing mixture, after you
lift the can or mold, wipe off the salt, hold it for a minute under the

cold water spigot, then quickly wipe the top and bottom and remove the lid. Loosen the pudding with a limber
knife, hold the mold a little slanting, give it a shake, and nine times out of ten it will come out quickly, having
the perfect shape of the can or mold. If the cream still sticks and refuses to come out, wipe the mold with a
towel wrung from warm water. Hot water spoils the gloss of puddings, and unless you know exactly how to
use it, the cream is too much melted to garnish.

Floating a block-level element.

I've added a red border aroun

In addition, I've made the background of the floated paragraph white so it
rgin on all sides (indicated with a blue dotted
line). The bottom view in FIGURE 15-5 shows how it looks with all the extra

stands out and added a 1em ma

d all p elements to reveal their

stuff turned off, as it would more likely appear on a real page.

Just as we saw with the image,

in this example:

the paragraph moves off to the side (left this
time), and the following content wraps around it, even though blocks nor-
mally stack on top of one another. There are a few things [want to point out

392 PartlIl. CSS for Presentation

boundaries.

You must provide a width for floated block elements.

If you do not provide a width value, the width of the floated block will be
set to auto, which fills the available width of the browser window or other
containing element. There’s not much sense in having a full-width floated
box, because the idea is to wrap text next to the float, not start below it.

Elements do not float higher than their reference in the source.

A floated block will float to the left or right relative to where it occurs in
the source, allowing the following elements in the flow to wrap around
it. It stays below any block elements that precede it in the flow (in effect,
it is “blocked” by them). That means you can't float an element up to the
top corner of a page, even if its nearest ancestor is the body element. If you
want a floated element to start at the top of the page, it must appear first
in the document source (see Note).

Non-floated elements maintain the normal flow.

The red borders in the top image reveal that the element boxes for the
surrounding paragraphs still extend the full width of the normal flow.
Only the content of those elements wraps around the float. This is a good
model to keep in mind.

For example, adding a left margin to the surrounding paragraphs would
add space on the left edge of the page, not between the text and the
floated element. If you want space between the float and the wrapped
text, you need to apply the margin to the float itself.

Clearing Floated Elements

If youe going to be floating elements around, it’s important to know how
to turn the text wrapping off and get back to normal flow as usual. You do
this by clearing the element that you want to start below the float. Applying
the clear property to an element prevents it from appearing next to a floated
element and forces it to start against the next available “clear” space below
the float.

Values: left | right | both | none
Default: none
Appliesto: block-level elements only

Inherits: no

Keep in mind that you apply the clear property to the element you want
to start below the floated element, not the floated element itself. The left
value starts the element below any elements that have been floated to the
left. Similarly, the right value makes the element clear all floats on the right
edge of the containing block. If there are multiple floated elements, and you

Floating

NOTE

Absolute positioning is the CSS method
for placing elements on a page regard-
less of how they appear in the source.
We’ll get to absolute positioning later
in this chapter. You can also change
the order in which elements display by
using Flexbox and Grid as discussed in
Chapter 16, CSS Layout with Flexbox
and Grid.

15. Floating and Positioning 393

Floating

Float-Based Layouts

Curiously, there were no tools for
true page layout in CSS1 or CSS2.
Some clever designers realized we
could use the CSS float behavior to
line up elements horizontally, and
floats started being used to turn lists
into navigation bars and even turn
whole sections of a document into
columned layouts.

Float-based layouts are still prevalent
on the web as | write this, but now
that better CSS layout tools like
Flexbox and Grid are gaining browser
support, we are recognizing our float-
based layouts for the hacks they are.
Float-based layouts will eventually
vanish like the table-based layouts of
the 1990s.

That said, we are in a time of
transition. Not all browsers in use
today support newer standards like
Flexbox and Grid, so depending on the
browsers you need to support, you
may still need to provide a fallback
design that is universally supported.
Floats will get the job done.

If you need to support older browsers
that do not support Flexbox and

Grid, you can download my article
“Page Layout with Floats and
Positioning” (PDF), which is
available at learningwebdesign.
com/articles/. It contains lessons on
how to create navigation bars with
floats and a number of templates for
creating multicolumn layouts with
floats and positioning. You may never
need to know these techniques, but
the information is there if you do.

want to be sure an element starts below all of them, use the both value to
clear floats on both sides.

In this example, the clear property has been used to make h2 elements start
below left-floated elements. FIGURE 15-6 shows how the h2 heading starts at
the next available clear edge below the float.

img {
float: left;
margin-right: .5em;

h2 {
clear: left;
margin-top: 2em;

= If pure raw cream is stirred rapidly, it swells and becomes frothy, like the beaten whites of eggs,
« > and is "whipped cream." To prevent this in making Philadelphia Ice Cream, one-half the cream is
scalded, and when it is very cold, the remaining half of raw cream is added. This gives the smooth,
light and rich consistency which makes these creams so different from others.

USE OF FRUITS

Use fresh fruits in the summer and the best canned unsweetened fruits in the winter. If sweetened fruits must
be used, cut down the given quantity of sugar. Where acid fruits are used, they should be added to the cream
after it is partly frozen.

The time for freezing varies according to the quality of cream or milk or water; water ices require a longer
time than ice creams. It is not well to freeze the mixtures too rapidly; they are apt to be coarse, not smooth,
and if they are churned before the mixture is icy cold they will be greasy or "buttery."

Clearing a left-floated element.

Notice in FIGURE 15-6 that although there is a 2em top margin applied to
the h2 element, it is not rendered between the heading and the floated image.
That’s the result of collapsing vertical margins in the flow. If you want to
make sure space is held between a float and the following text, apply a bot-
tom margin to the floated element itself.

By now you have enough float know-how to give it a try in EXERCISE 15-1.

Floating Multiple Elements

It’s perfectly fine to float multiple elements on a page or even within a single
element. In fact, for years, floats have been the primary method for lining
up elements like navigation menus and even for creating whole page layouts
(please take time to read the sidebar “Float-Based Layouts”).

When you float multiple elements, there is a complex system of behind-the-
scenes rendering rules that ensures floated elements do not overlap. You can
consult the CSS specification for details, but the upshot of it is that floated
elements will be placed as far left or right (as specified) and as high up as
space allows.

394 Part lIl. CSS for Presentation

EXERCISE 15-1. Floating images

Floating

In the exercises in this chapter, we’ll make further improvements to
the Black Goose Bakery home page that we worked on in Chapter
14, Thinking Inside the Box. If you did not follow along in the
last chapter, or if you would just like a fresh start, there is a copy
of the document in its most recent state (bakery_ch15.html) in the
Chapter 15 materials (learningwebdesign.com/5e/materials).

1. Open the CSSfile in a text editor and the HTML document in
the browser. We'll start by removing wasted vertical space next
to the baked good images by floating those images to the left.
We'll create a new style rule with a contextual selector to target
only the images in the main section:

main img {
float: left;
}
Save the CSS file and refresh the page in the browser, and you'll
see that we have some post-float tidying up to do.

2. | want the “Learn more” links to always appear below the
images so they are clearly visible and consistently on the left
side of the page. Fortunately, the paragraphs with those links are
marked up with the class “more” and there is already a style rule
for them using a class selector. Make those paragraphs clear any
floats on the left edge.

Fresh from the Oven

p.more {

clear: left;

}

3. Lastly, we'll adjust the spacing around the floated images. Give
both images a lem margin on the right and bottom sides by
using the shorthand margin property:

main img {
float: left;
margin: 0 lem lem O;

}

I feel like the muffin image could use extra space on the left
side so it lines up better with the bread. Use this nifty attribute
selector to grab any image whose src attribute contains the
word muffin (there’s only one):

img[src*="muffin"] {
margin-left: 50px;
}

FIGURE 15-7 shows the new and improved “Fresh from the Oven”
section.

| BREADS

LEARN MORE ABOUT OUR BAKING PROCESS...

Our breads are made daily from highest-quality whole grain flour,

water, salt, and yeast or sourdough starter. Simply and naturally, and
never any preservatives. Patience is key to achieving the proper level
of fermentation and baking each loaf to perfection. Awvailable in whole

grain, sourdough, olive loaf, classic rye, and potato-onion.

MUFFINS

e

seasonal muffin flavors!

LEARN MORE ABOUT HOW WE MAKE OUR MUFFINS...

Every day, we offer a large selection of muffins, including blueberry,
multi-berry, bran, corn, lemon-poppyseed, and chocolate. Our muffins

are made from scratch each day. Stop by to see our

The product section with floated images and wrapped text has less

wasted space.

15. Floating and Positioning 395

http://www.learningwebdesign.com/5e/materials

Floating

FIGURE 15-8 shows what happens when a series of sequential paragraphs is
floated to the same side. The first three floats start stacking up from the left
edge, but when there isn't enough room for the fourth, it moves down and to
the left until it bumps into something—in this case, the edge of the browser
window. However, if one of the floats, such as P2, had been very long, it would
have bumped up against the edge of the long float instead. Notice that the
next paragraph in the normal flow (P6) starts wrapping at the highest point

it can find, just below P1.

i[PARAGRAPH 11

P2] (P31 P41 [P6]
Elements floated to the -
same side line up.

. (P8]

If there is not enough
room, subsequent

=]

elements move down

and as far left as possible.

[P10]

o

Multiple floated elements line up and do not overlap.

THE MARKUP

<p>[PARAGRAPH 1] ONCE upon a time..</p>
<p class="float">[P2]..</p>

<p class="float">[P3]..</p>
<p class="float">[P4]..</p>
<p class="float">[P5]..</p>
<p>[P6]..</p>

<p>[P7].</p>

<p>[P8]..</p>

<p>[P9]..</p>

<p>[P10]..</p>

THE STYLES

p.float {
float: left;
width: 200px;
margin: Opx;
background: #F2F5d5;
color: #DAEAB1;

396 Part lIl. CSS for Presentation

Containing Floats

Floating

This is a good time to address a quirky float behavior: float containment. By
default, floats are designed to hang out of the element they are contained in.
Thats just fine for allowing text to flow around a floated image, but some-

times it can cause some unwanted behaviors.

Take a look at the example in FIGURE 15-9. It would be nicer if the border
expanded around all the content, but the floated image hangs out the bottom.

SUNDAE BUFFET
Topping list

The containing element does not expand to accommodate the floated

image as indicated by its blue border.

If you float all the elements in a container element, there
will be no elements remaining in the flow to hold the
containing element open. This phenomenon is illustrated
in FIGURE 15-10. The #container div contains two para-
graphs. The view of the normal flow (top) shows that the
#container has a background color and border that wraps
around the content.
<div id="container">
<p>.</p>

<p>.</p>
</div>

#container {
background: #f2f5d5;
border: 2px dashed green;

}

However, when both paragraphs (that is, all of the content
within the div) are floated, as shown in the figure on the
bottom), the element box for the #container closes up to
a height of zero, leaving the floats hanging down below
(you can still see the empty border at the top). There’s no
content left in the normal flow to give the containing div
height. This clearly is not the effect we are after.

p{
float: left;
width: 44%;
padding: 2%;

In the normal flow, the container div encloses
the paragraphs.

‘Etiam convallis, nulla ut ullamcorper mollis, ipsum purus imperdiet tellus, ut ultrices massa tortor vitae nulla. Fusce |
‘non arcu quam. Nullam lacinia facilisis lacus, et varius ligula imperdiet ut. Morbi molestie auctor magna, quis venenatis|
'fclls adipiscing sed. Aliqguam ipsum nibh, dapibus sit amet tristique at, tincidunt in leo. Quisque accumsan lobortis :
lacus, id gravida tortor luctus et. Donec quis diam et odio volutpat blandit nec nec enim. Nam vitae vestibulum risus. 1
{Cras in adipiscing odio. Nam vel dolor id purus pretium suscipit quis in quam. Proin varius tincidunt facilisis. Maccenas,
‘eget felis ut nisi ullamcorper pmunm non at nulla. Etiam suscipit aliquet velit ac facilisis. Etiam egestas ante eu velit !

ornare i leo sed lectus posuere eget convallis nisi placerat. Vestibulum porttitor

»cgcsus ornare.

'Cras id ipsum dui. Dencc semper congue lectus quis vulputate. Ut felis leo, bibendum at blandit non, luctus ac lorem. |
Nunc vitae ligula ut neque convallis sagittis. Quisque consequat orci sed arcu tincidunt et volutpat tellus tempor. Nulla *
iulputate ante nec felis elementum auctor. Duis magna neque, posuere eu hendrerit sit amet, dapibus quis quam. .
\Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Class aptent taciti sociosqu |
1ad litora torquent per conubia nostra, per inceptos himenaeos. Nunc dapibus dui dignissim dolor rutrum vel consequat |
:nibh sagittis. Morbi non dolor diam, nec iaculis neque. Aenean at eros sit amet velit iaculis porttitor. Nam lobortis 1
1sodales augue, sit amet tincidunt erat sagittis eu. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per
linceptos himenacos. Donec ut ultricies velit. Quisque tempor fermentum ante, quis tempus est fringilla eu. 1
'

When both paragraphs are floated, the container
does not stretch around them.

Etiam convallis, nulla ut ullamcorper mollis, ipsum
purus imperdiet tellus, ut ultrices massa tortor vitae
nulla. Fusce non arcu quam. Nullam lacinia facilisis
lacus, et varius ligula imperdiet ut. Morbi molestie
auctor magna, quis venenatis felis adipiscing sed.
Aliquam ipsum nibh, dapibus sit amet tristique at,
tincidunt in lco. Quisque accumsan lobortis lacus, id
gravida tortor luctus et. Donec quis diam et odio
volutpat blandit nec nec enim. Nam vitae vestibulum
risus. Cras in adipiscing odio. Nam vel dolor id
purus pretium suscipit quis in quam. Proin varius
tincidunt facilisis. Maecenas eget felis ut nisi
ullamcorper pretium non at nulla. Etiam suscipit
aliquet velit ac facilisis. E.nam egestas ante eu velit

ornare. i leo sed
lectus posuere eget convallis nisi placerat.
‘Vestibulum porttitor egestas ornare.

Cras id ipsum dui. Donec semper congue lectus
quis vulputate. Ut felis leo, bibendum at blandit non,
luctus ac lorem. Nunc vitae ligula ut neque convallis
sagittis. Quisque consequat orci sed arcu tincidunt et
volutpat tellus tempor. Nulla vulputate ante nec felis
elementum auctor. Duis magna neque, posuere eu
hendrerit sit amet, dapibus quis quam. Pellentesque
habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Class aptent
taciti sociosqu ad litora torquent per conubia nostra,
per inceptos himenaeos. Nunc dapibus dui dignissim
dolor rutrum vel consequat nibh sagittis. Morbi non
dolor diam, nec iaculis neque. Acnean at eros sit
amet velit iaculis porttitor. Nam lobortis sodales
augue, sit amet tincidunt erat sagittis eu. Class
aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos. Donec ut ultricies
velit. Quisque tempor fermentum ante, quis tempus
est fringilla eu

The container box disappears entirely
when all its contents are floated.

15. Floating and Positioning 397

Floating

Fortunately, there are a few fixes to this problem, and they are pretty straight-
forward. The most popular and foolproof solution is the “clearfix” technique.
It uses the :after pseudo-element to insert a character space after the con-
tainer, set its display to “block,” and clear it on both sides. For more informa-
tion on this version of clearfix, see Thierry Koblentzs article “The very latest
clearfix reloaded” (cssmojo.com/the-very-latest-clearfix-reloaded). Here it is
applied to the #container div in FIGURE 15-10:

The Future of Clearfix

A new display value, flow-root, may
make the clearfix hack obsolete once
and for all. Setting the display of
a container element to flow-root
makes the element automatically
expand to contain its floats. As of this
writing, it is still in an experimental
phase, but it’s worth keeping an eye
on. A potential disadvantage is that it border: 2px dashed green;
disables collapsing margins between padding: lem;
the element and its first/last child, }
which can produce unpredictable
results. You can read more about
the flow-root method in Rachel
Andrew’s post “The end of the
clearfix hack?” (rachelandrew.co.uk/
archives/2017/01/24/the-end-of-the-
clearfix-hack).
- J }
FIGURE 15-11 shows the result of applying a containment technique to the
previous examples. Either will do the trick.

#container:after {
content: " ";
display: block;
clear: both;
background-color: #f2f5ds; /*light green*/

Another option is to float the containing element as well and give it a width
of 100%:
#container {

float: left;
width: 100%;

SUNDAE BUFFET
Topping list

Etiam convallis, nulla ut ullamcorper mollis, ipsum
purus imperdiet tellus, ut ultrices massa tortor vitae
nulla. Fusce non arcu quam. Nullam lacinia facilisis
lacus, et varius ligula imperdiet ut. Morbi molestie
auctor magna, quis venenatis felis adipiscing sed.
Aliquam ipsum nibh, dapibus sit amet tristique at,
tincidunt in leo. Quisque accumsan lobortis lacus, id
gravida tortor luctus et. Donec quis diam et odio
volutpat blandit nec nec enim. Nam vitae vestibulum

purus pretium suscipit quis in quam. Proin varius
tincidunt facilisis. Maecenas eget felis ut nisi
ullameorper pretium non at nulla. Etiam suscipit
aliquet velit ac facilisis. Etiam egestas ante eu velit
ullamcorper ornare. Suspendisse vestibulum leo sed
lectus posuere eget convallis nisi placerat.
Vestibulum porttitor egestas ornare.

Cras id ipsum dui. Donec semper congue lectus
«quis vulputate. Ut felis leo, bibendum at blandit non,
luctus ac lorem. Nunc vitae ligula ut neque convallis
sagittis. Quisque consequat orci sed arcu tincidunt et
volutpat tellus tempor. Nulla vulputate ante nec felis
elementum auctor. Duis magna neque, posuere eu
‘hendrerit sit amet, dapibus quis quam. Pellentesque
habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Class aptent
taciti sociosqu ad litora torquent per conubia nostra,
per inceptos himenacos. Nunc dapibus dui dignissim
dolor rutrum vel consequat nibh sagittis. Morbi non
dolor diam, nec iaculis neque. Aenean at eros sit
amet velit iaculis porttitor. Nam lobortis sodales
augue, sit amet tincidunt erat sagittis eu. Class
aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos. Donec ut ultricies
velit. Quisque tempor fermentum ante, quis tempus
est fringilla eu.

'
'
E risus. Cras in adipiscing odio. Nam vel dolor id
'
'

Our hanging floats are now contained.

That covers the fundamentals of floating. If you are thinking that rectangular
text wraps are a little ho-hum, you could add some pizzazz (or just eliminate
extra whitespace) by using CSS Shapes.

398 Part lIl. CSS for Presentation

FANCY TEXT WRAP WITH CSS SHAPES

Look at the previous float examples, and you will see that the text always
wraps in a rectangular shape around a floated image or element box.
However, you can change the shape of the wrapped text to a circle, ellipse,
polygon, or any image shape by using the shape-outside property. This is an
up-and-coming CSS feature, so be sure to check the Browser Support Note.
Following is a quick introduction to CSS Shapes, which should inspire and
prepare you for more exploration on your own.

Values: none | circle() | ellipse() | polygon() |url() |
[margin-box | padding-box | content-box]
Default: none

Appliesto: floats

Inherits: no

FIGURE 15-12 shows the default text wrap around a floated image (left) and
the same wrap with shape-outside applied (right). This is the kind of thing
youd expect to see in a print magazine, but now we can do it on the web!

It is worth noting that you can change the text wrap shape around any floated
element (see Note), but I will focus on images in this discussion, as text ele-
ments are generally boxes that fit nicely in the default rectangular wrap.

There are two approaches to making text wrap around a shape. One way is
to provide the path coordinates of the wrap shape with circle(), ellipse(),
or polygon(). Another way is to use url() to specify an image that has trans-
parent areas (such as a GIF or a PNG). With the image method, text flows
into the transparent areas of the image and stops at the opaque areas. This is
the shape method shown in FIGURE 15-12 and the method I'll introduce first.

Ordinary fruit creams may be made with condensed milk at a cost of about fifteen cents a quart,
which, of course, is cheaper than ordinary milk and cream.

Fancy Text Wrap with CSS Shapes

BROWSER SUPPORT NOTE

As of this writing in 2018, text wrap
shapes are supported only by Chrome
37+, Opera 24+, Safari 7.1+ (with pre-
fix; without starting in 10.1), iOS Safari
8+ (with prefix; without in 10.3+), and
Android 56+. The feature is under consid-
eration at Microsoft Edge and in develop-
ment at Firefox, so the support situation
may be better by the time you are read-
ing this. Check CanlUse.com for the cur-
rent state of support.

For the time being, feel free to use it as a
progressive enhancement for designs in
which a rectangular text wrap would be
perfectly acceptable. Another alternative
is to use a feature query (@supports)
to serve a fallback set of styles to non-
supporting browsers. Feature queries
are introduced in Chapter 19, More CSS
Techniques.

NOTE

shape-outside works only on floated
elements for now, but it is believed that
this will change in the future.

Ordinary fruit creams may be made with condensed milk at a cost of about fifteen cents a quart,
which, of course, is cheaper than ordinary milk and cream.

In places where neither cream nor condensed milk can be
purchased, a fair ice cream is made by adding two
tablespoonfuls of olive oil to each quart of milk. The cream
for Philadelphia Ice Cream should be rather rich, but not
double cream.

If pure raw cream is stirred rapidly, it swells and becomes
frothy, like the beaten whites of eggs, and is "whipped
cream.” To prevent this in making Philadelphia Ice Cream,
one-half the cream is scalded, and when it is very cold, the
remaining half of raw cream is added. This gives the
smooth, light and rich consistency which makes these
creams so different from others,

The time for freezing varies according to the quality of
cream or milk or water; water ices require a longer time
than ice creams. It is not well to freeze the mixtures too rapidly; they are apt to be coarse, not
smooth, and if they are churned before the mixture is icy cold they will be greasy or "buttery."

Default text wrap

In places where neither cream nor condensed milk can be purchased, a fair
ice cream is made by adding two tablespoonfuls of olive oil to
each quart of milk. The cream for Philadelphia Ice Cream
should be rather rich, but not double cream.

If pure raw cream is stirred rapidly, it swells and becomes frothy,
like the beaten whites of eqgs, and is "whipped cream." To prevent
lthis in making Philadelphia Ice Cream, one-half the cream is
scalded, and when it is very cold, the remaining half of raw cream
is added. This gives the smooth, light and rich consistency which
makes these creams so different from others.

The time for freezing varies according to the quality of cream or milk

or water; water ices require a longer time than ice creams. It is not

well to freeze the mixtures too rapidly; they are apt to be coarse, not
smooth, and if they are churned before the mixture is icy cold they will be
greasy or "buttery."

Text wrap with shape-outside using the
transparent areas of the image as a guide

Example of text wrapping around an image with shape-outside.

15. Floating and Positioning

399

Fancy Text Wrap with CSS Shapes

WARNING

There is a security setting in Chrome
and Opera that makes image-based text
wraps a little tricky to use. Without get-
ting into too much sys-admin detail, the
browser restricts the use of the image
used to create the CSS shape if it isn’t on
the same domain as the file requesting it.
This is not a bug; they are following the
rules set out in the specification.

The rule also means that compliant
browsers won’t allow images to be used
for shapes when the files are served
locally (i.e., on your computer). They need
to be uploaded to a server to work, which
makes the design process a little more
cumbersome, especially for beginners.

If you use image-based text wraps,
you know your CSS is written correctly,
but you aren’t seeing wrapping in the
browser, this security setting (related to
Cross-Origin Resource Sharing, or CORS,
if you’re curious) is probably the culprit.

Opacity Threshold

If you have a source image with
multiple levels of transparency, such
as the gradient shadow, the shape-
image-threshold property allows
text to creep into the image but

stop when it encounters a specific
transparency level. The value of this
property is a number between 0

and 1, representing a percentage of
transparency. For example, if you set
the threshold to .2, text will wrap into
areas that are up to 20% transparent,
but stop when it gets to more opaque
levels.

Using a Transparent Image

In the example in FIGURE 15-12, I placed the sundae.png image in the HTML
document to display on the page, and I've specified the same image in the
style rule using url() so that its transparent areas define the wrap shape (see
important Warning). It makes sense to use the same image in the document
and for the CSS shape, but it is not required. You could apply a wrap shape
derived from one image to another image on the page.

THE MARKUP
<p> In places..</p>
THE STYLES

img.wrap {
float: left;
width: 300px;
height: 300px;
-webkit-shape-outside: url(sundae.png); /* prefix required in 2018 */
shape-outside: url(sundae.png);

Notice that the wrapped text is now bumping right into the image. How
about we give it a little extra space with shape-margin?

Values: length | percentage

Default: 0
Appliesto: floats

Inherits: no

The shape-margin property specifies an amount of space to hold between the
shape and the wrapped text. In FIGURE 15-13, you can see the effect of adding
lem of space between the opaque image areas and the wrapped text lines. It
gives it a little breathing room the way any good margin should.

-webkit-shape-margin: 1em;
shape-margin: lem;

In places where neither cream nor condensed milk can be purchased, a
fair ice cream is made by adding two tablespoonfuls of olive

oil to each quart of milk. The cream for Philadelphia Ice
= Cream should be rather rich, but not double cream.
If pure raw cream is stirred rapidly, it swells and becomes frothy,
l like the beaten whites of eggs, and is "whipped cream." To
prevent this in making Philadelphia Ice Cream, one-half the
cream is scalded, and when it is very cold, the remaining half of

raw cream is added. This gives the smooth, light and rich
consistency which makes these creams so different from others.

(‘/ ARS The time for freezing varies according to the quality of cream or milk
or water; water ices require a longer time than ice creams. It is not
\._,\ well to freeze the mixtures too rapidly; they are apt to be coarse, not

smooth, and if they are churned before the mixture is icy cold they will
be greasy or "buttery."

Adding a margin between the shape and the wrapped text.

400 Partlll. CSS for Presentation

Using a Path

The other method for creating a text wrap shape is to define it using one of
the path keywords: circle(), ellipse(), and polygon().

The circle() notation creates a circle shape for the text to wrap around. The
value provided within the parentheses represents the length of the radius of
the circle:

circle(radius)

In this example, the radius is 150px, half of the image width of 300 pixels. By
default, the circle is centered vertically and horizontally on the float:
img.round {
float: left;
-webkit-shape-outside: circle(150px);
shape-outside: circle(150px);

}
FIGURE 15-14 shows this style rule applied to different images. Notice that the
transparency of the image is not at play here. It’s just a path overlaid on the

image that sets the boundaries for text wrap. Any path can be applied to any
image or other floated element.

Fancy Text Wrap with CSS Shapes

Ice cream may be molded in the freezer; you will the
which serves very well for puddings that are to be gz
and extra expense for salt and ice.

As cold water is warme
you lift the can or m
under the cold wa
bottomn and rem
limber knife, ho
and nine times
the perfect she
sticks and refu
wrung from we
puddings, and
cream is too mu

\ All frozen puddings
b frozen and molded ac

The quantities given in these recipes are arranged in
number of persons they can be easily divided.

Ice cream may be molded in the freezer; you will then
which serves very well for puddings that are to be garn
and extra expense for salt and ice.

As cold water is warmer th

you lift the can or mold
under the cold water
bottom and remove
knife, hold the mo
nine times out of
perfect shape of

and refuses to co

from warm water

and unless you kr
much melted to g-

4)
/\ All frozen puddings,
frozen and molded acc:

The quantities given in these r
that for a smaller number of persons they can be easily

Ice cream may be molded in the freezer; you will then
which serves very well for puddings that are to be garn
and extra expense for salt and ice.

As cold water is warmer th
you lift the can or mold
er the cold water

> bottom and remove
knife, hald the mo
nine times out of
perfect shape of
and refuses to co
from warm water.
and unless you kr
much melted to ge

All frozen puddings,

\/\) frozen and molded acc

The quantities given in these r
that for a smaller number of persons they can be easily

The same circle() shape applied to different images in the source.

This is a good point to demonstrate a critical behavior of wrap shapes. They
allow text to flow into the floated image or element, but they cannot hold
space free beyond it.

In the example in FIGURE 15-15, I've increased the diameter of the circle path
from 150px to 200px. Notice that the text lines up along the right edge of the
image, even though the circle is set 50 pixels beyond the edge. The path does
not push text away from the float. If you need to keep wrapped text away
from the outside edge of the floated image or element, apply a margin to the
element itself (it will be the standard rectangular shape, of course).

15. Floating and Positioning 401

Fancy Text Wrap with CSS Shapes

img.round {
float: left;
-webkit-shape-outside: circle(200px);
shape-outside: circle(200px);

}

Ice cream may be molded in the freezer; you will then have a perfectly round smooth mold,
which Serves very well-fm;euddings that are to be garnished, and saves a great deal of trouble
and gxtfa expense for salt arid ice.

o’ &

’o‘ As cold water is warmer than the ordinary freezing
+ mixture, after you lift the can or mold, wipe off the salt,
old it for a minute under the cold water spigot, then

q‘ulckly wipe the top and bottom and remove the lid.
Loosen the pudding with a limber knife, hold the mold a
Iittte slanting, give it a shake, and nine times out of ten it
wilFcome out quickly, having the perfect shape of the can
or #\old. If the cream still sticks and refuses to come out,
wipe the mold with a towel wrung from warm water. Hot
wq'cer spoils the gloss of puddings, and unless you know
exactly how to use it, the cream is too much melted to
garnish.
g

‘.’ All frozen puddings, water ices, sherbets and sorbets are
,* frozen and molded according to these directions.

.

. .
The qﬁantmgs_glven in thasé recipes are arranged in equal amounts, so that for a smaller
number of persoris they can be easily divided.

CSS shapes allow text to wrap into the floated element but do not
hold space beyond it.

Elliptical shapes are created with the ellipse() notation, which provides the
horizontal and vertical radius lengths followed by the word at and then the
x,y coordinates for the center of the shape. Here is the syntax:

ellipse(rx ry at x y);

The position coordinates can be listed as a specific measurement or a per-
centage. Here I've created an ellipse with a 100-pixel horizontal radius and
a 150-pixel vertical radius, centered in the floated element it is applied to
(FIGURE 15-16):
img.round {
float: left;

-webkit-shape-outside: ellipse(200px 100px at 50% 50%);
shape-outside: ellipse(200px 100px at 50% 50%);

}

Ordinary fruit creams may be made with condensed milk Ordinary fruit creams may be made with condensed milk
of course, is cheaper than ordinary milk and cream. of course, is cheaper than ordinary milk and cream.

In places where neither cream nc "~ . In places where neither cream nc
cream is made by adding two © * cream is [made by adding two

Th m for Philadelphia Ic m for Philadelphia Ic
am.

f pure raw cream is stirrec
eaten whites of eggs, anc
Philadelphia Ice Cream, on
cold, the remaining half of
light and rich consistency v
others.

old, the remaining half of
Jlght nd rich consistency v

/ The time for freezing varies - for freezing varies =
\ 'water; water ices require a lon
< the mixtures too rapidly; they ar the mixtures too rapidly; they ar

churned before the mixture is icy cold they will be greasy churned before the mixture is icy cold they will be greasy

The edges of the image (blue) and
ellipse path (dotted orange) revealed

An elliptical text wrap created with ellipse().

402 Part lll. CSS for Presentation

Finally, we come to polygon(), which lets you create a custom path using a
series of comma-separated x,y coordinates along the path. This style rule cre-
ates the wrap effect shown in FIGURE 15-17:

img.wrap {

float: left;

width: 300px;

height: 300px;

shape-outside: polygon(Opx Opx, 186px Opx, 225px 34px, 300px 34pX,
300px 66px, 255px 88px, 267px 127px, 246px 178px, 192px 211px, 226px
236px, 226px 273px, 209px 300px, Opx 300pX);

Qrdinary fruit creams may be made with condensed 1
course, is cheaper than ordinary milk and cream.

Ordinary fruit creams may be made with condensed
course, is cheaper than ordinary milk and cream.

'2" places where neither cre:
----- cream is made b
of milk. The crez

- ® but not double ¢

.

In places where neither cre:
cream is made b

of milk. The crez

but not double ¢

If pure raw cream is ‘.If pure raw cream is

l beaten whites of egc - sbeaten whites of egc
Philadelphia Ice Crea ,'Fhil::dclphia Ice Crea

cold, the remaining ha «cold, [the remaining hz
and rich consistency w! . » "and rich consistency wl
-

The time for freezing varie *, The time [for freezing varie

/) water ices require a longe (’ | “water ices require a longs
mixtures too rapidly; they Jmixtures| too rapidly; they
\,_ churned before the mixtu > % * churned pefore the mixtu

The average time for freezing two quarts of cream sh
longer for larger quantities.

The average time for freezing two quarts of cream sh
longer for larger quantities.

The edges of the image (blue) and
polygon path (dotted orange) revealed

A custom path created with polygon().

Holy coordinates! That’s a lot of numbers, and my path was fairly simple. Id
like to be able to point you to a great tool for drawing and exporting polygon
paths, but sadly; as of this writing I have none to recommend (see Note). I got
the coordinates for my polygon examples by opening the image in Photoshop
and gathering them manually, which, although possible, is not ideal.

CSS Shapes Resources

There are some finer points regarding CSS Shapes that I must leave to you to
research further. Here are a few resources to get you started:

* CSS Shapes Module, Level 1 (www.w3.0rg/TR/css-shapes-1/)

* “Getting Started with CSS Shapes” by Razvan Caliman (www.html5rocks.
com/en/tutorials/shapes/getting-started)

* CSS Shapes at the Experimental Layout Lab of Jen Simmons (labs.jensim-
mons.com/#shapes)

* “A Redesign with CSS Shapes” by Eric Meyer (alistapart.com/article/
redesign-with-css-shapes)

Why don't we make the text wrap around the images in the Black Goose
Bakery page in a more interesting way for users with browsers that support
it (EXERCISE 15-2)?

Fancy Text Wrap with CSS Shapes

NOTE

A CSS Shapes Editor will be included in
a future version of Firefox that will likely
be available by the time you are read-
ing this (developer.mozilla.org/en-US/
docs/Tools/Page_Inspector/How_to/
Edit_CSS_shapes).

If you search for “CSS Shapes” you
will certainly come across that term
used for a technique that uses CSS

to draw geometric shapes such as
triangles, arrows, circles, and so on.
It’s a little confusing, although those
other “CSS shapes” are pretty nifty
and something you might want to
tinker with. I introduce them briefly in
Chapter 23, Web Image Basics.

15. Floating and Positioning 403

http://www.w3.org/TR/css-shapes-1/
http://www.html5rocks.com/en/tutorials/shapes/getting-started
http://www.html5rocks.com/en/tutorials/shapes/getting-started

Fancy Text Wrap with CSS Shapes

EXERCISE 15-2. Adding shapes around floats

The bread and muffin images on the Black Goose Bakery page
provide a nice opportunity to try out CSS Shapes. You will need
to use a supporting browser such as a recent version of Chrome,
Safari, or Opera to see the wrapping effect.

Open the latest version of the bakery style sheet and look for the
section labeled /* main "products" styles */ We'll putthe
image wrap styles there to keep our style sheet organized.

Target each image individually using an attribute selector (there is
one set up for “muffin” already). Start out simply and make the text
wrap around a circle. Set the radius of the circle to 125px for the
bread image and 110px for the muffin.

img[src*="bread"] {
-webkit-shape-outside: circle(125px);
shape-outside: circle(125px);

img[src*="muffin"] {
margin-left: 50px;
-webkit-shape-outside: circle(110px);
shape-outside: circle(110px);

}

Save the styles and take a look at the page in a supporting
browser. The circles look pretty good, but I think I could improve
the wrap around the bread by making it an ellipse. Add these

Fresh from the Oven

after the circle declarations, and the ellipse wrap will override the
previous styles (or delete and replace):

img[src*="bread"] {

-webkit-shape-outside: ellipse(130px 95px at 50%
50%) ;

shape-outside: ellipse(130px 95px at 50% 50%);

If you're feeling ambitious, you could add a polygon wrap shape
around the muffin image instead of the circle. You'll need to copy
these coordinates or just copy and paste from the finished exercise
provided in the materials for this chapter. Or just stick with the
circle, and nobody will judge you.

img[src*="muffin"] {

shape-outside: polygon(Opx Opx, 197px Opx, 241px
31px, 241px 68px, 226px 82px, 219px 131px, 250px
142px, 250px 158px, Opx 158px);

The final result is shown in FIGURE 15-18. It is most apparent
when the browser window is sufficiently narrow that enough lines
wrap to reveal the shape. For browsers that don’t support shapes,
the rectangular whitespace is just fine.

| BREADS

Our breads are made daily from highest-quality whole grain flour,
water, salt, and yeast or sourdough starter. Simply and

naturally, and never any preservatives. Patience is key to

W\ achieving the proper level of fermentation and baking

LEARN MORE ABOUT OUR BAKING PROCESS.

each loaf to perfection. Available in whole grain,

sourdough, olive loaf, classic rye, and potato-onion.

MUFFINS

Stop by to see our seascnal muffin flavors!

LEARN MORE ABOUT HOW WE MAKE OUR MUFFINS...

Every day, we offer a large selection of muffins, including
8 blueberry, multi-berry, bran, corn, lemon- poppyseed,

and chocolate. Our muffins are made from scratch each day.

The bakery page with text wrapping around images in an ellipse

(bread) and polygon (muffin) using CSS Shapes.

404 Part lll. CSS for Presentation

Well, that covers floating! You've learned how to float elements left and right,
clear the following elements so they start below the floats, and even make
fancy text wrapping shapes. Now let’s move on to the other approach to mov-
ing elements around on the page—positioning.

POSITIONING BASICS

CSS provides several methods for positioning elements on the page. They can
be positioned relative to where they would normally appear in the flow, or
removed from the flow altogether and placed at a particular spot on the page.
You can also position an element relative to the viewport, and it will stay put
while the rest of the page scrolls.

Types of Positioning
Values: static | relative | absolute | fixed
Default: static

Appliesto: all elements

Inherits: no

The position property indicates that an element is to be positioned and
specifies which positioning method to use. I'll introduce each keyword value
briefly here, and then we’ll take a more detailed look at each method in the
remainder of this chapter.

static

This is the normal positioning scheme in which elements are positioned
as they occur in the normal document flow.

relative

Relative positioning moves the element box relative to its original posi-
tion in the flow. The distinctive behavior of relative positioning is that the
space the element would have occupied in the normal flow is preserved as
empty space.

absolute

Absolutely positioned elements are removed from the document flow
entirely and positioned with respect to the viewport or a containing ele-
ment (we'll talk more about this later). Unlike relatively positioned ele-
ments, the space they would have occupied is closed up. In fact, they have
no influence at all on the layout of surrounding elements.

Positioning Basics

Viewport

I'll be sticking with the more formal
term viewport throughout the
positioning discussions, but keep in
mind it could be a browser window
on a desktop computer, the full
screen of a mobile device, or the
frame of an iframe element from the
perspective of the web page loaded
in that frame. It is any space that
visually displays a web page.

15. Floating and Positioning 405

Positioning Basics

fixed

The distinguishing characteristic of fixed positioning is that the element
stays in one position in the viewport even when the document scrolls.
Fixed elements are removed from the document flow and positioned rela-
tive to the viewport rather than another element in the document.

sticky

Sticky positioning is a combination of relative and fixed in that it behaves
as though it is relatively positioned, until it is scrolled into a specified
position relative to the viewport, at which point it remains fixed.

The MDN Web Docs site has this description for a potential use case:

Sticky positioning is commonly used for the headings in an alphabetized list-
ing. The B heading will appear just below the items that begin with A until
they are scrolled offscreen. Rather than sliding offscreen with the rest of the
content, the B heading will then remain fixed to the top of the viewport until
all the B items have scrolled offscreen, at which point it will be covered up
by the C heading.

The sticky position value is supported by current versions of Chrome,
Firefox, Opera, MS Edge, Android, as well as Safari and iOS Safari with
the -webkit- prefix. No version of IE supports it. Happily, sticky posi-
tioning degrades gracefully, as the element simply stays inline and scrolls
with the document if it is not supported.

Each positioning method has its purpose, but absolute positioning is the
most versatile. With absolute positioning, you can place an object anywhere
in the viewport or within another element. Absolute positioning has been
used to create multicolumn layouts, but it is more commonly used for small
tasks, like positioning a search box in the top corner of a header. It’s a handy
tool when used carefully and sparingly.

Specifying Position

Once you've established the positioning method, the actual position is speci-
fied with some combination of up to four offset properties.

Values: length | percentage | auto
Default: auto

Appliesto: positioned elements (where position value is relative, absolute, or
fixed)

Inherits: no

The value provided for each offset property defines the distance the element
should be moved away from that respective edge. For example, the value of
top defines the distance the top outer edge of the positioned element should
be offset from the top edge of the browser or other containing element. A

406 Part lll. CSS for Presentation

positive value for top results in the element box moving down by that amount
(see Note). Similarly, a positive value for left would move the positioned ele-
ment to the right (toward the center of the containing block) by that amount.

Further explanations and examples of the offset properties will be provided
in the discussions of each positioning method. We'll start our exploration of
positioning with the fairly straightforward relative method.

RELATIVE POSITIONING

As mentioned previously, relative positioning moves an element relative to its
original spot in the flow. The space it would have occupied is preserved and
continues to influence the layout of surrounding content. This is easier to
understand with a simple example.

Here I've positioned an inline em element. A bright background color on the
em and a border on the containing paragraph make their boundaries appar-
ent. First, I used the position property to set the method to relative, and
then I used the top offset property to move the element 2em down from its
initial position, and the left property to move it 3em to the right. Remember,
offset property values move the element away from the specified edge, so if
you want something to move to the right, as I did here, you use the left offset
property. The results are shown in FIGURE 15-19.
em {
position: relative;
top: 2em; /* moves element down */

left: 3em; /* moves element right */
background-color: fuchsia;

Mix the sugar, the grated rind and , and the orange juice
together. Put half the cream in a double boj : when scalding hot,
stand it aside until perfectly cold; add there cream and
freeze it rather hard. Remove the crank and the lid, add the sugar mixture,
replace the lid and crank, and turn rapidly for five minutes; repack to ripen.

3em

When an element is positioned with the relative method, the space it
would have occupied is preserved.

Relative Positioning

NOTE

Negative values are acceptable and
move the element in the opposite direc-
tion of positive values. For example, a
negative value for top would have the
effect of moving the element up.

15. Floating and Positioning 407

Absolute Positioning

Columns with Absolute
Positioning

Like floats, absolute positioning can
be used to create columned layouts.
These days, columned layouts should
be created with CSS Grid, but you
may use positioned columns as a
fallback if you need to support old
browsers that don’t support Grid.

Should you like to learn how

absolute positioning can be used for
whole page layout, | have included
instructions and templates in the
supplemental article “Page Layout
with Floats and Positioning” (PDF),
available at learningwebdesign.com/
articles/.

[want to point out a few things that are happening here:

The original space in the document flow is preserved.

You can see that there is a blank space where the emphasized text would
have been if the element had not been positioned. The surrounding con-
tent is laid out as though the element were still there, and therefore we say
that the element still “influences” the surrounding content.

Overlap happens.

Because this is a positioned element, it can potentially overlap other ele-
ments, as happens in FIGURE 15-19.

The empty space left behind by relatively positioned objects can be a
little awkward, so this method is not used as often as absolute positioning.
However, relative positioning is commonly used to create a “positioning con-
text” for an absolutely positioned element. Remember that term positioning
context—T1l explain it in the next section.

ABSOLUTE POSITIONING

Absolute positioning works a bit differently and is a more flexible method for
accurately placing items on the page than relative positioning.

Now that you've seen how relative positioning works, let’s take the same
example as shown in FIGURE 15-19, only this time we’ll change the value of
the position property to absolute (FIGURE 15-20):

em {
position: absolute;
top: 2em;
left: 3em;
background-color: fuchsia;

Mi_ed rind and , and the orange juice together. Put half the
cream in a double boiler over the fire; when scalding hot, stand it aside until
perfectly cold; add the remaining half of the cream and freeze it rather hard.
Remove the crank and the lid, add the sugar mixture, replace the lid and crank,
and turn rapidly for five minutes: renssl-tainan

When an element is absolutely positioned, it is removed from the
flow and the space is closed up.

408 Part Ill. CSS for Presentation

As you can see in FIGURE 15-20, the space once occupied by the em element
is now closed up, as is the case for all absolutely positioned elements. In its
new position, the element box overlaps the surrounding content. In the end,
absolutely positioned elements have no influence whatsoever on the layout
of surrounding elements.

The most significant difference here, however, is the location of the positioned
element. This time, the offset values position the em element 2em down and
3em to the right of the top-left corner of the viewport (browser window).

But wait—before you start thinking that absolutely positioned elements are
always placed relative to the viewport, 'm afraid that there’s more to it than that.

What actually happens in absolute positioning is that the element is posi-
tioned relative to its nearest containing block. It just so happens that the near-
est containing block in FIGURE 15-20 is the root (html) element, also known
as the initial containing block, so the offset values position the em element
relative to the whole document.

Getting a handle on the containing block concept is the first step to tackling
absolute positioning.

Containing Blocks

The CSS Positioned Layout Module, Level 3, states, “The position and size of
an element’s box(es) are sometimes computed relative to a certain rectangle,
called the containing block of the element.” It is critical to be aware of the
containing block of the element you want to position. We sometimes refer to
this as the positioning context.

The spec lays out a number of intricate rules for determining the containing
block of an element, but it basically boils down to this:

* If the positioned element is not contained within another positioned ele-
ment, then it will be placed relative to the initial containing block (created
by the html element).

¢ But if the element has an ancestor (i.e., is contained within an element)
that has its position set to relative, absolute, or fixed, the element will
be positioned relative to the edges of that element instead.

FIGURE 15-20 is an example of the first case: the p element that contains the
absolutely positioned em element is not positioned itself, and there are no
other positioned elements higher in the hierarchy. Therefore, the em element
is positioned relative to the initial containing block, which is equivalent to
the viewport area.

Let’s deliberately turn the p element into a containing block and see what
happens. All we have to do is apply the position property to it; we don’t
have to actually move it. The most common way to make an element into a
containing block is to set its position to relative, but not move it with any

Absolute Positioning

15. Floating and Positioning 409

Absolute Positioning

NOTE

When inline elements are used as con-
taining blocks (and they can be), the
positioned element is placed relative to
the content area edge, not the padding
edge.

offset values. This is what I was talking about earlier when I said that relative
positioning is used to create a positioning context for an absolutely positioned
element.

In this example, we'll keep the style rule for the em element the same, but
we’ll add a position property to the p element, thus making it the containing
block for the positioned em element. FIGURE 15-21 shows the results.

p{

position: relative;
padding: 15px;
background-color: #F2F5D5;
border: 2px solid purple;

Mix the sugar, the grated rind and , and the orange juice together. Put half the
crearﬂ over the fire; when scalding hot, stand it aside until
perfectly cold; add the remaining half of the cream and freeze it rather hard.

Remove the crank and the lid, add the sugar mixture, replace the lid and crank,
and turn rapidly for five minutes; repack to ripen.

The relatively positioned p element acts as a containing block for the
em element.

You can see that the em element is now positioned 2em down and 3em from
the top-left corner of the paragraph box, not the browser window. Notice also
that it is positioned relative to the padding edge of the paragraph (just inside
the border), not the content area edge. This is the normal behavior when
block elements are used as containing blocks (see Note).

I’'m going to poke around at this some more to reveal additional aspects of
absolutely positioned objects. This time, I've added width and margin proper-
ties to the positioned em element (FIGURE 15-22):

em {
width: 200px;
margin: 25px;
position: absolute;
top: 2em;
left: 3em;
background-color: fuchsia;

410 Partlll. CSS for Presentation

Mix the sugar, the grated rind and , and the orange juice together. Put half
the cream in a double boiler over the fire; when scalding hot, stand it aside

until peer of the cream and freeze it rather
hard. Remove the crank and the lid, add the sugar mixture, replace the lid

and crank, and turn rapidly for five minutes; repack to ripen.

Adding a width and margins to the positioned element.

Here we can see that:

* The offset values apply to the outer edges of the element box (the outer
margin edge) for absolutely positioned elements (see Note).

* Absolutely positioned elements always behave as block-level elements.
For example, the margins on all sides are maintained, even though this is
an inline element. It also permits a width to be set for the element.

It is important to keep in mind that once you've positioned an element, it
becomes the new containing block for all the elements it contains. Say you
position a narrow div at the top-left corner of a page, creating a column. If
you were to absolutely position an image within that div with offset values
that place it in the top-right corner, it appears in the top-right corner of that
div, not the entire page. Once the parent element is positioned, it acts as the
containing block for the img and any other contained elements.

Specifying Position

Now that you have a better feel for the containing block concept, let’s take
some time to get better acquainted with the offset properties. So far, we've
only seen an element moved a few ems down and to the right, but that’s not
all you can do, of course.

Pixel measurements

As mentioned previously, positive offset values push the positioned element
box away from the specified edge and toward the center of the containing
block. If there is no value provided for a side, it is set to auto, and the browser
adds enough space to make the layout work. In this example, div#B is con-
tained within div#A, which has been given the dimensions 600 pixels wide by
300 pixels high. I've used pixel lengths for all four offset properties to place

Absolute Positioning

NOTE

For relatively positioned elements, the
offset is measured to the box itself (not
the outer margin edge).

15. Floating and Positioning 411

Absolute Positioning

the positioned element (#B) at a particular spot in its containing element
(#A) (FIGURE 15-23).

THE MARKUP

<div id="A">
<div id="B">8nbsp;</div>
</div>

THE STYLES

divtA {
position: relative; /* creates the containing block */
width: 600px;
height: 300px;
background-color: #C6DE89; /* green */
}

div#B {
position: absolute;
top: 25px;
right: s50px;
bottom: 75px;
left: 100px;
background-color: steelblue;

div#A (600px wide x 300px high)

top: 25px

diviB

left: 100px (calculated at 450 wide x 200px high) right:
50px

bottom: 75px

FIGURE 15-23. Setting offset values for all four sides of a positioned element.

Notice that by setting offsets on all four sides, I have indirectly set the dimen-
sions of the positioned div#B. It fills the 450 x 200 pixel space that is left over
within the containing block after the offset values are applied. If I had also
specified a width and other box properties for div#B, there is the potential for
conflicts if the total of the values for the positioned box and its offsets does
not match the available space within the containing block.

412 Partlll. CSS for Presentation

The CSS specification provides a daunting set of rules for handling conflicts,
but the upshot is that you should just be careful not to over-specify box
properties and offsets. In general, a width (factoring in margins as well as
padding and border if you are using the content-box box-sizing model) and
one or two offset properties are all that are necessary to achieve the layout
you're looking for. Let the browser take care of the remaining calculations.

Percentage values

You can also specify positions with percentage values. In the first example in
FIGURE 15-24, the image is positioned halfway (50%) down the left edge of
the containing block. In the second example on the right, the img element is
positioned so that it always appears in the bottom-right corner of the con-
taining block.
img#A {
position: absolute;
top: 50%;
left: o%;
}
img#B {
position: absolute;
bottom: 0%;
right: 0%;
}
Although the examples here specify both a vertical and horizontal offset, it
is common to provide just one offset for a positioned element—for example,

to move it left or right into a margin using either left or right properties.

In EXERCISE 15-3, we'll make further changes to the Black Goose Bakery
home page, this time using absolute positioning.

Absolute Positioning

WARNING

Be careful when positioning elements
at the bottom of the initial containing
block (the html element). Although you
may expect it to be positioned at the bot-
tom of the whole page, browsers actu-
ally place the element at the bottom of
the browser window. Results may be
unpredictable. If you want something
positioned at the bottom of your page,
put it in a containing block element at
the end of the document source, and go
from there.

NOTE

The % symbol could be omitted for a 0
value, which essentially turns it into a 0
length but achieves an equivalent result.

top: 50%

\

left: 0% bottom: 0%; right: 0%

Using percentage values to position an element in a containing block.

15. Floating and Positioning 413

Absolute Positioning

EXERCISE 15-3. Absolute positioning

In this exercise, we'll use absolute positioning to add an award Save the document and take a look (FIGURE 15-25). Resize
graphic to the home page. Open the version of the site you saved the browser window very narrow, and you will see that the
in EXERCISE 15-2. positioned award image overlaps the header content. Notice

also that when you scroll the document, the image scrolls
with the rest of the page. Try playing around with other offset
properties to get a feel for positioning in the viewport (or the
“initial containing block” to be precise).

1. Good news! Black Goose Bakery won the Farmers’ Market
Award, and we have the privilege of displaying an award medal
on the home page. Because this is new content, we'll need to
add it to the markup in bakery.html. Because it is nonessential

information, add the image in a new div in the footer of the P.S. I know that the navigation list still looks bad, but we’ll fix it
document: up in Chapter 16.
<footer>

<p>All content copyright © 2017, Black
Goose Bistro.</p>

<div id="award"><img src="images/award.png"
alt="Farmers' Market Award"></div>
</footer>

MENU

2. Just because the award is at the end of the source document
doesn’t mean it needs to display there. We can use absolute
positioning to place the award in the top-left corner of the
viewport by adding a new rule to the style sheet that positions
the div, like so (I put mine in the /* misc styles */ section):

#award {
position: absolute; Eresliiiom. the Over
top: 30px;
left: s50px;
} FIGURE 15-25. An absolutely positioned award graphic.

Stacking Order

Before we close the book on absolute positioning, there is one last related
concept that I want to introduce. As we've seen, absolutely positioned ele-
ments overlap other elements, so it follows that multiple positioned elements
have the potential to stack up on one another.

By default, elements stack up in the order in which they appear in the docu-
ment, but you can change the stacking order with the z-index property (see
Note). Picture the z-axis as a line that runs perpendicular to the page, as
though from the tip of your nose, through this page, and out the other side.

NOTE

The z-index property is also useful for items in a grid, which also have the potential to
overlap, as discussed in Chapter 16.

414 Part lll. CSS for Presentation

z-index
Values: number | auto
Default: auto

Appliesto: positioned elements

Inherits: no

The value of the z-index property is a number (positive or negative). The
higher the number, the higher the element will appear in the stack (that is,
closer to your nose). Lower numbers and negative values move the element
lower in the stack. Let’s look at an example to make this clear (FIGURE 15-26).

Here are three paragraph elements, each containing a letter image (A, B, and
C, respectively) that have been absolutely positioned in such a way that they
overlap on the page. By default, paragraph C would appear on top because
it appears last in the source. However, by assigning higher z-index values to
paragraphs A and B, we can force them to stack in our preferred order.

Note that the values of z-index do not need to be sequential, and they do not
relate to anything in particular. All that matters is that higher number values
position the element higher in the stack.

THE MARKUP

<p id="A"></p>
<p id="B"></p>
<p id="C"></p>

THE STYLES

#A {
z-index: 100;
position: absolute;
top: 175px;
left: 200px;

}

#B {
z-index: 5;
position: absolute;
top: 275px;
left: 100px;

}

#C {
z-index: 1;
position: absolute;
top: 325px;

By default, elements later in the
document source order stack on top of
preceding elements.

Absolute Positioning

z-index: 100

z-index: 5
z-index: 1
You can change the stacking order with

the z-index property. Higher values
stack on top of lower values.

left: 250px;

} FIGURE 15-26. Changing the stacking order with the z-index property.

To be honest, the z-index property is not often required for most page lay-
outs, but you should know it’s there if you need it. If you want to guarantee
that a positioned element always ends up on top, assign it a very high z-index
value, such as 100 or 1000. If you want to make sure it’s at the bottom, give it
a negative value. The number itself doesn’t actually matter.

15. Floating and Positioning 415

Fixed Positioning

WARNING

The position: fixed property causes
some buggy behaviors on old versions of
mobile Safari (5, 6, and 7) and Android
(<4.4). Fortunately, these mobile brows-
ers are nearly obsolete as of this writing,
but it is a reminder to do thorough test-
ing on a range of mobile devices if you
have fixed elements.

FIXED POSITIONING

We've covered relative and absolute positioning, so now it’s time to take on
fixed positioning.

For the most part, fixed positioning works just like absolute positioning, The
significant difference is that the offset values for fixed elements are always
relative to the viewport, which means the positioned element stays put even
when the rest of the page scrolls. By contrast, you may remember that when
you scrolled the Black Goose Bakery page in EXERCISE 15-3, the award
graphic scrolled along with the document—even though it was positioned
relative to the initial containing block (equivalent to the viewport). Not so
with fixed positioning, where the position is, well, fixed.

Fixed elements are often used for menus that stay in the same place at the top,
bottom, or side of a screen so they are always available, even when the content
scrolls (see Warning). Bear in mind that if you fix an element to the bottom of
the viewport, you'll need to leave enough space at the end of the document
so the content doesn’t get hidden behind the fixed element. Fixed elements
are also problematic when the document is printed because they will print
on every page without reserving any space for themselves. It’s best to turn off
fixed elements when printing the document. (Targeting print with @media is
addressed in Chapter 17, Responsive Web Design.)

Let’s switch the award graphic on the Black Goose Bakery page to a fixed
position in EXERCISE 15-4 to see the difference.

EXERCISE 15-4. Fixed positioning

This should be simple. Open the bakery style sheet as you left it
in EXERCISE 15-3 and edit the style rule for the #award div to

make it fixed rather than absolute:

#award {
position: fixed;
top: 30px;
left: s50px;

Fr b from the Oven

Our breads are made daily from highest-quality whole grain flour, water,
salt, and yeast or sourdough starter. Simply and naturally. and never
any preservatives. Patience is key to achisving the proper level of
formentation and baking each loaf to perfection. Avaflable in wholo

grain, sourdough, alive loaf, classic rye, and potato-onion.

LEARN MORE ABOUT OUR

MUFFINS

Save the styles and open the page in a browser. When you scroll
the page, you will see that the award now stays put where we
positioned it in the browser window (FIGURE 15-27). You can
see that fixed positioned elements have the potential to hide
content as the page scrolls. Test well to see the potential pitfalls
and weigh them against the benefits.

W S Every day, we offer a large selection of muffins, including

§ Dblueberry. multi-berry, bran. corn. lemen-poppyseed. and chocolate.

Our muffins are made from scratch each day. Stop by to see our

seascnal muffin flavors)

The award stays in the same place in the
top-left corner of the browser when the document scrolls.

416 Part lll. CSS for Presentation

That does it for floating and positioning. In the next chapter, you'll learn
about flexible boxes and grid layout, which are powerful tools for designing
the overall structure of a page and specific page features. But first, try your
hand at a few questions about floating and positioning.

TEST YOURSELF

Before we move on, take a moment to see how well you absorbed the prin-
ciples in this chapter. You'll find the answers in Appendix A.

L

Which of the following is not true of floated elements?
a. All floated elements behave as block elements.

b. Floats are positioned against the padding edge of the containing
element.

c. The contents of inline elements flow around a float, but the element
box is unchanged.

d. You must provide a width property for floated block elements.

Which of these style rules is incorrect? Why?

a. img { float: left; margin: 20px;}

b. img { float: right; width: 120px; height: 8opx; }
c. img { float: right; right: 30px; }

d. img { float: left; margin-bottom: 2em; }

How do you make sure a footer element always starts below any floated
sidebars on the page?

Write the name of the positioning method or methods (static, relative,
absolute, or fixed) that best matches each of the following descriptions.

a. Positions the element relative to a containing block.
b. Removes the element from the normal flow.
c. Always positions the element relative to the viewport.

d. The positioned element may overlap other content.

Continued...

Test Yourself

15. Floating and Positioning 417

CSS Review: Floating and Positioning Properties

e. Positions the element in the normal flow.

f. The space the element would have occupied in the normal flow is

preserved.

g. The space the element would have occupied in the normal flow is

closed up.

h. You can change the stacking order with z-index.

i. Positions the element relative to its original position in the normal

flow.

CSS REVIEW: FLOATING AND
POSITIONING PROPERTIES

Here is a summary of the properties covered in this chapter.

Property Description

clear Prevents an element from being laid out next to a tloat

float Moves the element to the right or left and allows the
following text to flow around it

position Specifies the positioning method to be applied

top, bottom, Specifies the offset amount from each respective edge

right, left

shape-outside

Causes content to wrap around a shape instead of the
float’s bounding box.

shape-margin

Adds a margin to shape-outside

shape-image-threshold

Defines the alpha channel threshold used to create the
wrap shape

z-index

Specifies the order of appearance within a stack of over-
lapping positioned elements

418 Partlll. CSS for Presentation

CSS LAYOUT WITH
FLEXBOX AND
GRID

Get ready...this is a whopper of a chapter! In it, you will learn about two
important CSS page layout tools:

* Flexbox for greater control over arranging items along one axis

* Grid for honest-to-goodness grid-based layouts, like those print designers
have used for decades

Each tool has its special purpose, but you can use them together to achieve
layouts we've only dreamed of until now. For example, you could create the
overall page structure with a grid and use a flexbox to tame the header and
navigation elements. Use each technique for what it’s best suited for—you
don’t have to choose just one.

Now that browsers have begun to support these techniques, designers and
developers have true options for achieving sophisticated layouts with baked-
in flexibility needed for dealing with a wide array of screen sizes. Once old
browsers fade from use, we can kiss our old float layout hacks goodbye (in
the meantime, they make decent fallbacks).

You may notice that this chapter is big. Really big. That’s because the specs
are overflowing with options and new concepts that require explanation and
examples. It’s a lot to pack in your mind all at once, so I recommend treating
it as two mini-chapters and spend some time getting up to speed with each
technique individually.

FLEXIBLE BOXES WITH CSS FLEXBOX

The CSS Flexible Box Layout Module (also known as simply Flexbox) gives
designers and developers a handy tool for laying out components of web
pages such as menu bars, product listings, galleries, and much more.

CHAPTER

16

IN THIS CHAPTER

Flex containers and items
Flow direction and wrapping
Flex item alignment
Controlling item “flex”

Grid containers and items
Setting up a grid template
Placing items in the grid

Implicit grid features

Grid item alignment

419

Flexible Boxes with CSS Flexbox

According to the spec,

The defining aspect of flex layout is the ability to make the flex items “flex,”
altering their width/height to fill the available space in the main dimension.

That means it allows items to stretch or shrink inside their containers, pre-
venting wasted space and overflow—a real plus for making layouts fit a vari-
ety of viewport sizes. Other advantages include the following:

* The ability to make all neighboring items the same height

* Easy horizontal and vertical centering (curiously elusive with old CSS
methods)

* The ability to change the order in which items display, independent of
the source

The Flexbox layout model is incredibly robust, but because it was designed
for maximum flexibility, it takes a little time to wrap your head around it (at
least it did for me). Here’s how it helped me to think about it: when you tell
an element to become a flexbox, all of its child elements line up on one axis,
like beads on a string. The string may be horizontal, it may hang vertically, or
it may even wrap onto multiple lines, but the beads are always on one string
(or to use the proper term, one axis). If you want to line things up both hori-
zontally and vertically, that is the job of CSS Grid, which I'll introduce in the
next section of this chapter.

Before we dig in, I have a quick heads-up about browser support. All current
browser versions support the latest W3C Flexible Box Layout Module spec;
however, older browsers require prefixes and even different, outdated proper-
ties and values altogether. I'll be sticking with the current standard properties
to keep everything simple while you learn this for the first time, but know

N
.
Multicolumn Layout
. water ices require a longer time than ice
A third CSS3 layout tool you may In this book, Philadelphia Ice Creams, L Pore row cream is stimed rapidy it creams. 1t is not well to frecze the
. . T P ! swells and becomes frothy, like the e e G (e S (R o
want to try is multicolumn layout. comprising the first group, are very B s ol o e o pidly; they are ap!
. palatable, but expensive. In many parts of ; 9gs, ar Sl coarse, not smooth, and if they are
The Multi-column LayOut Module the country it is quite difficult to get good cream:Siiolpreventithislinjmaking churned before the mixture is icy cold
; H cream. For that reason, I have given a REEE D =3 Eemy e ie they will be greasy or "buttery."
(W3.0rg/TR/CSS'mU[tICO[-l) prOVldeS Qroup of creams, using part milk and part Cream IS scaided, and when it is very cold,
{ f . . e [l mljst be remembered that It the remaining half of raw cream is added. The average time for freezing two quarts
tOO stor pOU r ng teXt Conteﬂt |ﬂt0 a takes ;mart wuggling® to make ice cream This gives the smooth, light and rich of cream should be ten minutes; it takes
b f l i ht Juggling consistency which makes these creams so but a minute or two longer for larger
numper or columns, as you mignt see from milk. By far better use condensed different from others -
in a newspaper (F|GURE 16-1) |t iS milk, with enough water or milk to rinse : a B
p p : out the cans. Use of Fruits Pound the ice in a large bag with a mallet,
des|gned to be ﬂe)(|bley allowi ng the ey s e g 0 Gl or use an ordinary ice shaver. The finer
. " the ice, the less time it takes to freeze the
widths and number of columns to condensed milk at a cost of ahm{(fifteen Use fresh fruits in the summer ar\d the R, AT ER G CllGee
. . . cents a quart, which, of course, is cheaper best canned unsweetened fruits in the R B AT R AR
automati Ca“y f\t the aval la b{e Space. than ordinary milk and cream. winter. If sweetened fruits must be used, of c:arse reck Sﬂl’t - mqay . thep
. . . In places where neither cream nor EIBERLT (i G Uiy Gl Qi freezer with a layer of ice three inches
Th|5 Chapter IS already b|g enough Where acid fruits are used, they should be
’ condensed milk can be purchased, a fair . yded to the cream after it is partly thick, then a layer of salt one inch thick,
so I've put this lesson in an article, ice cream is made by adding two s O R 2 G B I A Gubad
« . . tablespoonfuls of olive oil to each quart of shovel it around the freezer.
Multlcclu mn LaYOUt (PDF), milk. The cream for Philadelphia Ice
available at learningwebdesign.com/
articles/. An example of text formatted with the multicolumn properties.
J

420 Part lll. CSS for Presentation

Flexible Boxes with CSS Flexbox

that production-ready style sheets may require more code. I'll give you the
nitty-gritty on browser support at the end of this section.

Setting Up a Flexbox Container

You've already learned about the block layout mode for stacking elements
in the normal flow and the inline mode for displaying content within it
horizontally. Flexbox is another layout mode with its own behaviors. To turn
on flexbox mode for an element, set its display property to flex or inline-
flex (see Note). It is now a flex container, and all of its direct child elements
(whether they are divs, list items, paragraphs, etc.) automatically become flex NOTE
items in that container. The flex items (the beads) are laid out and aligned
along flex lines (the string).

The inline-flex value generates an
inline-level flex container box. We'll be
FIGURE 16-2 shows the effect of simply adding display: flex to a div, thus focusing on the more commonly used
turning on the Flexbox switch. I've added a blue border to the container to ~ f1exvaluein this chapter.

make its boundaries clear. To save space, I am not showing purely cosmetic

styles such as colors and fonts.

THE MARKUP

<div id="container">
<div class="box box1">1</div>
<div class="box box2">2</div>
<div class="box box3">3</div>
<div class="box box4">4</div>
<div class="box box5">5</div>
</div>

THE STYLES

#container {
display: flex;

Flexbox Resources

You'll learn all the ins and outs of Flexbox in this chapter, but it What the Flexbox?! (flexbox.io/)

is always good to get a few perspectives and hands-on tutorials Wes Bos does a great job walking you through Flexbox
online. If you do a web search, be sure to limit your findings to properties as well as a few code projects in this free, 20-part
2015 posts and later, or you may come across outdated advice video series.

based on earlier spec versions. Following are some of the sites

that I've found most useful or most entertaining; Flexbox Playground (codepen.io/enxaneta/full/adLPwv/)

As the name says, this page by Gabi lets you play around with
all of the Flexbox properties and values and see the results
instantly. It’s a nice way to get familiar with what Flexbox can

A Complete Guide to Flexbox
(css-tricks.com/snippets/css/a-quide-to-flexbox/)

This summary of Flexbox features by Chris Coyier is one of the do.
most popular Flexbox references out there. Many developers
just keep it open in a browser when they do Flexbox work. Flexy Boxes (the-echoplex.net/flexyboxes/)

Flexbox Froggy (flexboxfroggy.com/) This is another Flexbox playground and code generator.

Don’t miss this online game for learning Flexbox by helping
colorful frogs make it back to their lily pads.

16. CSS Layout with Flexbox and Grid 421

Flexible Boxes with CSS Flexbox

H FLEXBOX FUN FACTS

Here are a few things to know about
Flexbox and flex item behavior:

* float, clear, multicolumn layout,
and vertical-align do not work
with elements in flexbox mode.

* Margins do not collapse in flexbox
mode. The margin edges of items
are placed at the start or end of
the flex line and do not overlap
the padding of the container. The
margins on neighboring items
add up.

* The spec recommends avoiding
percentage values for margin and
padding on flex items because of
unpredictable results.

By default, the divs display as block elements, stacking
up vertically. Turning on flexbox mode makes them line
upin arow.

block layout mode

display: flex;

12345

flex container

flexbox layout mode

FIGURE 16-2. Applying the flex display mode turns the child elements into flex
items that line up along one axis. You don’t need to do anything to the child elements
themselves.

You can see that the items have lined up in a row from left to right, which is
the default Flexbox behavior if your page is in English or another language
written in rows from left to right. That is because the default flexbox direc-
tion matches the direction of the language the page is written in. It would go
from right to left by default in Hebrew or Arabic or in columns if the page is
set with a vertical writing direction. Because it is not tied to one default direc-
tion, the terminology for specifying directions tends to be a little abstract.
You'll see what I mean when we talk about “flow” in the following section.

It is worth noting that you can turn any flex item into a flex container by set-
ting its display to flex, resulting in a nested flexbox. In fact, you'll get to try
that yourself in an upcoming exercise. Some Flexbox solutions use flexboxes
nested several layers deep.

Controlling the “Flow” Within the Container

Once you turn an element into a flex container, there are a few properties you
can set on that container to control how items flow within it. The flow refers
to the direction in which flex items are laid out as well as whether they are
permitted to wrap onto additional lines.

422 Part lll. CSS for Presentation

Specifying flow direction

You may be happy with items lining up in a row as shown in FIGURE 16-2,
but there are a few other options that are controllled with the flex-direction

property.

flex-direction

Values: row | column | row-reverse | column-reverse
Default: row

Appliesto: flex containers

Inherits: no

The default value is row, as we saw in the previous example (see the “Row
and Column Direction” sidebar). You can also specify that items get aligned
vertically in a column. The other options, row-reverse and column-reverse,
arrange items in the direction you would expect, but they start at the end
and get filled in the opposite direction. FIGURE 16-3 shows the effects of each
keyword as applied to our simple example.

flex-direction: row-reverse;

flex-direction: column-reverse;

flex-direction: row; (default)

flex-direction: column;

FIGURE 16-3. Examples of flex-direction values row, row-reverse, column, and
column-reverse.

Now that you've seen Flexbox in action, it’s a good time to familiarize your-
self with the formal Flexbox terminology. Because the system is direction-
agnostic, there are no references to “left,” “right,” “top,” or “bottom” in the
property values. Instead, we talk about the main axis and the cross axis. The
main axis is the flow direction you've specified for the flex container. For
primarily horizontal languages, when set to row, the main axis is horizontal;
for column, the main axis is vertical (again, rows and columns are language-
dependent, as explained earlier in the “Row and Column Direction” sidebar).

» «

Flexible Boxes with CSS Flexbox

Row and Column
Direction

In writing systems with horizontal
lines of text, the row keyword

lays items out horizontally, as we
Westerners typically think of a
“row.” Bear in mind that in vertically
oriented languages, row aligns
items vertically, in keeping with

the default direction of the writing
system. Similarly, column results in
horizontally aligned items in vertical
languages.

This is a behavior worth knowing;
however, because we are creating
English language sites in this book,
I'll be sticking with the assumptions
that row = horizontal and column =
vertical throughout this chapter for
simplicity’s sake.

16. CSS Layout with Flexbox and Grid 423

Flexible Boxes with CSS Flexbox

The cross axis is whatever direction is perpendicular to the main axis (verti-
cal for row, horizontal for column). The parts of a flex container are illustrated
in FIGURE 16-4.

In addition to the axes, understanding the other parts of the Flexbox system
makes the properties easier to learn. Both the main and cross axes have a start
and an end, based on the direction in which the items flow. The main size is
the width (or height if it’s a column) of the container along the main axis, and
the cross size is height (or width if it’s a column) along the cross axis.

Wrapping onto multiple lines

If you have a large or unknown number of flex items in a container and don't
want them to get all squished into the available space, you can allow them to
break onto additional lines with the flex-wrap property.

FOR LANGUAGES THAT READ HORIZONTALLY FROM LEFT TO RIGHT:

When flex-direction is set to row, the main axis is horizontal
and the cross axis is vertical.

(b flex-direction: row;
Keeping the main and cross axes Sort
straight as you switch between rows T
and columns can feel like mental -
gymnastics and is one of the trickier Size S
things about using Flexbox. With o
practice, you’ll get used to it. ross @
- -~ end T

flex container

When flex-direction is set to column, the main axis is vertical
and the cross axis is horizontal.

cross flex-direction: column; Cross
start end
i i

Cross size

Cross axis _
@ >

flex container

The parts of a flex container.

424 Part lll. CSS for Presentation

flex-wrap

Values: nowrap | wrap | wrap-reverse
Default: nowrap

Appliesto: flex containers

Inherits: no

By default, items do the squish thing and do not wrap onto additional lines
(nowrap). The wrap keyword turns on the ability to wrap onto multiple lines
in the direction from cross start to cross end. For example, if the direction is
row, then lines are positioned from the top down.

wrap-reverse breaks the elements onto multiple lines, but flows them in the
opposite direction, from cross end to cross start (from the bottom up, in this
case). It feels a little esoteric to me, but you never know when an occasion
might arise to put it to use.

I've added more divs to our numbered flexbox example and I've given the
flex items a width of 25% so that only four will fit across the width of the
container. FIGURE 16-5 shows a comparison of the various wrap options
when the flex-direction is the default row.

THE MARKUP THE STYLES

#container {
display: flex;
flex-direction: row;

<div id="container">
<div class="box box1">1</div>
<!-- more boxes here -->

<div class="box box10">10</div> flex-wrap: wrap;
</div> }
.box {
width: 25%;
}
flex-wrap: wrap; flex-wrap: wrap-reverse;

flex-wrap: nowrap; (default)

858 /5 oo

i

asm

When wrapping is disabled, flex items squish if
there is not enough room, and if they can’t
squish any further, may get cut off if there is not
enough room in the viewport.

i

FIGURE 16-5. Comparing the effects of nowrap, wrap, and wrap-reverse keywords
for flex-wrap.

Flexible Boxes with CSS Flexbox

16. CSS Layout with Flexbox and Grid 425

Flexible Boxes with CSS Flexbox

By default, when the flex-direction is set to column, the container expands
to contain the height of the items. In order to see wrapping kick in, you need
to set a height on the container, as I've done here. FIGURE 16-6 shows how
wrapping works for each of the flex-wrap keywords. Notice that the items
are still 25% the width of their parent container, so there is space left over
between the columns.
#container {

display: flex;

height: 350px;

flex-direction: column;

flex-wrap: wrap;

}
.box {
width: 25%;
}
flex-wrap: nowrap; (default) flex-wrap: wrap;

|
2
5
4
5
6
7
8
9
10

FIGURE 16-6. Comparing nowrap, wrap, and wrap-reverse when the items are in a
column.

Putting it together with flex-flow

The shorthand property flex-flow makes specifying flex-direction and
flex-wrap short and sweet. Omitting one value results in the default value
for its respective property, which means you can use flex-flow for either or
both direction and wrap.

426 Part lll. CSS for Presentation

flex-flow

Values: flex-direction flex-wrap
Default: TOW howrap
Appliesto: flex containers
Inherits: no

Flexible Boxes with CSS Flexbox

Using flex-flow, I could shorten the previous example (FIGURE 16-6) like so:

#container {
display: flex;
height: 350px;
flex-flow: column wrap;

}

You've only scratched the surface of Flexbox, but you've got what it takes to
whip that ugly nav menu on the bakery page into shape in EXERCISE 16-1.

EXERCISE 16-1. Making a navigation bar with Flexbox

Open the most recent version of the style sheet for the bakery
home page in a text editor. If you need a fresh start, you will find an
updated copy of bakery-styles.css in the materials for Chapter 16.

Note: Be sure to use one of the Flexbox-supporting browsers listed
at the end of this section.

1. Open bakery-styles.css in a text editor and start by making the
ul element in the nav element as neutral as possible:

nav ul {
margin: 0;
padding: 0;
list-style-type: none;
}

Turn that ul element into a flexbox by setting its display to
flex. As a result, all of the 1i elements become flex items.
Because we want rows and no wrapping, the default values for
flex-direction and flex-wrap are fine, so the properties can
be omitted:

nav ul {

display: flex;

Save the document and look at it in a browser. You should
see that the links are lined up tightly in a row, which is an
improvement, but we have more work to do.

2. Now we can work on the appearance of the links. Start by
making the a elements in the nav list items display as block
elements instead of inline. Give them 1px rounded borders,
padding within the borders (.5em top and bottom, 1lem left and
right), and .5em margins to give them space and to open up the
brown navigation bar.

nav ul 1i a {
display: block;
border: 1px solid;
border-radius: .5em;
padding: .5em lem;
margin: .5em;

}

3. We want the navigation menu to be centered in the width of the
nav section. I'm getting a little ahead here because we haven’t
seen alignment properties yet, but this one is fairly intuitive.
Consider it a preview of what's coming up in the next section.
Add the following declaration for the nav ul element:

nav ul {
aisplay: flex;

justify-content: center;

FIGURE 16-7 shows the way your navigation menu should look
when you are finished.

IMPORTANT: We'll be using this version of the bakery site as the
starting point for EXERCISE 16-6, so save it and keep it for later.

\ MENU \ | NEWS | |W| |m|

o
ik

i

FIGURE 16-7. The list of links is now styled as a horizontal
menu bar.

16. CSS Layout with Flexbox and Grid 427

Flexible Boxes with CSS Flexbox

NOTE

You can also distribute extra space along
the main axis by making the flex items
themselves wider to fill the available
space. That is the job of the flex proper-
ties, which we'll look at in @ moment.

NOTE

As new alignment keywords are added to
the Grid Layout spec, they are available
for Flexbox as well; however, because
they are newer, they will be less well sup-
ported. Be sure to check the Flexbox spec
for updates.

Controlling the Alignment of Flex Items in the Container

So far we’ve seen how to turn flexbox mode on, turning an element into
a flex container and its children into flex items. We've also learned how to
change the direction in which items flow, and allow them to wrap onto mul-
tiple lines. The remaining set of container properties affects the alignment of
items along the main axis (justify-content) and cross axis (align-items and
align-content).

Aligning on the main axis

By default, flex items are just as wide as they need to be to contain the ele-
ment’s content, which means the container may potentially have space to
spare on the flex line. We saw this back in FIGURE 16-2. Also by default, the
items flow in right next to each other from the “main start” (based on lan-
guage direction and the direction of the flex line).

The justify-content property defines how extra space should be distributed
around or between items that are inflexible or have reached their maximum
size (see Note).

Values: flex-start | flex-end |center |space-between |space-around
Default: flex-start
Appliesto: flex containers

Inherits: no

Apply justify-content to the flex container element because it controls spac-
ing within the container itself:
#container {
display: flex;
justify-content: flex-start;

FIGURE 16-8 shows how items align using each of the keyword values for
justify-content. As you would expect, flex-start and flex-end position
the line of items toward the start and end of the main axis, respectively, and
center centers them.

space-between and space-around warrant a little more explanation. When
justify-content is set to space-between, the first item is positioned at the
start point, the last item goes at the end point, and the remaining space is
distributed evenly between the remaining items. The space-around property
adds an equal amount of space on the left and right side of each item, result-
ing in a doubling up of space between neighboring items.

428 Part lll. CSS for Presentation

Flexible Boxes with CSS Flexbox

justify-content: flex-start; (default)

12345671

justify-content: flex-end; justify-content: center; The justify-content setting is applied

after margins have been calculated on
been set to “flex” has been accounted for.

If the flex value for items allows them
justify-content: space-between; justify-content: space-around; to grow to fill the container width, then

TP ENEERN HEERE@g et

FIGURE 16-8. Options for aligning items along the main axis with justify-content.

NOTE

When the direction is set to a column with a vertical main axis, the keywords
work the same way; however, there needs to be an explicit container height
with space left over in order for you to see the effect. 've changed the size of
the text and set a height on the container element in FIGURE 16-9 to demon-
strate the same keywords as applied to a vertical main axis.

justify-content: flex-start; (default) justify-content: flex-end; justify-content: center;
justify-content: space-between; justify-content: space-around;

FIGURE 16-9. Options for aligning items along a vertical main axis (flex-direction
set to column) with justify-content.

16. CSS Layout with Flexbox and Grid 429

Flexible Boxes with CSS Flexbox

align-items: flex-start;

Aligning on the cross axis

That takes care of arranging things on the main axis, but you may also want
to play around with alignment on the cross axis (up and down when the
direction is row, left and right if the direction is column). Cross-axis alignment
and stretching is the job of the align-items property.

align-items

Values: flex-start | flex-end | center | baseline | stretch
Default: stretch

Appliesto: flex containers

Inherits: no

I've demonstrated the various keyword values for align-items as it applies
to rows in FIGURE 16-10. In order to see the effect, you must specify the
container height; otherwise, it expands just enough to contain the content
with no extra space. I've given the container a height to show how items are
positioned on the cross axis.

Like justify-content, the align-items property applies to the flex container
(that can be a little confusing because “items” is in the name).
#container {
display: flex;
flex-direction: row;
height: 200px;
align-items: flex-start;

}

The flex-start, flex-end, and center values should be familiar, only this
time they refer to the start, end, and center of the cross axis. The baseline
value aligns the baselines of the first lines of text, regardless of their size. It
may be a good option for lining up elements with different text sizes, such as
headlines and paragraphs across multiple items. Finally, stretch, which is the
default, causes items to stretch until they fill the cross axis.

align-items: flex-end; align-items: center;

align-items: stretch; (default)

align-items: baseline;

Items are aligned so that the baselines ____fa < =Ea@4 & -
of the first text lines align.

FIGURE 16-10. Aligning along the cross axis with align-items.

430 Partlll. CSS for Presentation

When the flex container’s direction is set to column, align-items aligns items
left and right. Look back at FIGURES 16-2 and 16-9 and you will see that
when we set the items in a column and did not provide any alignment infor-
mation, each item stretched to the full width of the cross axis because stretch
is the default value.

If youd like one or more items to override the cross-axis setting, use the
align-self property on the individual item element(s). This is the first prop-
erty we've seen that applies to an item, not the container itself. align-self
uses the same values as align-items; it just works on one item at a time.

align-self
Values: flex-start | flex-end | center | baseline | stretch
Default: stretch

Appliesto: flex items

Inherits: no

In the following code and FIGURE 16-11, the fourth box is set to align at the
end of the cross axis, while the others have the default stretch behavior.

.boxa {
align-self: flex-end;
}

align-self: flex-end;

FIGURE 16-11. Use align-self to make one item override the cross-axis alignment
of its container.

Aligning multiple lines

The final alignment option, align-content, affects how multiple flex lines are
spread out across the cross axis. This property applies only when flex-wrap is
set to wrap or wrap-reverse and there are multiple lines to align. If the items
are on a single line, it does nothing.

align-content

Values: flex-start | flex-end | center | space-around | space-between | stretch
Default: stretch

Appliesto: multi-line flex containers

Inherits: no

Flexible Boxes with CSS Flexbox

align-content applies only
when there are multiple
wrapped flex lines.

16. CSS Layout with Flexbox and Grid 431

Flexible Boxes with CSS Flexbox

align-content: flex-start;

All of the values you see in the property listing should look familiar, and
they work the way you would expect. This time, however, they apply to how
extra space is distributed around multiple lines on the cross axis, as shown
in FIGURE 16-12.

Again, the align-content property applies to the flex container element. A
height is required for the container as well, because without it the container
would be just tall enough to accommodate the content and there would be
no space left over.

#container {
display: flex;
flex-direction: row;
flex-wrap: wrap;
height: 350px;
align-items: flex-start;

}
box {

width: 25%;
}

align-content: flex-end; align-content: center;

FIGURE 16-12. The align-content property distributes space around multiple flex
lines. It has no effect when flex items are in a single line.

Aligning items with margins

As long as we're talking about alignment, there is one good trick Id like to
show you that will be useful when you start laying out components with
Flexbox.

Menu bars are ubiquitous on the web, and it is common for one element of
the bar, such as a logo or a search field, to be set off visually from the others.
You can use a margin to put the extra container space on a specified side or

432 Partlll. CSS for Presentation

sides of a flex item, thus setting one item apart. This should be more clear
with an example.

The menu in FIGURE 16-13 has a logo and four menu options. Id like the logo
to stay in the left corner but the options to stay over to the right, regardless
of the width of the viewport.

THE MARKUP

<li class="logo"></1i>
<1i>About</1i>
Blog</1i>
<1i>Shop</1i>
Contact</1i>

THE STYLES
ul {

display: flex;
align-items: center;
background-color: #00af8f;
list-style: none; /* removes bullets */
padding: .5em;
margin: 0;

}

1i {
margin: 0 lem;

}

li.logo {
margin-right: auto;

LoGoCo About Blog Shop Contact

FIGURE 16-13. Using a margin to adjust the space around flex items. In this example,
the right margin of the logo item pushes the remaining items to the right.

I've turned the unordered list (ul) into a flex container, so its list items (1i)
are now flex items. By default, the items would stay together at the start of the
main axis (on the left) with extra space on the right. Setting the right margin
on the logo item to auto moves the extra space to the right of the logo, push-
ing the remaining items all the way to the right (the “main end”).

This technique applies to a number of scenarios. If you want just the last item
to appear on the right, set its left margin to auto. Want equal space around
the center item in a list? Set both its left and right margins to auto. Want to
push a button to the bottom of a column? Set the top margin of the last item
to auto. The extra space in the container goes into the margin and pushes the
neighboring items away.

We've covered a lot of territory, so it's a good time to try out Flexbox in
EXERCISE 16-2.

Flexible Boxes with CSS Flexbox

Use margins to add space
on the sides of particular
flex items.

HEADS-UP

When you use margin: auto on a flex
item, the justify-content property no
longer has a visual effect because you've
manually assigned a location for the
extra space on the main axis.

16. CSS Layout with Flexbox and Grid 433

Flexible Boxes with CSS Flexbox

EXERCISE 16-2. A flexible online menu

Now it’s time for you to play around with Flexbox properties

by using content a bit more complex than links in a menu

bar. In this exercise, you'll format a simple online menu with a
number of menu items. As always, the materials are available at
learningwebdesign.com/5e/materials.

Open flex-menu.html in a text editor, and you'll see that it has all
of the content ready to go as well as an internal style sheet with
styles for the cosmetic aspects of the menu (colors, fonts, borders,
spacing, etc.). Open the file in a browser, and the menu items
should appear in a column because they are block elements. |

put a border on the #menu wrapper div so you can visualize its
boundaries.

1. First, we'll go for maximum impact with minimal effort by
making the #menu wrapper div a flex container. There is already

a rule for #menu, so add this declaration to it:

#tmenu {
border: 3px solid #783F27;
display: flex;

Save and reload the page in the browser, and BAML.. they’re
in a row now! And because we haven’t added any other flex

properties, they are demonstrating default flexbox behavior
(FIGURE 16-14):

Each item (defined by a section element) is the full height
of the #menu container, regardless of its content.

The sections have their widths set to 240 pixels, and that
measurement is preserved by default. Depending on how
wide your browser window is set, you may see content
extending beyond the container and getting clipped off, as
shown in the figure.

. By default, flex items appear in the writing direction (a row, left
to right, in English). Add the flex-direction property to the
existing #menu rule to try out some of the other values (row-
reverse, column, column-reverse). The items are numbered
to make their order more apparent.

flex-direction: row-reverse;

. Set the flex-direction back to row, and let’s play around
with the cross-axis alignment by using the align-items
property. Begin by setting it to flex-start (FIGURE 16-15).
Save and reload, and see that the items all line up at the start of
the cross axis (the top, in this case). Try some of the other values

4
Jerk Rotisserie
Chicken

2
Southwestern
Napoleons

The bistro menu in default flexbox mode. By default, the items stay
in one row even though there is not enough room for them and content gets clipped.

1
Black bean

Bistro

blend of

‘Spicy black bean and a

2
Southwestern
Napoleons

3 6
Coconut-Corn Pasta Puttanesea

Chowder

) 5
purses Jerk Rotisserie Thai Shrimp
Chicken Kebabs

Atich tomato sauce

Items
To Go

weapped in sheets of phyllo.
and baked untl golden.

simmered with garfic,
alives, b

red

ted inl

i
L
Al o pectection. peppes Tabes.

#1295 #1295

Using the align-items property to align the items at the start of the

cross axis (flex-start).

434 Part lll. CSS for Presentation

Flexible Boxes with CSS Flexbox

foralign-items (flex-end, center, baseline, and stretch)
to get a feel for how each behaves.

align-items: flex-start;

. When you are done experimenting, set align-items back
to stretch. Instead of having all the items on one line and
getting cropped by the edge of the browser, let’s have them
wrap onto multiple lines by using the flex-wrap property on
the #menu container:

flex-wrap: wrap;

Save the file and look at it in the browser (FIGURE 16-16).
Resize the browser window and watch the lines rewrap. Notice
that each flex line is as tall as the tallest item in that row, but
rows may have different heights based on item content.

2 3
Southwestern Coconut-Corn
Napoleons Chowder

1
Black bean purses
Spicy black bean and a

be com salsa, i
‘andour handmade flour coconut broth islight and
tortillas, delicious.

and halked until golden.

Wt

. As a final tweak, let's make the price buttons line up at the

bottom of each menu item, which is possible if each item is
also a flex container. Here, I'm making each item a nested flex
container by setting its display to flex and specifying the
direction as column so they continue to stack up vertically. Now
the h2 and p elements become flex items within the section
flex container.

section {

aisplay: flex;
flex-direction: column;

}

When you reload the page in the browser, it looks about the
same as when the sections were made up of block elements.
The subtle difference is that now the neighboring margins
between elements stack up and do not collapse.

Now push the paragraphs containing the prices to the bottom
using themargin: auto trick. Add this declaration to the
existing style rule for elements with the class name “price.”

.price {

margin-top: auto;

FIGURE 16-17 shows the final state of the “Bistro Items to Go”
menu with nested flexboxes. We’ll continue working on this file
after we've learned the item-specific properties, so save it for later.

Bistro R
Items el fpeer e
The menu with wrapping turned on. To Go e
e]
5. If you'd like, you can replace the flex-direction and flex-
wrap declarations with a single flex-flow declaration like so: 2 D G
flex-flow: row wrap; S
6. By default, the items on each flex line are stacked toward the Eo—
start of the main axis (the left). Try changing the main-axis e s || i

alignment of items with the justify-content property (again,
applied to the #menu flex container rule). | like how they look
centered in the container, but check out the effect of the other — —
values (flex-start, flex-end, space-between, space-
around) as well.

The menu so far with wrapping flex items

justify-content: center; and aligned prices.

16. CSS Layout with Flexbox and Grid 435

Flexible Boxes with CSS Flexbox

Determining How Items “Flex” in the Container

One of the great marvels of the flexbox model is that items resize, or flex to
use the formal term, to fit the available space. It’s this flexibility that makes
Flexbox such a powerful tool for designing for the wide array of screen and
browser window sizes we encounter as web designers. The beauty is that the
browser figures out the sizes on the fly, and that means less math for us! In
this section, we’ll get to know the flex properties.

Earlier, you learned about the justify-content property, which distributes
extra space in the container between and around items along the main axis.
The concept of flex is concerned with how space is distributed within items,
growing or shrinking items as required to make them fit.

Flex is controlled with the flex property, which specifies how much an item
can grow and shrink, and identifies its starting size. The full story is that
flex is a shorthand property for flex-grow, flex-shrink, and flex-basis, but
the spec strongly recommends that authors use the flex shorthand instead
of individual properties in order to avoid conflicting default values and to
ensure that authors consider all three aspects of flex for every instance.

Values: none | 'flex-grow flex-shrink flex-basis'
Default: 01auto
Appliesto: flex items

Inherits: no

The value for the flex property is typically three flex properties listed in this
order:

flex: flex-grow flex-shrink flex-basis;

For the flex-grow and flex-shrink properties, the values 1 and 0 work like
on/off switches, where 1 “turns on” or allows an item to grow or shrink, and
0 prevents it. The flex-basis property sets the starting dimensions, either to
a specific size or a size based on the contents.

In this quick example, a list item starts at 200 pixels wide, is allowed to
expand to fill extra space (1), but is not allowed to shrink (0) narrower than
the original 200 pixels.
li {
flex: 1 0 200px;

}

That should give you the general idea. In this section, we’ll take a much closer
look at growing, shrinking, and base size, in that order.

But first, it is important to note that flex and its component properties apply
to flex items, not the container. Keeping track of which properties go on the
container and which go on items is one of the tricks of using Flexbox. See the
“Flex Properties” sidebar for a handy list of how the properties are divided.

436 Part lll. CSS for Presentation

Flexible Boxes with CSS Flexbox

Expanding items (flex-grow)

The first value in the flex property specifies whether (and in what propor-
tion) an item may stretch larger—in other words, its flex-grow value (see
Note). By default it is set to 0, which means an item is not permitted to grow
wider than the size of its content or its specified width. Because items do not
expand by default, the alignment properties have the opportunity to go into
effect. If the extra space was taken up inside items, alignment wouldn’t work.

NOTE

flex-grow is the individual property
that specifies how an item may expand.
Authors are encouraged to use the short-

flex-grow

Values: number
Default: 0
Appliesto: flexitems
Inherits: no

If you set the flex-grow value for all the items in a container to 1, the browser
takes whatever extra space is available along the main axis and applies it
equally to each item, allowing them all to stretch the same amount.

Let’s take the simple box example from earlier in the chapter and see how it
behaves with various flex settings applied. FIGURE 16-18 shows what happens
when flex-grow is set to 1 for all box items (flex-shrink and flex-basis are
left at their default values). Compare this to the same example with flex-grow
set to the default O (this is the same behavior we observed in FIGURE 16-2).

THE MARKUP THE STYLES

<div id="container"> .box {
<div class="box box1">1</div>
<div class="box box2">2</div>
<div class="box box3">3</div> }
<div class="box box4">4</div>
<div class="box box5">5</div>

</div>

flex: 1 1 auto;

flex: 0 1 auto; (preventsexpansion)

12345

flex: 1 1 auto; (allows expansion)

12 3 4 5

FIGURE 16-18. When flex-grow is set to 1, the extra space in the line is distributed
into the items in equal portions, and they expand to fill the space at the same rate.

hand flex property instead.

H AT A GLANCE

Flex Properties

Now that you've been introduced to
all the properties in the Flexible Box
Module, it might be helpful to see at
a glance which properties apply to
containers and which are set on flex
items.

Container Properties
Apply these properties to the flex
container:
display
flex-flow
flex-direction
flex-wrap
justify-content
align-items
align-content

Flex Item Properties
Apply these properties to flex items:
align-self
flex
flex-grow
flex-shrink
flex-basis
order

16. CSS Layout with Flexbox and Grid 437

Flexible Boxes with CSS Flexbox

NOTE

flex-shrink is the individual property
that specifies how an item may contract.
Authors are encouraged to use the short-
hand flex property instead.

If you specify a higher flex-grow integer to an item, it acts as a ratio that
applies more space within that item. For example, giving “box4” the value
flex-grow: 3 means that it receives three times the amount of space than the
remaining items set to flex-grow: 1. FIGURE 16-19 shows the result.

.box4 {
flex: 3 1 auto;

}

112 3 4

flex: 3 1 auto;

FIGURE 16-19. Assigning a different amount flex-grow to an individual item. Here
“box4” was set to expand at three times the rate of the other items.

Notice that the resulting item is not three times as wide as the others; it just
got three times the amount of space added to it.

If there’s not much space left over on the line, there’s a chance that each por-
tion of space could be small enough that it would not add up to much differ-
ence. You may just need to play around with the flex-grow values and adjust
the width of the browser until you get the effect you want.

Now that you have that concept down, shrinking should be straightforward
because it is based on the same principle.

Squishing items (flex-shrink)

The second flex property value, flex-shrink, kicks in when the container is
not wide enough to contain the items, resulting in a space deficit. It essen-
tially takes away some space from within the items, shrinking them to fit,
according to a specified ratio.

flex-shrink
Values: number
Default: 1

Appliesto: flexitems

Inherits: no

By default, the flex-shrink value is set to 1, which means if you do nothing,
items shrink to fit at the same rate. When flex-shrink is 0, items are not per-
mitted to shrink, and they may hang out of their container and out of view
of the viewport. Finally, as in flex-grow, a higher integer works as a ratio. An
item with a flex-shrink of 2 will shrink twice as fast as if it were set to 1. You

438 Part lll. CSS for Presentation

will not generally need to specify a shrink ratio value. Just turning shrinking
on (1) or off (0) should suffice.

Flex items stop shrinking when they reach their minimum size (defined by
min-width/min-height). By default (when min-width/min-height is auto), this
minimum is based on its min-content size. But it can easily be set to zero, or
12em, or any other length that seems useful. Watch for this effect when deeply
nested items force a flex item to be wider than expected.

You will see the flex-shrink property in action in FIGURE 16-20 in the next
section.

Providing an initial size (flex-basis)

The third flex value defines the starting size of the item before any wrap-
ping, growing, or shrinking occurs (flex-basis). It may be used instead of the
width property (or height property for columns) for flex items.

flex-basis
Values: length | percentage | content | auto
Default: auto

Appliesto: flex items

Inherits: no

In this example, the flex-basis of the boxes is set to 100 pixels (FIGURE
16-20). The items are allowed to shrink smaller to fit in the available space
(flex-shrink: 1), but they are not allowed to grow any wider (flex-grow: 0)
than 100 pixels, leaving extra space in the container.

box {
flex: 0 1 100px;
}

flex: 0 1 100px;

12 3 4 5

When the container is wide, the items will not grow wider than their
flex-basis of 100 pixels because flex-grow is set to 0.

12345

When the container is narrow, the items are allowed to shrink to fit
(flex-shrink: 1).

FIGURE 16-20. Using flex-basis to set the starting width for items.

Flexible Boxes with CSS Flexbox

By default, items may
shrink when the container
is not wide enough
(flex-shrink: 1).

NOTE

flex-basis is the individual proper-
ty that sets the initial size of the item.
Authors are encouraged to use the short-
hand flex property instead.

Flex settings override
specified widths/heights
for flex items.

16. CSS Layout with Flexbox and Grid 439

Flexible Boxes with CSS Flexbox

By default, flex-basis is set to auto, which uses the specified width/height
property values for the item size. If the item’s main size property (width or
height) is not set or is auto (its default), flex-basis uses the content width.
You can also explicitly set flex-basis to be the width of the content with the
content keyword; however, that value is poorly supported as of this writing.

In this example, the flex basis for the boxes is set to 100 pixels because the
auto value uses the value set by width. Items are allowed to grow, taking up
any extra space in the container, but they are not allowed to shrink.
box {
width: 100px;
flex: 1 0 auto;

}

When the browser goes about sizing a flex item, it consults the flex-basis
value, compares it to the available space along the axis, and then adds or
removes space from items according to their grow and shrink settings. It’s
important to note that if you allow an item to grow or shrink, it could end
up being narrower or wider than the length provided by flex-basis or width.

Handy shortcut flex values

The advantage to using the flex property is that there are some handy
shortcut values that cover typical Flexbox scenarios. Curiously, some of the
shortcut values override the defaults of the individual properties, which was
confusing to me at first, but in the end it results in more predictable behav-
iors. When creating a flexbox component, see if one of these easy settings
will do the trick:

flex: initial;
This is the same as flex: 0 1 auto. It prevents the flex item from grow-
ing even when there is extra space, but allows it to shrink to fit in the
container. The size is based on the specified width/height properties,

defaulting to the size of the content. With the initial value, you can use
justify-content for horizontal alignment.

flex: auto;

This is the same as flex: 1 1 auto. It allows items to be fully flexible,
growing or shrinking as needed. The size is based on the specified width/
height properties.

flex: none;

This is equivalent to flex: 0 0 auto. It creates a completely inflexible flex
item while sizing it to the width and height properties. You can also use
justify-content for alignment when flex is set to none.

440 Part lll. CSS for Presentation

flex: integer;

This is the same as flex: integer 1 Opx. The result is a flexible item
with a flex basis of 0, which means it has absolute flex (see the sidebar
“Absolute Versus Relative Flex”) and free space is allocated according to

the flex number applied to items.

How are you doing? Are you hanging in there with all this Flexbox stuff? I
know it’s a lot to take in at once. We have just one more Flexbox item prop-

erty to cover before you get another chance to try it out yourself.

Absolute Versus Relative Flex

In FIGURE 16-19, we saw how extra space is assigned to items based on their flex
ratios. This is called relative flex, and it is how extra space is handled whenever the
flex-basis is set to any size other than zero (0), such as a particular width/height
value or auto.

With a basis of 0, the items get sized proportionally according to the flex ratios, which
is known as absolute flex. So with flex-basis: 0, an item with a flex-grow value
of 2 would be twice as wide as the items set to 1. Again, this kicks in only when the
flex-basis is 0.

In practice it is recommended that you always include a unit after the 0, such as 0px
or the preferred 0%.

In this example of absolute flex, the first box is given a flex-grow value of 2, and
the fourth box has a flex-grow value of 3 via the aforementioned shortcut flex:
integer. In FIGURE 16-21, you can see that the resulting overall size of the boxes is
in proportion to the flex-grow values because the flex-basis is set to 0.

.box {
/* applied to all boxes */
flex: 1 0 0%;

}
.box1 {

flex: 2; /* shortcut value for flex: 2 1 opx */
}
.boxa {

flex: 3; /* shortcut value for flex: 3 1 opx */
}

flex-grow: 2; flex-grow: 1; flex-grow: 3; flex-grow: 1;

2x 1x 1x 3x 1x
(120px) (60px) (60px) (180px) (60px)

However, if you reduce the value of flex-basis to 0, something interesting happens.

FIGURE 16-21. In absolute flex, boxes are sized according to the flex value ratios.

Flexible Boxes with CSS Flexbox

NOTE

I use Flexbox to format a responsive
form in the “Styling Forms” section of
Chapter 19, More CSS Techniques.
Flex properties allow form fields to
adapt to the available width, while
labels are set to always stay the same
size. Wrapping allows form fields to
move below their labels on smaller
screens. You've probably got Flexbox
in your head right now, so it might be
worth taking a look ahead.

16. CSS Layout with Flexbox and Grid 441

Flexible Boxes with CSS Flexbox

When to Reorder
(and When Not to)

Keep in mind that although
convenient, reordering is only a
visual display sleight-of-hand and
should be used with discretion.
Some points to remember:

* Although elements display in a
different order for visual browsers,
alternative devices such as screen
readers still read the content in
the order in which it appears in
the source (although it is not 100%
reliable in the real world).

¢ Reorder the source if thereis a
logical (rather than visual) reason
for the reordering.

¢ Don’t use order because it is more
convenient.

* Use order if the logical and visual
order are intended to be disjointed.

Changing the Order of Flex Items

One of the killer features of Flexbox is the ability to display items in an
order that differs from their order in the source (see the “When to Reorder
(and When Not To)” sidebar). That means you can change the layout order of
elements by using CSS alone. This is a powerful tool for responsive design,
allowing content from later in a document to be moved up on smaller screens.

To change the order of items, apply the order property to the particular
item(s) you wish to move.

Values: integer

Default: 0

Appliesto: flex items and absolutely positioned children of flex containers
Inherits: no

The value of the order property is a positive or negative number that affects
the item’s placement along the flex line. It is similar to the z-index property
in that the specific number value doesn’t matter, only how it relates to other
values.

By default, all items have an order value of zero (0). When items have the
same order value, they are laid out in the order in which they appear in the
HTML source. If they have different order values, they are arranged from the
lowest order value to the highest.

Going back to our colorful numbered box example, I've given box3 an order
value of 1. With a higher order value, it appears after all the items set to 0 (the
default), as shown in FIGURE 16-22.

.box3 {
order: 1;
}
order: 0 order: 0 order: 0 order: 0 order: 1
(default) (default) (default) (default)

Changing the order of items with the order property. Setting box3 to
order: 1 makes it display after the rest.

When multiple items share the same order value, that group of value-sharing
items (called an ordinal group) sticks together and displays in source order.
What happens if I give box2 an order value of 1 as well? Now both box2 and
box3 have an order value of 1 (making them an ordinal group), and they get

442 Part lll. CSS for Presentation

displayed in source order after all the items with the lower order value of 0
(FIGURE 16-23).

.box2, .box3 {

order: 1
}
Iorder: 0 order: 0 order: 0 - order: 1 order: 1I
ordinal group ordinal group

FIGURE 16-23. Setting box2 to order: 1 aswell makes it display after the items
with the default order of 0.

You can also use negative values for order. To continue with our example, I've
given box5 an order value of —1. Notice in FIGURE 16-24 that it doesn’t just
move back one space; it moves before all of the items that still have order set
to 0, which is a higher value than —1.

.box5 {
order: -1
}
| order: -1 ¥ order: 0 order: 0 | Iorder: 1 order: 1
ordinal group ordinal group ordinal group

FIGURE 16-24. Negative values display before items with the default order of 0.

I've used simple values of 1 and —1 in my examples, but I could have used
10008 or —649, and the result would be the same; the order goes from least
value to greatest value. Number values don't need to be in sequential order.

Now let’s take a look at how we can use order for something more useful
than moving little boxes around in a line. Here is a simple document with a
header, a main section consisting of an article and two aside elements, and
a footer:

<header>..</header>

<main>
<article><h2>Where It's At</h2></article>
<aside id="news"><h2>News></h2></aside>
<aside id="contact"><h2>Contact</h2><aside>

</main>

<footer>..<footer>

Flexible Boxes with CSS Flexbox

16. CSS Layout with Flexbox and Grid 443

Flexible Boxes with CSS Flexbox

NOTE

Although you can create a full-page
layout with Flexbox, the task is more
appropriately handled with Grid Layout,
which we’ll cover next. However, because
Flexbox has better browser support than
Grid Layout, it may be a suitable fall-
back. Flexbox is better suited for indi-
vidual components on the page such as
navigation, series of product “cards,” or
anything that you want to put in a line.

In the following CSS, I've made the main element a flexbox container so the
article and aside elements line up in a row, creating three columns (FIGURE
16-25). I set the flex factor for each item, allowing them to grow and shrink,
and set their widths with flex-basis. Finally, I used the order property to
specify the order in which Id like them to appear. Notice that the Contact
section is now first in the row, although it appears last in the source order.
And, as an added bonus, all of the columns fill the height of the main con-
tainer despite the amount of content in them.

main {
display: flex;

article {
flex: 1 1 50%;
order: 2;
}
#news {
flex: 1 1 25%;
order: 3;
#contact {
flex: 1 1 25%;
order: 1;
}

Hip & Happenin® Headline

Where It's At

Integer ornare neque enim, non imperdiet ex pellentesque
sed. Sed congue, nunc ut rhencus consectetur, diam purus
venenatis lacus, vel sollicitudin nibh tortor sed nunc.
Vestibulum at ante ac tortor ultricies gravida eget molestie
nibh. Fusce tempor dictum lectus, id luctus sapien tristique
suscipit. Cras volutpat lectus at urna vulputate pellentesque.
Praesent eleifend, sapien ut finibus facilisis, orci augue
elementum leo, a faucibus augue nibh ac urna. Aliquam erat
volutpat. Sed ultrices tempus neque, nec iaculis orci
sollicitudin id. Mauris gravida congue sapien, vitae finibus nisi
condimentum id. Donec turpis metus, euismod sed luctus sit

amet, semper eu purus.

The small print

FIGURE 16-25. Acolumned layout using Flexbox.

That concludes our tour of Flexbox properties! In EXERCISE 16-3, you can
put some of the item-level properties to use in the bistro menu. When you are
finished, come back for some tips on dealing with varying browser support
in the next section.

Browser Support for Flexbox

The current Flexible Box Layout Module became a stable Candidate
Recommendation in 2012 (www.w3.0rg/TR/css-flexbox-1/). The good news
is that all major desktop and mobile browsers have supported the standard

444 Part lll. CSS for Presentation

http://www.w3.org/TR/css-flexbox-1/

Flexible Boxes with CSS Flexbox

EXERCISE 16-3. Adjusting flex and order

The online menu is looking pretty good, but let’s put a few finishing ~ Chapter 7, Adding Images, might be useful here. It’s not the best-
touches on it. Open the flex-menu.htmil file as you left it at the end looking web page in the world, but you got a chance to try out a
of EXERCISE 16-2. lot of the Flexbox properties along the way.

1. Instead of having lots of empty space inside the menu container,
we’ll make the items fill the available space. Because we want
the items to be fully flexible, we can use the auto value for flex
(the same as flex: 1 1 auto;). Add this declaration to the
section rule to turn on the stretching behavior:

1 ! 3
Black bean purses Southwestern ‘Coconut-Corn
section { Napoleons Chowder
Spicy black bean and a
blend of Mexican cheeses Layers of light lump crab This vegan chowder with
wrapped in sheets of phyllo ‘meat, bean, and corn salsa, potatoes and corn in a
flex: auto; and baked until golden. and our handmade flour <oconut broth s light and
} tortillas. delicious.
83.95 $7.95 $3.95

2. OK, one last tweak: let's make the photos appear at the top of
each menu item. Because each section is a flex container, we

can use the order property to move its items around. In this 7) 7)
case, select the paragraphs with the “photo” class name and YN O AT de
give it a value less than the default 0. This will make the photo s 6

Thai Shrimp Kebabs Pasta Puttanesca

display first in the line (FIGURE 16-26):

‘Skewers of shrimp marinated in Arich tomato sauce simmered with
lemongrass, garlic, and fish sauce then garlic, olives, capers, anchovies, and

.phOtO { grilled to perfection. plenty of hot red pepper flakes.
order: -1;
} s12.05 $12.05
If you want to get fancy, you can set the width of the img elements
to 100% so they always fill the width of the container. The little
image I've provided gets quite blurry when it expands larger, so The final bistro menu with items flexing to fill
you can see how the responsive image techniques we covered in the extra space and the photos moved to the top of each listing.

since 2015 and a few since as far back as 2013. That covers roughly 80-90%
of users as of this writing according to Can/Use.com.

The Flexbox specification went through a lot of big changes in its path to
stabilization, and along the way, some older browsers implemented those old
specs. The three main releases are as follows:
Current version (2012)
Syntax example: display: flex;
Supported by: IE11+, Edge 12+, Chrome 21-28 (-webkit-), Chrome 29+,
Firefox 22-27 (-moz-, no wrapping), Firefox 28+, Safari 6-8 (-webkit-),
Safari 9+, Opera 17+, Android 44+, i0S 7-84 (-webkit-), iOS 92+
“Tweener” version (2011)
Syntax example: display: flexbox;
Supported by: I[E10

16. CSS Layout with Flexbox and Grid 445

Flexible Boxes with CSS Flexbox

WARNING

Be aware that although Autoprefixer
makes adding prefixes easier, it does not
guarantee that your flexboxes will work
seamlessly in all browsers. There are
behavior differences that can be unpre-
dictable, so be sure to test on all of your
target browsers.

Old version (2009)
Syntax example: display: box;

Supported by: Chrome <21, Safari 31-6, Firefox 2-21, iOS 32-61,
Android 2.1-43

What you won't find in these listings is Internet Explorer 9 and earlier, which
lack Flexbox support altogether.

Ensuring Flexbox works on the maximum number of browsers requires a
gnarly stack of prefixes and alternative properties, the details of which are too
complicated to dive into here. It’s also not something youd want to write out
by hand anyway, but fortunately there are options.

You can use Autoprefixer to magically generate that gnarly stack for you auto-
matically. As youe learning and practicing your CSS skills, you can convert
your styles online at autoprefixer.github.io. Just paste in your styles, and it
spits out the code (FIGURE 16-27) that you can add to your style sheet.

Fl Autoprefixer CSS online £

Fred ™= Add the desired vendor prefixes and remove unnecessary in your (SS
Hotw to use? (ru)

smenu { #menu Ll
border: 3px solid rosybrown;
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-items: flex-start;
Justify-content: center;

3

section {
display: flex;
flex-direction: column;
flex: 1 @ auto;

1

border: 3px solid rosybrown
display: -webkit-box
display: -ms-Flexbox
display: flex
-webkit-box-orient : horizantal
-weblit-box-direction: normal
-ms-flex-direction: row;
flex-direction: row;
-ms-flex-wrap: wrap
Flex-wrap: wrap,
-webkit-box-align: start
-ms-flex-align: start
align-items: flex-start;
-webkit-box-pack: center.
-ms-flex-pack: center
justify-content: center;

section
display: -webkit-box
display: -ms-flexbox
display: flex
-webkit-box-orient: vertical;
webkit-box-direction: normal
-ms-flex-direction: column
flex-direction: column
-webkit-box~flex: 1
-ms-flex: 1 @ auto;
flex: 1 @ auto;

Seloct all

The Autoprefixer site converts standard Flexbox styles into all the
styles needed for full browser support.

When you are ready to bring your workflow to a professional level, you can
include Autoprefixer as part of a “build step” that automates a lot of the
development gruntwork. If you are using a CSS preprocessor such as SASS,
you can also use “mixins” to manage tedious prefixes. We’ll look at build
tools and preprocessors in Chapter 20, Modern Web Development Tools.

You may still want to provide fallback styles for non-supporting browsers
(floats, inline blocks, and table display values are all options). If that is the
case, you can use a feature detection technique to determine whether the
browser supports Flexbox. If the browser fails the test, it gets a fallback set of

446 Part lll. CSS for Presentation

H ONLINE RESOURCE

Flexbugs

There are some buggy implementations of Flexbox out there. Lucky for us, Philip
Walton has been gathering all of these bugs in a GitHub repository called Flexbugs.
To see the bugs and workarounds for them, visit github.com/philipwalton/flexbugs.

styles, while supporting browsers get the full Flexbox treatment. We'll take a
look at feature detection in Chapter 19.

One big layout technique down, one big layout technique to go! Are you still
with me? We've covered a lot of nitty-gritty details, and if you're like me, your
head may be swimming. That's why I've included FIGURE 16-28. It has noth-
ing to do with CSS layout, but I figured we could use a breather. In fact, why
don’t you put down this book and take a little walk before taking on grids?

FIGURE 16-28. This adorable red panda has nothing to do with CSS layout, but |
figured we could use a breather before moving on to Grid Layout (photo by Teri Finn).

CSS GRID LAYOUT

At long last, we web designers and developers have a CSS module for using
an underlying grid to achieve true page layout—and we only had to wait 25
years to get it! The CSS Grid Layout Module provides a system for laying out
elements in rows and columns (remember that Flexbox lays out elements on
one axis only) in a way that can remain completely flexible to fit a variety
of screen sizes or mimic a print page layout. You can use grids to create the
sort of web page layouts that are familiar today, or get more sophisticated

CSS Grid Layout

16. CSS Layout with Flexbox and Grid 447

CSS Grid Layout

e
JAZZ AT LINCOLN CENTER %‘—"
SPRING 200

?

Re-creation of print jazz
poster using grid

NOTE

CSS: The Definitive Guide, 4th edition
(O’Reilly), by Eric A. Meyer and Estelle
Weyl, is a megavolume of everything you
could ever want to know about CSS. It
contains the entire Grid Layout in CSS
book as a chapter.

BROWSER SUPPORT NOTE

Internet Explorer versions 10 and 11 and
MS Edge through 15 implemented an
early draft of the Grid Layout Module,
much of which has since been made
obsolete. They should be treated as
non-supporting browsers when it comes
to the standard grid styles outlined in
this chapter. However, if those Microsoft
browsers are used by a significant share
of your target audience, it is probably
worth targeting them with an alternative
version of your layout written in the older
grid syntax they understand.

jan tschichold:

Re-creation of Die Neue
Typography lecture invitation
(1927) using grid

die neue py_pogruphig

Overlap experiment with
photos by Dorthea Lange

Examples of grid-based designs from Jen Simmons’s “Experimental
Layout Lab” page (labs.jensimmons.com).

with typography and whitespace as Jen Simmons has done in her Lab demos
(FIGURE 16-29). You can also use a grid to format just a portion of a page,
such as a gallery of images or products.

In this section, I will give you a good head start on using Grid Layout; how-
ever, I should note that there will be a few stones left unturned that you can
explore on your own.

The Grid Layout Module is one of the more complex specs in CSS, the finer
points of which could fill a book. In fact, Eric Meyer has written that book:
Grid Layout in CSS (O'Reilly)(see Note). I found that Eric helped me make
practical sense of the dense language of the spec itself (which you will also
want to reference at www.w3.org/TR/css-grid-1/). T also highly recommend
Grid expert Rachel Andrew’s book, The New CSS Layout (A Book Apart) for
a complete view of how we got to grid layouts and how to use them.

You will also find many great Grid resources online, which I will round up
at the end of this section.

The Obligatory Talk About Browser Support

There’s great and not-so-great news about browser support for Grid Layout.
The great news is that Chrome 57+, Opera, Firefox 52+, Safari 10+, and i0OS
Safari 10+ all started supporting the Grid standard free and clear of browser
prefixes in March 2017. Microsoft Edge added support in version 16 in 2017.

The not-so-great news is that in addition to lingering older versions of those
browsers, no version of Internet Explorer supports the current Grid standard
(see the Browser Support Note).

448 Part lll. CSS for Presentation

http://www.w3.org/TR/css-grid-1/

So, for the time being, you need to provide an alternative layout for non-
supporting browsers by using Flexbox or old-fashioned floats (or the older
Grid specification for IE and Edge <15), depending on the browsers you need
to target. A good way to get your Grid-based layouts to the browsers that can
handle them is to use a CSS Feature Query that checks for Grid support and
provides the appropriate set of styles. Feature queries are discussed in detail
in Chapter 19.

Be sure to check CanlUse.com for updated browser support information.
Another good resource is the Browser Support page at the “Grid by Example”
site, created by Rachel Andrew (gridbyexample.com/browsers), where she
posts browser support news as well as known bugs.

How Grid Layout Works
The process for using the CSS Grid Layout Module is fundamentally simple:

1. Use the display property to turn an element into a grid container. The
element’s children automatically become grid items.

2. Set up the columns and rows for the grid. You can set them up explicitly
and/or provide directions for how rows and columns should get created
on the fly.

3. Assign each grid item to an area on the grid. If you don't assign them
explicitly, they flow into the cells sequentially.

What makes Grid Layout complicated is that the spec provides so many
options for specifying every little thing. All those options are terrific for
customizing production work, but they can feel cuambersome when you are
learning Grids for the first time. In this chapter, I'll set you up with a solid
Grid toolbox to get started, which you can expand on your own as needed.

Grid Terminology

Before we dive into specific properties, you'll need to be familiar with the
basic parts and vocabulary of the Grid system.

Starting with the markup, the element that has the display: grid property
applied to it becomes the grid container and defines the context for grid for-
matting. All of its direct child elements automatically become grid items that
end up positioned in the grid. If you've just read the Flexbox section of this
chapter, this children-become-items scheme should sound familiar.

The key words in that previous paragraph are “direct child,” as only those
elements become grid items. Elements contained in those elements do not,
so you cannot place them on the grid. You can, however, nest a grid inside
another grid if you need to apply a grid to a deeper level.

CSS Grid Layout

16. CSS Layout with Flexbox and Grid 449

CSS Grid Layout

The grid itself has a number of components, as pointed out in FIGURE 16-30.

e qo------- ro------- £ e g-------- ro------- Fomeeemen
| 1 | H | l ! | 1 |
! 1 1 L] ! L J 1 1 !
! | 1 [l ! L) | | 1
[— R [A . b N [.
! 1 1 L] ' ! 1 [} 1)
! 1 1 L] ! ! 1 [1 '
! [[L] ! ! [1 1 !
w | | H 1 | | I i |
! 1 1 L] ' ! 1 [} 1)
il P rTTTT e Pt riih T P
| | | H | | ; i i |
1 1 1 1] ! 1 1 1 1 !
! 1 1 L] ! ! 1 [} 1 '
ot H e & e an R
grid lines grid cell and grid area
inline axis
pro— g-------- To------- Preteeos e Ao D P it
‘ i) | | b i i i |
! y 1 1 ! ! 1 1 1 1
[}] 1 1 ! ! 1 1 1 |
I AP [O o A [[|
21 ! ; : L 1 | 1 !
<! 1 ' ' ' ! ' ' ' '
x| 1 | 1 b 1 | 1 |
S | l 1 b 1 l | |
= § - rTTTT e I R riih rTTTT Fomeeeed
i 1 | ; b 1 | ; |
[}] 1 1 1 1 1 1 1 !
i) | | r | | | 1
grid track (column) grid track (row)

The parts of a CSS grid.

Grid line

The horizontal and vertical dividing lines of the grid are called grid lines.

Grid cell

The smallest unit of a grid is a grid cell, which is bordered by four adja-
cent grid lines with no grid lines running through it.

Grid area

A grid area is a rectangular area made up of one or more adjacent grid cells.

Grid track

The space between two adjacent grid lines is a grid track, which is a generic
name for a grid column or a grid row. Grid columns are said to go along
the block axis, which is vertical (as block elements are stacked) for lan-
guages written horizontally. Grid rows follow the inline (horizontal) axis.

It is worth pointing out that the structure established for the grid is indepen-
dent from the number of grid items in the container. You could place 4 grid
items in a grid with 12 cells, leaving 8 of the cells as “whitespace.” That’s the
beauty of grids. You can also set up a grid with fewer cells than grid items,

450

Part Ill. CSS for Presentation

and the browser adds cells to the grid to accommodate them. It’s a wonder-
fully flexible system.

Without further ado, it’s time to get into some code.

Declaring Grid Display

To turn an element into a grid container, set its display property to grid or
inline-grid (see Note).

In this simple example, the #layout div becomes a grid container, and each
of its children (#one, #two, #three, #four, and #five), therefore, is a grid item.

THE MARKUP

<div id="layout">
<div id="one">One</div>
<div id="two">Two</div>
<div id="three">Three</div>
<div id="four">Four</div>
<div id="five">Five</div>
</div>

THE STYLES

#layout {
display: grid;

That sets the stage (or to use the more accurate term, the context) for the
grid. Now we can specify how many rows and columns we want and how

wide they should be.

Setting Up the Grid

Because I dont want to have to figure out cells and spans in my head, I've
made a quick sketch of how Id like my final grid to look (FIGURE 16-31). A
sketch is a good first step for working with grids. From the sketch, I can see
that my layout requires three row tracks and three column tracks even though
some of the content areas span over more than one cell. This is a pretty stan-
dard arrangement for a web page, and although I'm sticking with one-word
content so we can focus on structure, you can imagine longer text content
filling each area.

NOTE

You probably noticed that this page layout with its header, footer, and three columns looks
like the one we made using Flexbox in FIGURE 16-25. And you're right! It just goes to
show that there may be several solutions for getting to an intended result. Once Grid Layout
becomes solidly supported, it will be the clear winner for creating flexible, whole-page
layouts like this one.

CSS Grid Layout

NOTE

Inline grids function the same as block-
level grids, but they can be used in the
flow of content. In this section, | focus
only on block-level grids.

As of this writing, work has begun on a
Working Draft of CSS Grid Layout Module
Level 2, which incudes a “subgrid” mode
that allows a nested grid to inherit its
grid structure from its parent.

16. CSS Layout with Flexbox and Grid 451

CSS Grid Layout

NOTE

Like the Flexbox Module, the Grid Layout
Module is dependent on the direction of
the language in which the page is writ-
ten. In this book, I will base grid terminol-
ogy on the left-to-right, top-to-bottom
writing direction.

200 500 p _| 2e¢

A rough sketch for my grid-based page layout. The dotted lines in the
bottom image show how many rows and columns the grid requires to create the layout
structure.

Defining grid tracks

To set up a grid in CSS, specify the height of each row and the width of each
column (see Note) with the template properties, grid-template-rows and
grid-template-columns, which get applied to the container element.

Values: none | list of track sizes and optional line names
Default: none
Appliesto: grid containers

Inherits: no

The value of the grid-template-rows property is a list of the heights for each
row track in the grid. The value of the grid-template-columns is a list of the
widths for each column track. The number of track sizes determines the num-
ber of rows or columns. For example, if you provide four lengths for grid-
template-columns, you get a grid that is initially divided into four columns.

You can also include names for the grid lines between tracks, which we’ll get
to in a moment, but for now, let’s start off as simply as possible.

452 Part lll. CSS for Presentation

Grid track sizes

In the following example, I've added template properties to divide the #layout
container into three columns and three rows with the sizes I designated in my
original sketch (FIGURE 16-31):
#layout {
display: grid;
grid-template-rows: 100px 400px 100pXx;
grid-template-columns: 200px 500px 200px;

Let’s see what happens if I do a quick check of the grid so far in the browser.
FIGURE 16-32 shows that by default, the grid items flow in order into the
available grid cells. I've added background colors to the items so their bound-
aries are clear, and I used Firefox CSS Grid Inspector (right) to reveal the
entire grid structure.

Because there are only five child elements in the #layout div, only the first
five cells are filled. This automatic flowing behavior isnt what I'm after for
this grid, but it is useful for instances in which it is OK for content to pour
into a grid sequentially, such as a gallery of images. Soon, we will place each
of our items on this grid deliberately, but first, let’s look at the template prop-
erty values in greater depth.

CSS Grid Layout

Browser view Grid structure revealed with Firefox Grid Inspector

400px

100px

200px

FIGURE 16-32. By default, grid items flow into the grid cells by rows.

Grid line numbers and names

When the browser creates a grid, it also automatically assigns each grid line
a number that you can reference when positioning items. The grid line at the
start of the grid track is 1, and lines are numbered sequentially from there.
FIGURE 16-33 shows how the grid lines are numbered for our sample grid.

500px 200px

16. CSS Layout with Flexbox and Grid 453

CSS Grid Layout

Firefox CSS Grid Inspector
and Layout Panel

Firefox 52+ includes a great developer
tool called the CSS Grid Inspector
that overlays a representation of

the grid structure for elements with
their display set to grid. It's what

I used for the right screenshot in
FIGURE 16-32. To get to it, open the
Inspector (Tools » Web Developer »
Inspector). Find an element that is a
grid and click the # icon, and you'll
see the grid overlaid on the page.

You can also click the Layout tab to
access the Layout Panel, which lists
all the grid containers on the page
and provides tools for analyzing grid
lines and areas. It also has a box-
model properties component so
you can easily see the dimensions,
padding, border, and margins for
every grid-related element, and more.
These visual tools make it easier to
tweak your designs.

As this book goes to press, the
news is that similar grid layout
development tools are coming to
Chrome and Safari. The future looks
bright for grid designers!

I B s prmmmmm——— -4
1 2 3 4
R R e T PP R EEEE 1 -3
I3 RLLEEEE LR L P P EPPEEPPEPEEPE R EEEEE P2
e B e e [|
-4 -3 -2

Grid lines are assigned numbers automatically.

The lines are numbered from the end of tracks as well, starting with —1, and
numbers count back from there (-2, -3, etc.), as shown by the gray numbers
in FIGURE 16-33. Being able to target the end of a row or column without
counting lines (or even knowing how many rows or columns there are) is a
handy feature. You'll come to love that —1.

But if you don't like to keep track of numbers, you can also assign names
to lines that may be more intuitive. In the following example, I've assigned
names that correspond to how I will be using the grid in the final page. Line
names are added within square brackets in the position they appear relative
to the tracks.
#layout {
display: grid;
grid-template-rows: [header-start] 100px [content-start] 400px

[footer-start] 100px;
grid-template-columns: [ads] 200px [main] 500px [links] 200px;

Based on this example, the grid line at the top of the grid can now be referred
to as “header-start,” “1,” or “—4.” I could also name the line that comes after
the first row track “header-end” even though I've already named it “content-
start.” To give a line more than one name, just include all the names in the
brackets, separated by spaces:

grid-template-rows: [header-start] 100px [header-end content-start]
400px [footer-start] 100px;

It is common for each grid line to end up with multiple names and numbers,
and you can choose whichever is the easiest to use. We'll be using these num-
bers and names to place items on the grid in a moment.

454 Part lll. CSS for Presentation

Specifying track size values

I provided all of the track sizes in my example in specific pixel lengths to
make them easy to visualize, but fixed sizes are one of many options. They
also don't offer the kind of flexibility required in our multi-device world. The
Grid Layout Module provides a whole bunch of ways to specify track sizes,
including old standbys like lengths (e.g., pixels or ems) and percentage values,
but also some newer and Grid-specific values. 'm going to give you quick
introductions to some useful Grid-specific values: the fr unit, the minmax()
function, auto, and the content-based values min-content/max-content. We'll
also look at functions that allow you to set up a repeating pattern of track
widths: the repeat() function with optional auto-fill and auto-fit values.

Fractional units (flex factor)

The Grid-specific fractional unit (fr) allows developers to create track
widths that expand and contract depending on available space. To go back to
the example, if I change the middle column from 500px to 1fr, the browser
assigns all leftover space (after the 200-pixel column tracks are accommo-
dated) to that column track (FIGURE 16-34).
#layout {

display: grid;

grid-template-rows: 100px 400px 100px;

grid-template-columns: 200px 1fr 200px;

1fr

FIGURE 16-34. When the middle column has a track size of 1fr, it takes up the
remaining space in the browser window and flexes to adapt to the browser width.

CSS Grid Layout

H AT A GLANCE

Track Size Values

The Grid specification provides
the following values for the
grid-template-* properties:
* Lengths (such as px or em)

* Percentage values (%)

* Fractional units (fr)

* auto

* min-content, max-content
o minmax()

o fit-content()

16. CSS Layout with Flexbox and Grid 455

CSS Grid Layout

NOTE

Technically, the browser adds up the fr
units (4 in our example), divides the left-
over space into that many portions, and
then assigns the portions based on the
number of units specified.

WARNING

fr units are not permitted as the mini-
mum value in a minmax () statement.

The fr unit is great for combining fixed and flexible track widths, but I
could also use all fr units to give all the columns proportional widths. In this
example, all of the column widths flex according to the available browser
width, but the middle column will always be twice the width of the side
columns (see Note).

grid-template-columns: 1fr 2fr ifr;

Minimum and maximum size range

You can constrict the size range of a track by setting its minimum and maxi-
mum widths using the minmax() function in place of a specific track size.

grid-template-columns: 200px minmax(15em, 45em) 200px;

This rule sets the middle column to a width that is at least 15em but never
wider than 45em. This method allows for flexibility but allows the author to
set limits.

Content-based sizing

The min-content, max-content, and auto values size the track based on the
size of the content within it (FIGURE 16-35).

Text content in cell Column widthsetto LoOK

in-content |
Look for the good in frnconten for

others and they’ll see ithoeod |
the good in you. 31 :
iothers:
Column width set to ?hnd ” :
max-content ey
see |
Look for the good in others and they’ll see the good in you: t;hoeod
you. |

The min-content and max-content track sizing values.

The min-content value is the smallest that track can get without overflowing
(by default, unless overridden by an explicit min-width). It is equivalent to the
“largest unbreakable bit of content”—in other words, the width of the longest
word or widest image. It may not be useful for items that contain normal
paragraphs, but it may be useful in some cases when you dont want the
track larger than it needs to be. This example establishes three columns, with
the right column sized just wide enough to hold the longest word or image:

grid-template-columns: 50px 1fr min-content;
The max-content property allots the maximum amount of space needed for

the content, even if that means extending the track beyond the boundaries of
the grid container. When used as a column width, the column track will be

456 Part lll. CSS for Presentation

as wide as the widest content in that track without line wrapping. That means
if you have a paragraph, the track will be wide enough to contain the text
set on one line. This makes max-content more appropriate for short phrases
or navigation items when you don’t want their text to wrap (auto may work
better because it allows wrapping if there’s not enough room).

Using the auto keyword for a track size is basically like handing the keys
over to the browser. In general, it causes the track to be sized large enough to
accommodate its content, while taking into consideration what other restric-
tions are in place.

In the minmax() function, the auto keyword behaves very similarly to either
min-content or max-content, depending on whether you put it in the mini-
mum or maximum slot. As a keyword on its own, it functions similarly to
minmax(min-content, max-content), allowing the track to squeeze as narrow
as it can without anything overflowing, but grow to fit its content without
wrapping if there’s enough space.

Unlike max-content, an auto maximum allows align-content and justify-
content to stretch the track beyond the size of the content. As a minimum,
it has a few more smarts than min-content—for example, using a specified
min-width or min-height on an item (if any) instead of its min-content size,
and ignoring the contents of any grid items with scrollbars.

If you want to size a track based on its content, but youTe not sure which
keyword to use, start with auto.

Repeating track sizes

Say you have a grid that has 10 columns with alternating column widths, like so:

grid-template-columns: 20px 1fr 20px 1fr 20px 1fr 20px 1fr 20px 1fr
20px 1fr;

That’s kind of a bummer to have to type out (I know, I just did it), so the fine
folks at the W3C have provided a nice shortcut in the form of the repeat()
function. In the previous example, the pattern “20px 1fr” repeats five times,
which can be written as follows:

grid-template-columns: repeat(5, 20px 1fr);
Much better, isn't it? The first number indicates the number of repetitions,
and the track sizes after the comma provide the pattern. You can use the
repeat() notation in a longer sequence of track sizes—for example, if those

10 columns are sandwiched between two 200-pixel-wide columns at the start
and end:

grid-template-columns: 200px repeat(5, 20px 1fr) 200px;
You can also provide grid line names before and/or after each track size, and
those names will be repeated in the pattern:

grid-template-rows: repeat(4, [date] 5em [event] 1fr);

CSS Grid Layout

16. CSS Layout with Flexbox and Grid 457

CSS Grid Layout

WARNING

You can only use one auto-repeat for a
given declaration, and you cannot use
it with fr units. You also cannot put
content-based size keywords inside an
auto-fill or auto-repeat notation.
Note that you can use minmax() nota-
tion inside an auto-repeat, and you
can use it with frs or content-based
keywords (auto, min-content, max-
content) if they’re in the max position
with a min length.

Bonus Grid Line Names

When you give an area a name with
grid-template-areas, asan added
bonus, you get a set of automatically
generated grid line names to go with
it. For example, when you name an
area “main’, the left and top grid lines
of that area are automatically named
“main-start,” and the right and
bottom grid lines are named “main-
end.” You can use those line names
when positioning items.

The inverse is true as well. If you
explicitly assign line names “portal-
start” and “portal-end” around an
area, you can use the area name
“portal” to assign content to that
area later, even if you haven’t defined
itwith grid-template-areas.

You can keep this shortcut in mind
when naming grid lines, but it is not
required.

This is a prime example of the
flexibility and complexity of the Grid
Layout Module.

auto-fill and auto-fit

In the previous repeat() examples, we told the browser how many times to
repeat the provided pattern. You can also let the browser figure it out itself
based on the available space by using the auto-fill and auto-fit values
instead of an integer in repeat().

For example, if I specify

grid-template-rows: repeat(auto-fill, 10em);

and the grid container is 35em tall, then the browser creates a row every 10
ems until it runs out of room, resulting in three rows. Even if there is only
enough content to fill the first row, all three rows are created and the space
is held in the layout.

The auto-fit value works similarly, except any tracks that do not have con-
tent get dropped from the layout. If there is leftover space, it is distributed
according to the vertical (align-content) and horizontal (justify-content)
alignment values provided (we’ll discuss alignment later in this section).

Defining grid areas

So far we've been exploring how to divide a grid container into row and
column tracks by using the grid-template-columns and grid-template-rows
properties, and we’ve looked at many of the possible values for track dimen-
sions. We've learned that you can assign names to individual grid lines to
make them easy to refer to when placing items on the grid.

You can also assign names to areas of the grid, which for some developers
is an even more intuitive method than calling out specific lines. Remember
that a grid area is made up of one or more cells in a rectangle (no L-shapes or
other non-rectangular collections of cells). Naming grid areas is a little funky
to implement, but provides nice shortcuts when you need them.

To assign names to grid areas, use the grid-template-areas property.

Values: none | series of area names
Default: none

Appliesto: grid containers

Inherits: no

The value of the property is a list of names provided for every cell in the
grid, listed row by row, with each row in quotation marks. When neighbor-
ing cells share a name, they form a grid area with that name (see Bonus Grid
Line Names sidebar).

In the following example, I've given names to areas in the example grid we've
been working on so far (FIGURE 16-36). Notice that there is a cell name for
each of the nine cells as they appear in each row. The row cell lists don’t need

458 Part lll. CSS for Presentation

CSS Grid Layout

to be stacked as I've done here, but many developers find it helpful to line up
the cell by names using character spaces to better visualize the grid structure.

HEADS-UP
#layout {
display: grid; Be sure that you place the cell names in
grid-template-rows: [header-start] 100px [content-start] 400px a way that forms rectangles when they

[footer-start] 100px;
grid-template-columns: [ads] 200px [main] 1fr [links] 200px;
grid-template-areas:
"header header header"
"ads main links"
"footer footer footer";

combine to identify a named area. No
L-shapes or fragments.

}
i"headerf header fheader"i header
3 "ads main flinks"i 3 ads 3 main 3 links |
1"footerf footer ffooter"f : 3 footer 3

When neighboring cells have the same name, they form a named
area that can be referenced later.

If there are three columns in the grid, there must be three names provided
for each row. If you want to leave a cell unnamed, type one or more periods
(.) in its place as a space holder so that every cell is still accounted for. Again,
a sketch of your grid with the areas identified will make it easier to plan out
the grid-template-areas value.

Be aware that the track sizes are still coming from the grid-template-columns
and grid-template-rows properties. The grid-template-areas property sim-
ply assigns names to the areas, making it easier to plop items in them later.

The grid shorthand property

Use the grid shorthand property to set values for grid-template-rows, grid-
template-columns, and grid-template-areas with one style rule. Bear in
mind that any properties you do not use will be reset to their defaults, as is
the case for all shorthands.

Values: none | row info / column info
Default: none
Appliesto: grid containers

Inherits: no

16. CSS Layout with Flexbox and Grid 459

CSS Grid Layout

NOTE

The Grid experts I've talked to don’t tend
to use grid or grid-template except
for the simplest of grid structures. The
code becomes overly complex, and one
small slip can make the whole grid fall
apart. For complicated grid structures,
stick to separate properties for defining
rows, columns, and areas.

In grid, the row values and column values are separated by a slash, with the
row values appearing first:

grid: rows / columns

It’s easier to grasp without the clutter of line and area names, so here is the
shorthand declaration for our example grid with just the row and column
track information:
#layout {
display: grid;
grid: 100px 400px 100px / 200px 1fr 200px;

To include custom line names, add the names in brackets around their respec-
tive tracks, as we saw in the earlier named line example.

Including area names looks a little convoluted at first, but if you remember
that you list cell names row by row, it makes sense that they appear with the
other row information, before the slash. The complete order goes as follows:

[start line name] "area names" <track size> [end line name]

The line names and area names are optional. Repeat this for each row in the
grid, simply listing them one after another with no special character separat-
ing rows. You may find it helpful to stack them as I've done in the following
example to help keep each row distinct. When the rows are done, add a slash,
and list the column track information after it. Here’s a complete example of
our grid written with the grid shorthand:

#layout {
display: grid;
grid:
[header-start] "header header header" 100px
[content-start] "ads main links" 400px

[footer-start] "footer footer footer" 100px
/[ads] 200px [main] 1fr [links] 200px; }

This expands to the following;:
#layout {
display: grid;
grid-template-rows: [header-start] 100px [content-start] 400px
[footer-start] 100px;
grid-template-columns: [ads] 200px [main] 1fr [links] 200px;
grid-template-areas:
"header header header"
"ads main links"
"footer footer footer" }

There is also a grid-template property that works exactly like grid, but it
may be used only with explicitly defined grids (as opposed to implicit grids,
which I cover later). The Grid Layout spec strongly recommends that you use
the grid shorthand instead of grid-template (see Note) unless you specifi-
cally want the cascading behavior of grid-template.

I'm thinking that it’s a good time for you to put all of these grid setup styles
to use in EXERCISE 16-4.

460 Part Ill. CSS for Presentation

EXERCISE 16-4. Setting up a grid

In this exercise, we'll set up the grid template for the page shown in FIGURE 16-37. We'll
place the grid items into the grid in EXERCISE 16-5, so for now just pay attention to
setting up the rows and columns.

This page is similar to the bakery page we've been working on, but it has a few more
elements and whitespace to make things interesting. The starter document, grid.html, is
provided with the exercise materials at learningwebdesign.com/5e/materials. Open it in
a text editor, and you'll see that all of the styles affecting the appearance of each element
are provided.

3em
20px

150px —

this staple of humankind. From crusty french baguettes to table-sized
‘Afghan flat-breads, breads can come in all shapes, sizes, and textures.

Each month, we feature a bread that is the specialty of a particular
culture or part of the world. Some will be made in-house by our bakers
who travel around the werld learning regional techniques in order to bring

300pX] them back for you to try. Other breads will be provided by local bakeries

that have been malking bread for their communities for generations.

When you are in the bakery, we encourage you to give our featured Bread
of the World a try. If you can't make it to the shop, many of our breads will

be avaflable for purchase online.

[—| - Providing you with fresh; unique breads is one of the-things that-mekes

Black Goose Bakery proud. Black Goose Bakery | See
em —| 3B

Monday - Frigay: 5am to 3pm | Saturday & Sunday: 6am to 4pm

L 1|l 1|1 1
[[[
150px 150px 150px

1fr

20px 20px 20px

The Breads of the World page that we will create using Grid Layout.

1. Start by turning the containing element, the #layout div, into a grid container by
setting its display mode to “grid”™:

#layout {

display: grid;

2. FIGURE 16-37 shows the row and column tracks required to accommodate the

content in the desired layout. Start by defining the rows as specified in the sketch, using

the grid-template-rows property. There should be six values, representing each
of the six rows. (Spoiler alert: we’ll be tweaking these values when we get to the next
exercise. This is just a starting point.)

#layout {

display: grid;
grid-template-rows: 3em 20px 150px 300px 5em;

3. Do the same for the seven columns. Because | want the text column to grow and shrink
with the available space, I've specified its width in fractional units (1fx). The remaining
columns create 150px-wide cells for three images and 20px of space before them.

©

CSS Grid Layout

NOTE

You will need to use a browser that sup-
ports grids for this exercise. | am using
Firefox in order to take advantage of the
Grid Inspector tool. Supporting browsers
are listed earlier in this section. See the
“Firefox Grid Inspector and Layout
Panel” sidebar for instructions on how
to open the tool.

16. CSS Layout with Flexbox and Grid 461

CSS Grid Layout

EXERCISE 16-4. Continued

You can write them all out like this:
grid-template-columns: 1fr 20px 150px 20px 150px 20px 150pX;

However, because the last six columns are a repeating pattern, it would be easier to use
the repeat () function to repeat the spaces and figure columns three times:

grid-template-columns: 1fr repeat(3, 20px 150px);

4. Finally, let’s assign names to the grid lines that border the grid area where the main
content element should appear. The names give us some intuitive options for placing
that item later. The main area starts at the third row track, so assign the name “main-
start” to the grid line between the second and third row track measurements:

grid-template-rows: 3em 20px [main-start] 150px 300px 5em;

The main area extends into the last row track, so assign the name “main-end” to the last
grid line in the grid (after the last row track):

grid-template-rows: 3em 20px [main-start] 150px 300px Sem [main-end];

5. Now do the same for the grid lines that mark the boundaries of the column track where
the main content goes:

grid-template-columns: [main-start] ifr [main-end] repeat(3, 20px
150px) ;

I've saved my work and looked at it in Firefox with the Grid Inspector turned on
(FIGURE 16-38). Because | haven't specified where the grid items go, they flowed into
the cells sequentially, making the mess you see in the figure. However, the grid overlay
reveals that the structure of the grid looks solid. Save the file and hold on to it until the
next exercise.

World!
e

-
Bs

irhnv igh
pvery
region
o

the
world
has

its

bwn

Bpecial
take

on
this
staple
of

The grid items are not placed correctly yet, but the Firefox Grid
Inspector shows that the grid is set up correctly.

462 Part lll. CSS for Presentation

Placing Grid Items

Now that we've covered all the ins and outs of setting up a grid, including
giving ourselves handy line and area names, we can move on to assigning
items to areas on the grid.

As we saw in FIGURES 16-32 and 16-38, without any explicit placement
instruction, grid items flow into the available grid cells sequentially. That’s
fine for some use cases, but let’s tell our grid items where to go!

Positioning using lines

One method for describing a grid item’s location on the grid is to specify
the four lines bordering the target grid area with four properties that specify
the start and end row lines and the start and end column lines. Apply these
properties to the individual grid item element you are positioning.

Values: auto | grid line | span number | span ‘line name’ | number ‘line name’
Default: auto
Appliesto: grid items

Inherits: no

This set of properties provides a straightforward way to describe an element’s
position on the grid by identifying either the name or number of the grid line
on each border. As an alternative, you can provide just one line identifier and
tell the item to “span” a certain number of cells. By default, an item occupies
one track width, which is what you get with the auto keyword.

Getting back to our five-item example, I would like the first item to go in the
top row and span across all three columns (FIGURE 16-39).

One way to do this is to use the four line start/end properties and identify
lines by their numbers like so:
#one {
grid-row-start: 1;
grid-row-end: 2;
grid-column-start: 1;
grid-column-end: 4;
}
Take a moment to compare this to the position of the #one div back in
FIGURE 16-36. For grid-row-start, the 1 value refers to the first (top) line
of the grid container. For grid-column-start, 1 refers to the first line on the
left edge of the container, and the value 4 for grid-column-end identifies the
fourth and last line on the right edge of the container.

CSS Grid Layout

16. CSS Layout with Flexbox and Grid 463

CSS Grid Layout

NOTE

If you omit a start or end line, the area
will be one track wide (the default, auto).

If you need to span to the last grid
line in a row or column, use the value
-1 and save yourself some counting.
Also, even if the number of rows or
columns changes down the line, -1
will always select the last line, so you
won’t need to renumber.

1, header-start \
-- -4

1 2 3 4
/L/' ; . i -3
2, header-end, 7! ' :
content-start ! : : !
L e 2
e e e [|
-4 -3 -2 -1

Positioning a grid item across the top row track in our sample grid.

Here’s one more for good measure. This style declaration positions the #four
item element in the right side column as shown in FIGURE 16-36:
#four {
grid-row-start: 2;
grid-row-end: 3;
grid-column-start: 3;
grid-column-end: 4;

}

Remember how grid lines are also numbered in the opposite direction start-
ing at —1? We can use that here. I could specify the grid-column-end for #one
as —1,and it would be the same as 4. In fact, this method has the advantage of
guaranteeing to span to the end of the track and avoids miscounting.

I could also use the named lines I set up here. These row values are inter-
changeable with the previous example:
#one {

grid-row-start: header-start;
grid-row-end: header-end;

.

If T omit the end line declaration, the row would be one track high (the
default). That’s what I want here, so omitting the end declaration altogether
is one more way to achieve the effect I want.

Ready for yet another option? I can tell the item what line to start on, but
instead of providing an end line, I can use the span keyword to specify how
many tracks to span over. In this example, the item starts at the left edge of
the track (line 1) and spans over three columns, effectively ending at line 4.

464 Part lll. CSS for Presentation

CSS Grid Layout

#one {

grid-column-start: 1;
grid-column-end: span 3;

}

Spans can work in reverse as well. If you provide only an end line, the span
searches toward the start of the track. The following styles have the same
effect as our previous examples because they define the target area by its end
line at the far right of the grid and span back three columns to the beginning:

#one {

grid-column-start: span 3;
grid-column-end: -1;

}

If four declarations feels like too many, use the shorthand grid-row and grid-
column properties instead.

Values: startline / end line

Default: see individual properties

Appliesto: grid items

Inherits: no

These properties combine the *-start and *-end properties into a single dec-
laration. The start and end line values are separated by a slash (/). With the

shorthand, T can shorten my example to the following two declarations. Any
of the methods for referring to lines work in the shorthand values.

#one {
grid-row: 1 / 2;
grid-column: 1 / span 3;

}

Positioning by area

The other way to position an item on a grid is to tell it go into one of the
named areas by using the grid-area property.

Values: area name | 1 to 4 line identifiers
Default: see individual properties
Appliesto: grid items

Inherits: no

The grid-area property points to one of the areas named with grid-tem-
plate-areas. It can also point to an area name that is implicitly created when
you name lines delimiting an area with the suffixes “-start” and “-end” With

16. CSS Layout with Flexbox and Grid 465

CSS Grid Layout

this method, I can drop all of the grid items into the areas I set up with my
template earlier (FIGURE 16-40):

#one { grid-area: header; }

#two { grid-area: ads; }

#three { grid-area: main }

#four { grid-area: links; }

#five { grid-area: footer; }

ads

main ' links

Assigning grid items by area names.

How easy was that?! One benefit of using areas is that you can change the
grid, and as long as you provide consistently named grid areas, the items will
end up in the right place. There’s no need to renumber lines in the style sheet.

You can also use grid-area to provide a list of four grid lines that define an
area, separated by slashes. The order in which they appear is “row-start,”
“column-start,” “row-end,” “column-end” (counterclockwise from the top).
There are a lot of rules for what happens when you omit values, but I'm not
going to get into all those finer points here. The grid-area declaration for the
first grid item could be written like this to achieve the same result as previ-
ous examples:
#one {
grid-area: 1 / 1 / 2 / span 3;
/* row-start / column-start / row-end / column-end */

}

As you can see, the Grid Layout Module gives you a variety of ways to set up
a grid and a variety of ways to place items on it. In fact, the spec includes a
few more uses of span that you can explore. Choose the methods that work
best for the grid you are designing or that work best for your brain.

Now let’s finish up the grid we’ve been working on in EXERCISE 16-5.

466 Part lll. CSS for Presentation

EXERCISE 16-5. Placingitemson a grid

CSS Grid Layout

Now that we have the grid set up for the Breads of the World
page, we can place items into the correct grid areas by using line
numbers and names.

I'm going to go through them quickly, but feel free to save the
file and look at the page in a grid-supporting browser at any step
along the way. Refer to the finished layout in FIGURE 16-41 for
the final item positions and line number hints.

1. Open grid.html in your text editor if it isn’t open already. We'll
start by placing the nav element into the first row of the grid,
using the four grid line properties:

nav {
grid-row-start: 1;
grid-row-end: 2;
grid-column-start: 1;
grid-column-end: 8; /* you could also use -1 */

}

2. Now place the figures in their positions on the grid. Start by
putting the third figure (#figC) in its place in the far-right
column by using the shorthand grid-row and grid-column
properties. It goes between the 3rd and 4th row grid lines and
extends from the 7th to 8th column lines. For columns, instead
of 7 and 8, use the negative value for the last line and span it
one space to the left to get to the starting point:

#figC {
grid-row: 3 / 4;
grid-column: span 1 / -1;

}

Now position the #figA and #figB elements by using the
grid-area property with line values. Remember that the values
go in the order top, left, bottom, right (counterclockwise around
the area).

1 2
main-start

main-end 3

main-start

When you are in the bakery, we

ge you to give
of the World a try. If you can'tt make it to the shop, many

be available for purchase online.

5 - e mroviing you it frosm artgme
Black Geose Bakery proud.

6-
main-end

#figh {

grid-area: 3 /3 / 4 / 4;
}
#figB {

grid-area: 3 / 5/ 4 / 6;
}

3. We gave the grid lines around the main area names, so let’s use
them to place the main grid item:

main {
grid-row: main-start / main-end;
grid-column: main-start / main-end;

}

Do you remember that when you name lines around an area
*-start and *-end, it creates an implicitly named area *?
Because we named the lines according to this syntax, we could
also place the main element with grid-area like this:

main {
grid-area: main;

}

4. Finally, we can put the footer into its place. It starts at the last
row grid line and spans back one track. For columns, it starts at
the third line and goes to the last. Here is one way to write those
instructions. Can you come up with others that achieve the
same result?

footer {
grid-row: 5 / 6;
grid-column: 3 / -1;

}

Save your file and look at it in the browser. You may spot a
problem, depending on the width of your browser window. When

©

The final Breads of the World grid layout.

16. CSS Layout with Flexbox and Grid 467

CSS Grid Layout

EXERCISE 16-5. Continued

the browser is wide, the layout works
fine, but when it is made narrower, the
text in the main element overflows its
cell. That’s because the 300-pixel height
we gave that row is not sufficient to hold
the text when it breaks onto additional
lines or is resized larger.

5. We can fix that by changing the
measurement of the fifth row track
to auto. In that way, the height of
that row will always be at least big
enough to hold the content. The
min-content value would work as
well, but auto is always the first value
to try:

#layout {
display: grid;
grid-template-rows: 3em 20px
[main-start] 150px auto Sem
[main-end];

}
If you reload the page in the browser,
the text is always contained in its grid

area, regardless of the width of the
window. Everything should fall into

place nicely, as shown in FIGURE 16-41.

You now have your first grid layout
under your belt. This exercise gives you
only a taste of what Grid Layout can do,
but we’ve covered the fundamentals of
setting up a grid and placing items in it.
You're off to a great start!

Now you know the basics of creating an explicit grid and placing items on
it. There are a few more grid-related topics that are important to be familiar
with: implicit grids, gutter spaces, and grid alignment. I have space for only
a basic introduction to each topic, but when you start implementing grid
layouts on your own, you can do the deep dive required to meet your needs.

Implicit Grid Behavior

So far, we've been focusing on ways to define an explicit grid and place items
on it deliberately. But along the way, we've encountered a few of the Grid
system’s automatic, or implicit, behaviors. For example, without explicit
placement instructions, grid items flow into the grid sequentially, as we saw
in FIGURE 16-32. I also pointed out how creating a named area implicitly
generates grid lines with the “-start” and “-end” suffixes, and vice versa.

Another implicit Grid behavior is the creation of row and column tracks on
the fly to accommodate items that don’ fit in the defined grid. For example,
if you place an item outside a defined grid, the browser automatically gener-
ates tracks in the grid to accommodate it. Similarly, if you simply have more
items than there are cells or areas, the browser generates more tracks until all
the items are placed.

By default, any row or column automatically added to a grid will have the
size auto, sized just large enough to accommodate the height or width of the
contents. If you want to give implicit rows and columns specific dimensions,
such as to match a rhythm established elsewhere in the grid, use the grid-
auto-* properties.

Values: list of track sizes
Default: auto
Appliesto: grid containers
Inherits: no

The grid-auto-row and grid-auto-columns properties provide one or more
track sizes for automatically generated tracks and apply to the grid con-
tainer. If you provide more than one value, it acts as a repeating pattern. As
just mentioned, the default value is auto, which sizes the row or column to
accommodate the content.

In this example, I've explicitly created a grid that is two columns wide and
two columns high. I've placed one of the grid items in a position equivalent
to the fifth column and third row. My explicit grid isn't big enough to accom-
modate it, so tracks get added according to the sizes I provided in the grid-
auto-* properties (FIGURE 16-42).

468 Part lll. CSS for Presentation

THE MARKUP

<div id="littlegrid">
<div id="A">A</div>
<div id="B">B</div>
</div>

THE STYLES

#littlegrid {
display: grid;
grid-template-columns: 200px 200px;
grid-template-rows: 200px 200px;
grid-auto-columns: 100px;
grid-auto-rows: 100px;

}

#A {
grid-row: 1 / 2;
grid-column: 2 / 3;

}

#B {
grid-row: 3 / 4;
grid-column: 5 / 6;

}

The grid has two explicitly defined rows and columns at 200 pixels wide each.

200px 200px
| |

200px —

200px —

100px

100px 100px 100px

Rows and column tracks are added automatically as needed. They are sized
as specified by grid-auto-rows and grid-auto-columns (100 pixels).

Browsers generate rows and columns automatically to place grid
items that don’t fit the defined grid.

Hopefully, that example helped you form a mental model for automatically
generated rows and columns. A more common use of auto-generated tracks
is to tile images, product listings, and the like into columns, letting rows be

CSS Grid Layout

The Grid Item Shuffle

So far, you've seen grid items flowing
into a grid sequentially and get
placed into their own little areas

on a grid explicitly. There are a few
properties that may be useful for
tweaking the position of grid items.

Changing the Order

As in Flexbox, you can apply the
order property to a grid item
element to change the order in
which it appears when it is rendered.
Keep in mind that the order
property does not change the order
in which it is read by an assistive
device. See the section “Changing
the Order of Flex Items” earlier in
this chapter for more information on
how to use order.

Stacking Order

It is possible to position items in a
grid in a way that causes them to
overlap. When more than one item

is assigned to a grid area, items

that appear later in the source are
rendered on top of items earlier in
the source, but you can change the
stacking order by using the z-index
property. Assigning a higher z-index
value to earlier item elements makes
them render above items that appear
later. See the section “Stacking
Order” in Chapter 15, Floating
and Positioning, for details on using
z-index.

16. CSS Layout with Flexbox and Grid 469

CSS Grid Layout

created as needed. These styles set up a grid with explicit columns (as many
as will fit the width of the viewport, no narrower than 200px) and as many
200px-high rows as needed:
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
grid-auto-rows: 200px;
You can also control the manner in which items automatically flow into the
grid with the grid-auto-flow property.

Flow direction and density

Values: row or column | dense (optional)
Default: oW
Appliesto: grid containers

Inherits: no

Use grid-auto-flow to specify whether youd like items to flow in by row or
column. The default flow follows the writing direction of the document (left-
to-right and top-to-bottom for English and other left-to-right languages).

In this example, I've specified that Id like grid items to tlow in by columns
instead of the default rows:
#listings {
display: grid;
grid-auto-flow: column;

}

By default, items are placed in the first area in which they fit. Cells that are
too small to accommodate the content will be skipped over until a cell large
enough is found for placement. If you include the optional dense keyword for
the grid-auto-flow property, it instructs the browser to fill the grid as densely
as possible, allowing the items to appear out of sequence in order to fill the
available space:
#listings {
display: grid;
grid-auto-flow: dense rows;

}

The example on the left of FIGURE 16-43 shows the default flow method.
Look closely and you'll see that the grid items are in order. When there isn't
enough room for the whole item, it moves down and to the left undl it fits
(similar to floats). This method may leave empty cells as shown in the figure.
By comparison, the dense flow example on the right is all filled in, and if
you look at the numbering, you can see that putting items wherever they fit
makes them end up out of order. Note that dense flow doesn’t always result
in a completely filled-in grid like the figure, but it is likely to have fewer holes
and be more compact than the default mode.

470 Partlll. CSS for Presentation

Default flow pattern Dense flow pattern

FIGURE 16-43. Comparison of default and dense auto-flow modes.

The grid shorthand property revisited

Earlier we saw the grid shorthand property used to provide track sizes as well
as area names. In that section, we were dealing with explicit grids, but grid
can be used with implicit grid properties as well.

Adding the auto-flow keyword to either the row or track information indi-
cates that the tracks on that axis should be automatically generated at the
provided dimension.

Say we want to establish columns explicitly, but let rows generate automati-
cally as needed. The grid shorthand for this common scenario is shown here:

grid: auto-flow 12em / repeat(5, 1fr);

Remember that the grid shorthand syntax lists row information first, then a
slash, then the column information. Here, the rule says to create rows auto-
matically that are 12 ems high and create 5 columns at 1fr each. When auto-
flow is applied to rows, the grid-auto-flow is set to row.

In this example, the resulting grid will have two 300px rows, but 100px-wide
columns will be generated on the fly as grid items are added:

grid: 300px 300px / auto-flow 100px;
With auto-flow applied to columns, the grid-auto-flow is set to column.

It is important to keep in mind that because grid is a shorthand property,
any omitted value will be reset to its default. Therefore, if you've also used
grid to set up explicit rows and columns, those will be essentially lost if a
grid shorthand with implicit grid instructions appears later in the style sheet.

CSS Grid Layout

16. CSS Layout with Flexbox and Grid 471

CSS Grid Layout

NOTE

These property names will be chang-
ing to row-gap, column-gap, and gap.
Until browsers start supporting the new
syntax, you can still use the grid-* pre-
fixed versions, which will continue to be
supported for backward compatibility.

Box Alighment

It's no coincidence that Flexbox and
Grid share alignment properties and
values. They are all standardized in
their own spec called the CSS Box
Alignment Module, Level 3, which
serves as a reference to a number of
CSS modules. You can check it out at
www.w3.0rg/TR/css-align/.

Spacing and Alignment

The remaining properties defined in the Grid Layout Module relate to spac-
ing and alignment. You can add space between tracks and adjust alignment
of the grid and its items by using many of the same methods you learned for
Flexbox.

Spacing between tracks (gutters)

Values: length (must not be negative)
Default: 0

Appliesto: grid containers

Inherits: no
Values: grid-row-gap grid-column-gap
Default: 00

Appliesto: grid containers
Inherits: no

Setting a length value for grid-row-gap adds space between the row tracks of
the grid, and grid-column-gap adds space between (you guessed it) column
tracks. The effect is as if the grid lines have a width; however, the gap width
is applied only to lines between tracks, not outside the first and last lines in
the grid. (Spacing on the outside edges can be controlled with padding.) You
can use the grid-gap shorthand to specify gap widths for rows and columns
in one go, with rows first, as usual.

In this example, I've added 20px space between rows and 50px space between
columns by using the grid-gap shorthand (FIGURE 16-44).
divi#tcontainer {
border: 2px solid gray;
display: grid;
grid: repeat(4, 150px) / repeat(4, 1fr);
grid-gap: 20px 50px;

Grid and item alignment

You can align grid items in their cells with the same alignment vocabulary
used for Flexbox items (see the “Box Alignment” sidebar). 'm going to touch
on these quickly, but you can play around with them on your own.

472 Partlll. CSS for Presentation

50px 50px 50px

grid-row-gap: 20px;
grid-column-gap: 50px;

FIGURE 16-44. Grid gaps add gutter spaces between tracks.

Aligning individual items

justify-self

Values: start|end | center | left | right | self-start | self-end | stretch |
normal | auto

Default: auto (looks at the value for justify-items, which defaults to normal)

Appliesto: grid items

Inherits: no
align-self
Values: start|end | center | left | right | self-start | self-end | stretch |

normal | auto
Default: auto (looks at the value for align-items)
Appliesto: grid items

Inherits: no

When a grid item doesn’ fill its entire grid area, you can specify how youd
like it to be aligned in that space. Specify the horizontal (inline) alignment
with the justify-self property. align-self specifies alignment on the ver-
tical (block) axis. These properties apply to the grid item element, which
makes sense because you want the item to align itself.

FIGURE 16-45 shows the effects of each keyword value. For items with their
size set to auto (or in other words, not explicitly set with width and height
properties), the default is stretch. This is what we’ve seen in all the previous

CSS Grid Layout

NOTE

The self-start and self-end val-
ues look at the writing direction of the
content of the item and use its start or
end edge for alignment. For example,
if an item is in Arabic, its self-start
edge is on the right, and it would be
aligned to the right. The start and end
values consider the writing direction of
the grid container. The left and right
keywords are absolute and would not
change with the writing system, but they
correspond to start and end in left-to-
right languages.

16. CSS Layout with Flexbox and Grid 473

CSS Grid Layout

HTIP

If you want a grid item to stay
centered in its grid area, set both
align-self and justify-selfto
center.

Speaking of Spacing,
What About Margins?

You can add margins to a grid item
as you can for any other element. It is
useful to know that the item’s margin
box will be anchored to the cell or
grid area, and the margin space is
preserved.

You can use margins to move the
item around in the grid area. For
example, setting the left margin to
“auto” pushes the item to the right, as
we saw in earlier Flexbox examples.
Setting the left and right margins to
“auto” (as long as item has a specified
width) centers it horizontally. In Grid,
you can also set the top and bottom
margins to “auto” and, as long as
there’s a specified height, it centers
vertically. Of course, you have the grid
item alignment properties to achieve
these effects as well.

justify-self

stretch

align-self

FIGURE 16-45. Values for justify-self and align-self for aligning a grid item
within its respective grid area. These values have the same use in the justify-items
and align-items properties that are used to align all the items in the grid.

grid examples. If the grid item has a width and height specified, those dimen-
sions are preserved and the default is start.

After reading about Flexbox, you should find these familiar—for example,
the use of “start” and “end” to keep the system language direction-agnostic.

Aligning all the items in a grid

justify-items

Values: start|end| center | left | right | self-start | self-end | stretch |
normal

Default: normal (stretch for non-replaced elements; start for replaced ele-
ments)

Appliesto: grid containers

Inherits: no

align-items

Values: start|end| center | left | right | self-start | self-end | stretch |
normal

Default: normal (stretch for non-replaced elements; start for replaced ele-
ments)

Appliesto: grid containers

Inherits: no

To align all of the items in a grid in one fell swoop, use the justify-items
property for horizontal/inline axis alignment and align-items for vertical/
block axis. Apply these properties to the grid container element so it affects
all of the items in the grid. The keywords do the same things shown in

474 Part lll. CSS for Presentation

FIGURE 16-43; just picture it happening consistently across the entire grid.
Keep in mind that these settings will be overridden by the *-self properties.

Aligning tracks in the grid container

There may be instances in which the tracks of your grid do not fill the entire
area of their grid container—for example, if you've specified track widths
and heights in specific pixel measurements. You can decide how the browser
should handle leftover space within the container by using the justify-content
(horizontal/inline axis) and align-content (vertical/block axis) properties.

justify-content

Values: start|end|left|right | center | stretch | space-around |
space-between | space-evenly

Default: start
Appliesto: grid containers

Inherits: no

align-content

Values: start|end|left|right | center | stretch|space-around |
space-between | space-evenly

Default: start
Appliesto: grid containers

Inherits: no

In FIGURE 16-46, the grid container is indicated with a gray outline. The rows
and columns of the drawn grid do not fill the whole container, so something
has to happen to that extra space. The start, end, and center keywords move
the whole grid around within the container by putting the extra space after,
before, or equally on either side, respectively. The space-around and space-
between keywords distribute space around tracks as discussed in the Flexbox
section. The space-evenly keyword adds an equal amount of space at the
start and end of each track and between items.

justify-content:
start end center space-around

One TN Thireal Four One W) Threal|Four One Twe ! Thres! Four

Five Six Seven Eight Five Six Seven Eight BFive Six Seven Eight

Nine Ten Eleven Twelve Nine Ten Eleven Twelve Nine Ten Eleven Twelve.

CSS Grid Layout

Alignment properties
apply to the grid
container.

NOTE

The stretch keyword works only when
the track width or height is set to auto.

WARNING

When you distribute space around and
between tracks, it adds to whatever gap
settings you may have.

space-between space-evenly

align-content:
start end center

Nine Ten Eleven Twelve

Nine Ten Eleven Twelve
Nine Ten FEleven Twelve

Nine Ten Eleven Twelve:

FIGURE 16-46. The justify-content and align-content properties distribute extra space in the container.

16. CSS Layout with Flexbox and Grid 475

CSS Grid Layout

Before we close out this discussion of Grid Layout, let’s give the Black Goose
Bakery page a nice two-column layout in EXERCISE 16-6.

EXERCISE 16-6. A grid layout for the bakery page

The Black Goose Bakery page has come a long way. You've added padding, borders, and
margins. You've floated images, positioned an award graphic, and created a navigation bar
by using Flexbox. Now you can use your new grid skills to give it a two-column layout that
would be appropriate for tablets and larger screens (FIGURE 16-47).

® 0 ® /1) mack Goose nakery x

150px —
Hours
Fresh from the Oven
MONDAY: 5am to 3pm
TUESDAY: 5am to 3pm
[BREADS WEDNESDAY: 5am to 3pm
Our breads are made daily from highest-quality whole grain flour, THURSDAY: 52m to 3pm
water, salt, and yeast or sourdough starter. Simply and naturally, FRIDAY: 5am to 3pm
and never any preservatives. is key to the SATURDAY: 6am to 4pm
proper level of fermentation and baking each loaf to
SUNDAY: 6am to 4pm
2 perfection. Available in whole grain, sourdough, olive loaf,
T classic rye, and potato-onion
)
c
o —
b
= LEARN MORE ABOUT OUR BAKING PROCESS..
MUFFINS

W Y%, Every day. we offer a large selection of muffins, including

i blueberry, multi-berry, bran, corn, lemon-poppyseed, and
chocolate. Our muffins are made from scratch each day. Stop by

to see our seasonal muffin flavors!

LEARN MORE ABOUT HOW WE MAKE OUR MUFFINS...

All content copyright @ 2017, Black Goose Bistro.

[\

minimum 25em, maximum 1fr 16em

FIGURE 16-47. The Black Goose Bakery page with a two-column grid layout.

Start by opening the bakery file as you left it in EXERCISE 16-1.

1. We need to add a bit of markup that encloses everything in the body of the document in
an element that will serve as the grid container. Open the HTML document bakery.html,
add a div around all of the content elements (from header to footer), and give it the
id “container”. Save the HTML file.

476 Part lll. CSS for Presentation

<body>
<div id="container">
<header>..</header>
<main>..</main>
<aside>..</aside>
<footer>..</footer>
</div>
</body>

In the style sheet (bakery-styles.css), add a new style to make
the new div display as a grid:

#container {
display: grid;

. First we’ll work on the rows. FIGURE 16-47 shows that we
need three rows to create the layout. Set the height of the
first row track to auto so it will observe the height settings on
the elements within it and automatically accommodate the
content. The second row has a lot of text, so use the auto track
value again to guarantee the track will expand at least as much
as necessary to fit the text. For the third row, a height of 5em
should be sufficient to fit the few lines of text with a comfortable
amount of space:

#container {
display: grid;
grid-template-rows: auto auto 5em;

. Now we can set up the column tracks. It looks like we’ll need
only two: one for the main content and one for the Hours
sidebar. I've used the minmax() value so | can ensure the text
column never gets narrower than 25em, but it can expand to fill
the available space in the browser (1fx). The Hours column feels
right to me at 16em. Feel free to try other values.

#container {
display: grid;
grid-template-rows: auto auto 5em;
grid-template-columns: minmax(25em, 1fr) 16em;

. Next, name the areas in the grid so we can place the items in it
easily and efficiently. Use the grid-template-areas property
to name the cells in the grid:

#container {
display: grid;
grid-template-rows: auto auto 5em;
grid-template-columns: minmax(25em, 1fr) 16em;
grid-template-areas:
"banner banner"
"main hours"
"footer footer";

CSS Grid Layout

5. With everything set up, it'll be a breeze to put the content items
into their proper places. Create a style rule for each grid item
and tell it where to go with grid-area:

header {

grid-area: banner;
}
main {

grid-area: main;
}
aside {

grid-area: hours;
}
footer {

grid-area: footer;
}

Pretty easy, right? Now would be a good time to save the file and
take a look at it in the browser (if you haven’t already). The 2.5%
margins that we had set on the main element earlier give it some
nice breathing room in its area, so let’s leave that alone. However,
I'd like to remove the right margin and border radius we had set
on the aside so it fills the right column. I'm going to just comment
them out so that information is still around if I need to use it later:

aside {

/* border-top-right-radius: 25px; */
/* margin: lem 2.5% 0 10%; */

}

That does it! Open the bakery.html page in a browser that
supports CSS grids, and it should look like the screenshot in
FIGURE 16-47.

Now the bakery page has a nice two-column layout using a simple
grid. In the real world, this would be just one layout in a set that
would address different screen sizes as part of a responsive design
strategy. We'll be talking about responsive design in the next
chapter. And because grids are not supported by Internet Explorer,
Edge, and older browsers, you would also create fallback layouts
using Flexbox or floats depending on how universally you need the
layout to work. | don’t mean to kill your buzz, but | do want you to
be aware that although this exercise let you sharpen your skills, it's
part of a much broader production picture.

Note: For float- and position-based layout techniques that could
be used as fallbacks, get the article “Page Layout with Floats
and Positioning” (PDF) at learningwebdesign.com/articles/.

16. CSS Layout with Flexbox and Grid 477

Test Yourself

Grid Property Roundup

Here’s a nice, handy list of the Grid
properties, organized by whether they
apply to the container or to individual
grid items.

Grid Container Properties
display: grid | inline-grid
grid

grid-template
grid-template-rows
grid-template-columns
grid-template-areas
grid-auto-rows
grid-auto-columns
grid-auto-flow
grid-gap
grid-row-gap
grid-column-gap
justify-items
align-items
justify-content
align-content

Grid Item Properties

grid-column
grid-column-start
grid-column-end

grid-row
grid-row-start
grid-row-end

grid-area

justify-self

align-self

order (not part of Grid Module)

z-index (not part of Grid Module)

Online Grid Resources

As you continue your Grid Layout adventure, I'm sure you'll find plenty of
excellent resources online, as more are popping up all the time. I'd like to
point you to a few of the most complete and authoritative resources that I
found helpful as I learned about grids myself.

Rachel Andrew’s “Grid By Example” site (gridbyexample.com)

Rachel Andrew, one of the first champions of Grid Layout, has assembled
an incredible collection of articles, free video tutorials, browser support
information, and more. You can also try searching the web for her excel-
lent conference talks on the topic.

Jen Simmons’ “Experimental Layout Lab” (labs.jensimmons.com)

Jen Simmons, who works for Mozilla Foundation, shows off what Grid
Layout can do in her Experimental Layout Lab. It’s definitely worth a
visit for the cool examples of Grid and other emerging CSS technologies
as well as exercises that let you code along.

You can find Jen’s many articles on CSS Grid at jensimmons.com/writing.
[also recommend her roundup of resources for learning Grid Layout at
Jjensimmons.com/post/feb-27-2017/learn-css-grid. See also Jen’s YouTube
video series called “Layout Land” (youtube.com, search for “Layout Land
Jen Simmons”).

Grid Garden by Thomas Park (cssgridgarden.com)

If you enjoyed the Flexbox Froggy game created by Thomas Park, you
will have fun playing his Grid Garden game for getting familiar with CSS
Grid Layout.

TEST YOURSELF

We covered lots of ground in this chapter. See how you do on this quiz of
some of the highlights. As always, Appendix A has the answers.

Flexbox

1. How do you turn an element into a flex item?

2. Match the properties with their functions.

1. Distribute space around and between flex
lines on the cross axis.

a. justify-content

b. align-self 2. Distribute space around and between items

on the main axis.

478 Part lll. CSS for Presentation

(FIGURE 16-48).
a. flex-flow: row wrap;

b. flex-flow: column nowrap;

e

flex-flow: row wrap-reverse;

d. flex-flow: column wrap-reverse;

o

flex-flow: row nowrap;

'l 1/2/3/4/5 6
o

(2]
(5]

B
HE

(3]

Test Yourself

c. align-content 3. Position items on the cross axis.
d. align-items 4. Position a particular item on the cross axis.
3. How is align-items different from align-content?
What do they have in common?
4. Match the properties and values to the resulting effects.
a. flex: 0 1 auto; 1. Ttems are completely inflexible, neither
shrinking nor growing,
b. flex: none; 2. Ttem will be twice as wide as others with
flex: 1 and may also shrink.
c. flex: 1 1 auto; 3. Items are fully flexible.
d. flex: 2 1 opx; 4. Trems can shrink but not grow bigger.
5. Match the following flex-flow declarations with the resulting flexboxes

L& |

FIGURE 16-48. Various flex-flow settings.

16. CSS Layout with Flexbox and Grid 479

Test Yourself

6. Write style rules for displaying the flexbox items in the order shown in
FIGURE 16-49.

Source HTML After reordering

<div id="container">

<div class="box box1">1</div>
<div class="box box2">2</div>
<div class="box box3">3</div>
<div class="box box4">4</div>
<div class="box box5">5¢</div>
<div class="box box6">6</div>
<div class="box box7">7</div>
</div>

FIGURE 16-49. Write styles to put items in the shown order.

Grid Layout

7. What is the key difference between Grid Layout and Flexbox? Name at
least one similarity (there are multiple answers).

8. Create the grid template for the layout shown in FIGURE 16-50 by using
grid-template-rows and grid-template-columns.

Write it again, this time using the grid shorthand property.

Always twice the width
300px of the right column flexible
| |

12em —

At least
the height _|
of the
content

100px —

FIGURE 16-50. Create the grid template for this grid structure.

480 Part Ill. CSS for Presentation

9. Match the following style declarations with the lettered grid items in
FIGURE 16-51. In addition to automatic numbering, some of the grid lines

have been named, as labeled.

a.
grid-row-start: 1;
grid-row-end: 3;
grid-column-start: 3;
grid-column-end: 7;
b.
grid-area: 2 / 2 / span 4 / 3;
C.
grid-area: bowie;
d.
grid-row: -2 / -1;
grid-column: -2 / -1;
e
grid-row-start: george;
grid-row-end: ringo;
grid-column-start: paul;
grid-column-end: john;
o
&
<§§ <§9 wps
george | | | |
ringo —
bowie-start — -------oeeoeeeeee
bowie-end — |- e

FIGURE 16-51. Match the style examples to the items in this grid.

Test Yourself

16. CSS Layout with Flexbox and Grid 481

CSS Review: Layout Properties

10. Write a style rule that adds lem space between columns in a grid con-
tainer named #gallery.

11. Match the tasks with the declarations.
a. justify-self: end;
b. align-items: end;
c. align-content: center;
d. align-self: stretch;

€. justify-items: center;

Make a particular item stretch to fill its container.

Position an image on the right edge of its grid area (in a left-to-

right reading language).
Center the whole grid vertically in its container.

Push all of the images in a grid to the bottom of their respective
cells.

Center all items in their areas horizontally.

CSS REVIEW: LAYOUT PROPERTIES

Here are the properties covered in this chapter, sorted into Flexbox and Grid
sections and whether they apply to the container or item.

Flexbox Properties

Flex container properties

display: flex Turns on flexbox mode and makes the element a
flex container

flex-direction Indicates the direction in which items are placed in
the flex container

flex-wrap Specifies whether the flex items are forced onto a
single line or wrapped onto multiple lines

flex-flow Shorthand property for flex-direction and
flex-wrap
justify-content Specifies how space is distributed between and

around items on the main axis

align-content Aligns flex lines within the flex container when
there is extra space on the cross axis

align-items Specifies how the space is distributed around items
on the cross axis

482 Part lll. CSS for Presentation

Flex item properties

CSS Review: Layout Properties

align-self Specifies how one item is aligned on the cross axis
(overrides align-items)

flex Shorthand property for flex-grow, flex-shrink, and
flex-basis; specifies how items alter their dimen-
sions to fit available space

flex-basis Indicates the initial main size of a flex item

flex-grow Specifies how much a flex item is permitted to grow

when there is extra space in the container

flex-shrink

Specifies how much a flex item is permitted to
shrink when there is not enough room in the
container

order

Indicates the order used to lay out items in their
container

Grid Properties

Grid container properties

display:
grid | inline-grid

Sets the display mode of an element to a grid
context

grid-template

Shorthand property for specifying
grid-template-areas, grid-template-rows, and
grid-template-columns

grid-template-areas

Assigns names to areas in the grid

grid-template-columns

Specifies track sizes for the columns in explicit grids

grid-template-rows

Specifies track sizes for the rows in explicit grids

grid-auto-columns

Specifies track sizes for automatically generated
columns

grid-auto-flow

Indicates the direction and density in which items
flow automatically into a grid

grid-auto-rows

Specifies track sizes for automatically generated rows

grid Shorthand property for specifying
grid-template-rows, grid-template-columns,
and grid-template-areas; or grid-auto-flow,
grid-auto-rows, and grid-auto-columns

grid-gap Shorthand property for grid-row-gap and

grid-column-gap

grid-column-gap

Specifies the width of the gutter between columns

grid-row-gap

Specifies the width of the gutter between rows

justify-items

Indicates alignment of all the grid items along the
inline axis within their respective areas

justify-content

Indicates alignment of the grid tracks along the
inline axis in its container

16. CSS Layout with Flexbox and Grid

483

CSS Review: Layout Properties

align-items

Indicates alignment of all the items in a grid along
the block axis within their respective grid areas

align-content

Indicates alignment of the grid tracks along the
block axis in the container

Grid item properties

grid-column

Shorthand property for specifying
grid-column-start and grid-column-end

grid-column-end

Denotes the end line of the column in which an item
is to be placed

grid-column-start

Denotes the start line of the column in which an
item is to be placed

grid-row

Shorthand property for specifying grid-row-start
and grid-row-end

grid-row-end

Denotes the end line of the row in which an item is
to be placed

grid-row-start

Denotes the start line of the row in which an item is
to be placed

grid-area Assigns a grid item to a named area or an area
described by its four boundary grid lines
align-self Indicates alignment of a single item along the block

axis within its grid area

justify-self

Indicates alignment of a single grid item along the
inline axis within its area

order Specifies the order in which to display the item rela-
tive to other items in the source
z-index Specifies the stacking order of an item relative to

other items when there is overlap

484 Part lll. CSS for Presentation

RESPONSIVE WEB
DESIGN

[first introduced you to the concept of Responsive Web Design way back in
Chapter 3, Some Big Concepts You Need to Know, and we’ve been addressing
ways to keep all screen sizes in mind throughout this book. In this chapter, we
get to do a deeper dive into responsive strategies and techniques.

Just to recap, Responsive Web Design (or RWD) is a design and production
approach that allows a website to be comfortably viewed and used on all
manner of devices. The core principle is that all devices get the same HTML
source, located at the same URL, but different styles are applied based on the
viewport size to rearrange components and optimize usability. FIGURE 17-1
shows examples of responsive sites as they might appear on a smartphone,
tablet, and desktop, but it is important to keep in mind that these sites are
designed to work well on the continuum of every screen width in between.

WHY RWD?

Since the iPhone shook things up in 2007, folks now view the web on phones
of all sizes, tablets, “phablets,” touch-enabled laptops, wearables, televisions,
video game consoles, refrigerators, and who knows what else that may be
coming down the line.

In 2016, mobile internet usage surpassed desktop usage—an important
milestone. The percentage of web traffic that comes from devices other than
desktop browsers is steadily increasing. For roughly 10% of Americans, a
smartphone or tablet is their only access to the internet because of lack of
access to a computer or high-speed WiFi at work or home.* Younger users
may be mobile-only by choice. Furthermore, the vast majority of us access the

* Pew Research Center, “Smartphone Use in 2015, www.pewinternet.org/2015/04/01/us-smart-
phone-use-in-2015/.

CHAPTER

17

IN THIS CHAPTER

What RWD is and why it’s
important

Fluid layouts
Media queries
Design strategies and patterns

Testing options

485

The Responsive Recipe

MAREVENtADAIt e wmscu aoemass s

An Event Apart
aneventapart.com

[Y ——

Smm The Boston Globe =

M tpom Gk Tcn Csmon Pthes L Avn Can Fa i

= WARWIOK
Pusiic
|j B s

ot ke

What's Happening

Table-Top Upcoming Events
T e
E Featre e A Serous Man

What Trump caigronighet L
Bloclobee oy W
et e of Pt

What's Happening Summer Reading Cllenge

Paul LePage hates the press. But Seaaie GOPeadera
he'sa pretty good golfe release their
ol Lo revised health care [t
il

’Th

You Can Quilk:A Biweekly
ArtCias

[rn——

Resources

I

@ 2.

Upcoming Events

EGH oue e ommamn st

e The oy Clbis Brsokie el st

The Boston Globe
bostonglobe.com

Warwick Public Library
warwicklibrary.org

NOTE

Each site in FIGURE 17-1 has one mor-
phing design, not three distinct layouts.
Some sites do have a limited number of
layouts aimed at specific devices, which
is an approach known as Adaptive
Design.

Examples of responsive sites that adapt to fit small, medium, and large
screens and all sizes in between.

web from a number of platforms (phone, tablet, computer) over the course of
the day. And guess what—we expect to have a similar experience using your
content or service regardless of how we access your site.

That’s where RWD fits in. With one source, you ensure that mobile visitors
receive the same content as other visitors (although it might be organized dif-
ferently). Users are not penalized with stripped-down content or features just
because they are using a smartphone. And for visitors who might start using
your site on one device and finish it on another, you can ensure a consistent
experience.

In fact, for many web designers, “responsive design” is now just “web design.”
Instead of a niche approach, it is becoming the default way to build a website
that meets the demands of our current multidevice environment.

THE RESPONSIVE RECIPE

The deluge of web-enabled mobile devices initially sent shockwaves through
the web design community. Accustomed to designing exclusively for large
desktop screens, we were unclear about how we could accommodate screens
that fit in the palm of your hand.

486 Part lll. CSS for Presentation

One solution was to rely on the phone’s built-in web display functionality.
By default, mobile devices display an entire web page shrunken down to fit
on whatever screen real estate is available. Users can pinch to zoom into the
details and scroll around to various parts of the page. While that technically
works, it is far from an optimal experience. Another approach was to create
a separate mobile site just for small screens and people “on the go.” There
are still many companies and services that use dedicated mobile (“m-dot”)
sites—Twitter and Facebook come to mind—but in general, m-dot sites are
going away in favor of RWD. Google is helping the process along by favoring
responsive sites with single URLs over m. or mobile. versions.

In 2010, Ethan Marcotte gave name to another, more flexible solution in
his article “Responsive Web Design” (alistapart.com/article/responsive-web-
design), which has since become a cornerstone of modern web design. In this
chapter, I will follow the “ingredients” for RWD that Ethan outlines in his
book Responsive Web Design (A Book Apart).

The technique has three core components:
A flexible grid

Rather than remaining at a static width, responsive sites use methods that
allow them to squeeze and flow into the available browser space.

Flexible images

Images and other embedded media need to be able to scale to fit their
containing elements.

CSS media queries

Media queries give us a way to deliver sets of rules only to devices that
meet certain criteria, such as width and orientation.

To this list of ingredients, I would add the viewport meta element, which
makes the width of the web page match the width of the screen. That’s where
we'll begin our tour of the mechanics of RWD.

Setting the Viewport

To fit standard websites onto small screens, mobile browsers render the page
on a canvas called the viewport and then shrink that viewport down to fit
the width of the screen (device width). For example, on iPhones, mobile Safari
sets the viewport width to 980 points (see Note), so a web page is rendered
as though it were on a desktop browser window set to 980 pixels wide. That
rendering gets shrunk down to the width of the screen (ranging from 320 to
414 points, depending on the iPhone model), cramming a lot of information
into a tiny space.

Mobile Safari introduced the viewport meta element, which allows us to
define the size of that initial viewport. Soon, the other mobile browsers fol-
lowed suit. The following meta element, which goes in the head of the HTML

The Responsive Recipe

NOTE

Mobile sites were discussed in the side-
bar “M-dot Sites” in Chapter 3.

NOTE

iOS layouts are measured in points, a
unit of measurement that is independent
from the number of pixels that make up
the physical screen. Points and device
pixels are discussed in more detail in
Chapter 23, Web Image Basics.

17. Responsive Web Design 487

https://alistapart.com/article/responsive-web-design
https://alistapart.com/article/responsive-web-design

The Responsive Recipe

H FUN FACT

Media queries are always at work,
even after the page has initially
loaded. If the viewport changes—for
example, if a user turns a phone from
portrait to landscape orientation or
resizes a desktop browser window—
the query runs again and applies the
styles appropriate for the new width.

WARNING

The viewport meta element also allows
the maximum-scale attribute. Setting it
to 1 (maximum-scale=1) prevents users
from zooming the page, but it is strongly
recommended that you avoid doing so
because resizing is important for acces-
sibility and usability.

document, tells the browser to set the width of the viewport equal to the
width of the device screen (width=device-width), whatever that happens to
be (FIGURE 17-2). The initial-scale value sets the zoom level to 1 (100%).

<meta name="viewport" content="width=device-width, initial-scale=1">
With the viewport meta element in place, if the device’s screen is 320 pixels
wide, the rendering viewport on that device will also be 320 pixels across (not

980) and will appear on the screen at full size. That is the width we test for
with media queries, so setting the viewport is a crucial first step.

With the viewport meta tag, the viewport
is created at the same size as the screen.

By default, the viewport shrinks
to the size of the screen.

<meta name="viewport"
content="width=device-width,
initial-scale=1">

viewport = 980pt viewport = 320pt

I

screen = 320pt screen = 320pt

FIGURE 17-2. The viewport meta element matches the resolution of the device’s
browser viewport to the resolution of its screen.

Flexible Grids (Fluid Layouts)

In the Flexbox and Grid discussions in the previous chapter, we saw examples
of items expanding and contracting to fill the available space of their contain-
ers. That fluidity is exactly the sort of behavior you need to make content
neatly fit a wide range of viewport sizes. Fluid layouts (or “flexible grids,”
as Ethan Marcotte calls them in his article and book) are the foundation of
responsive design.

488 Part lll. CSS for Presentation

In a fluid layout, the page area and its grid resize proportionally to fill the
available width of the screen or window (FIGURE 17-3, top). That is easily
accomplished with fr and minmax() units in CSS Grid layouts and with flex
property settings in Flexbox. If you need to also target older browsers that
don’t support CSS layout standards, you can use percentage values for hori-
zontal measurements so elements remain proportional at varying sizes (see
the sidebar “Converting Pixels to Percentages”).

In the past, when we knew that everyone was looking at our sites on desktop
monitors, fixed-width layouts were the norm. (Ahh, those simple pre-mobile
days when we only needed to deal with radically incompatible browser sup-
port!) As the name implies, fixed-width layouts are created at a specific pixel
width (FIGURE 17-3, bottom), with 960 pixels being quite fashionable (see
Note). Specifying all measurements in pixel values gave designers control
over the layout as they might have in print, and ensured that users across all
platforms and browsers got similar, if not the same, rendering of the page.

Fluid layouts fill the viewport proportionally.

The Best Weekend of Summ:
Full Lineup + Schedule Just Annc

kexp.org

Fluid and fixed layout examples.

It didn’t take long to realize, however, that it would be impossible to create
separate fixed-width designs tailored to every device size. Clearly, fluidity
has the advantage. It is based on the intrinsic nature of the normal flow, so
were working with the medium here rather than against it. When the layout
reflows to fill the available width, you don’t need to worry about horizontal
scrollbars or awkward empty space in the browser.

On the downside, fluid layouts may allow text line lengths to become uncom-
fortably long, so that is something to watch out for. We'll go into more detail
on layouts later in this chapter.

The Responsive Recipe

Converting Pixels to
Percentages

To convert measurements in your
layout from pixels to percentages, use
the following formula:

target + context = result

The target is the size of the element
you are resizing. The context is the
size of the containing element. The
result is a percentage you can use in
in your style rules. Don’t worry about
rounding long decimal strings down.
Browsers know what to do with them,
and the extra precision doesn’t hurt.

NOTE

Designers landed on 960 pixels wide as
a standard page width because it filled
the standard desktop width at the time
(1,028 pixels) and it was easily divided
into an equal columns. Page layout sys-
tems based on 12-column grids within
the 960-pixel page were also popular.

When | got started in web design in
1993, the most common PC monitor
size was a measly 640 x 480 pixels,
unless you were a fancy-pants
designer type with a 800 x 600 screen.
My earliest designs had a fixed width
of an adorable 515 pixels.

17. Responsive Web Design 489

The Responsive Recipe

Making Images Flexible

Every now and then a solution is simple. Take, for example, the style rule
required to make images scale down to fit the size of their container:

img {

max-width: 100%;

}
That’s it! When the layout gets smaller, the images in it scale down to fit
the width of their respective containers. If the container is larger than the
image—for example, in the tablet or desktop layouts—the image does not
scale larger; it stops at 100% of its original size (FIGURE 17-4). When you
apply the max-width property, you can omit the width and height attributes
in the img elements in the HTML document. If you do set the width attribute,
be sure the height attribute is set to auto; otherwise, the image won't scale
proportionately.

img { max-width: 100%, }

Setting the max-width of inline images allows them to shrink to fit
available space but not grow larger than actual size.

Responsive images

But wait—things are never that simple, right? If you think back to our dis-
cussion of responsive images in Chapter 7, Adding Images, you'll remember
that there is some elbow grease required to avoid serving unnecessarily large
images to small devices as well as making sure large, high-density monitors
get high-resolution images that shine. Choosing the best image size for per-
formance is part of the responsive design process, but we won't be concentrat-
ing on that in this chapter. We've got bigger fish to fry!

Other embedded media

Videos and other embedded media (using object or embed elements) also
need to scale down in a responsive environment. Unfortunately, videos do
not retain their intrinsic ratios when the width is scaled down, so there are a

490 Part lll. CSS for Presentation

few more hoops to jump through to get good results. Thierry Koblentz docu-
ments one strategy nicely in his article “Creating Intrinsic Ratios for Video”
at www.alistapart.com/articles/creating-intrinsic-ratios-for-video. There is also
a JavaScript plug-in called FitVids.js (created by Chris Coyier and the folks
at Paravel) that automates Koblentz’s technique for fluid-width videos. It is
available at fitvidsjs.com.

Media Query Magic

Now we get to the real meat of responsive design—media queries! Media
queries apply different styles based on characteristics of the browser: its
width, whether it is vertically or horizontally oriented, its resolution, and
more. They are what make it possible to send a one-column layout to small
screens and a multicolumn layout to larger screens on the fly.

The query itself includes a media type followed by a particular feature and a
value for which to test. The criteria are followed by a set of curly brackets that
contain styles to apply if the test is passed. The structure of a media query as
used within a style sheet goes like this:

@media type and (feature: value) {
/* styles for browsers that meet this criteria */

Let’s clarify that with an example. The following media queries look at
whether the viewport is on a screen and in landscape (horizontal) or por-
trait (vertical) orientation. When the query detects that the viewport is in
landscape mode, the background color of the page is “skyblue”; when it is in
portrait orientation, the background is “coral” (FIGURE 17-5). If this were dis-
played on a smartphone that tips from vertical to horizontal and back again,
the colors would change as it tilts. This isn't a very practical design choice, but
it does provide a very simple illustration of media queries at work.

@media screen and (orientation: landscape) {

body {
background: skyblue;
}
}
@media screen and (orientation: portrait) {
body {
background: coral;
}
}
HEADS UP
Having style declaration curly brackets nested inside media When the viewport is in

. . trait mode, th
query curly brackets can get a little confusing. Be sure that you portral mode, the

have the right number of curly brackets and nest them properly.

background color is “coral.”

The Responsive Recipe

hello!

When the viewport is in
landscape mode, the
background color is “skyblue.”

Careful indenting is helpful. Many code-editing programs also
use color coding to help you keep them straight.

FIGURE 17-5. Changing the background color based on the
orientation of the viewport with media queries.

17. Responsive Web Design 491

http://www.alistapart.com/articles/creating-intrinsic-ratios-for-video

The Responsive Recipe

Media types

Media types, as included in the first part of a query, were introduced in CSS2
as a way to target styles to particular media. For example, this @media rule
delivers a set of styles only when the document is printed (it does not test for
any specific features or values):

@media print {

/* print-specific styles here */

}
The most current defined media types are all, print, screen, and speech
(see Note). If you are designing for screen, the media type is optional, so you
can omit it as shown in the syntax example shown here, but including it
doesn’t hurt. 'll be including the screen media type for the sake of clarity in
my examples.

@media (feature: value) {

}

NOTE

CSS2 also defined aural, handheld, braille, embossed, projection, tty, and tv, but
they have been deprecated in the latest Media Queries Level 4 spec (currently a Working
Draft) and are discouraged from use.

Media feature queries

CSS3 media queries take targeting one step further by letting us test for a
particular feature of a viewport or device. We saw an example of testing the
orientation of a device in FIGURE 17-5. The most common feature to test for
is the viewport width. You can also test for a minimum width (min-width) and
maximum width (max-width).

Here is a simple example that displays headline fonts in a fancy cursive font
only when the viewport is 40em or wider—that is, when there is enough
space for the font to be legible. Viewports that do not match the query
(because they are narrower than 40em) use a simple serif face.

h1 {
Minimum-width queries are your font-family: Georgia, serif;
go-to for creating mobile-first }
responsive design. @media screen and (min-width: 4o0em) {
h1
f;{)nt—family: "Lobster', cursive;
}
}

The complete list of device features you can detect with media queries
appears in TABLE 17-1.

492 Part lll. CSS for Presentation

The Responsive Recipe

Media features you can evaluate with media queries

Feature Description

width The width of the display area (viewport). Also min-width and max-width.
height The height of the display area (viewport). Also min-height and max-height.
orientation Whether the device is in portrait or landscape orientation.

aspect-ratio

Ratio of the viewport’s width divided by height (width/height).
Example: aspect-ratio: 16/9.

color

The bit depth of the display; for example, color: 8 tests for whether the device has at least
8-bit color.

color-index

The number of colors in the color lookup table.

monochrome The number of bits per pixel in a monochrome device.

resolution The density of pixels in the device. This is increasingly relevant for detecting high-resolu-
tion displays.

scan Whether a tv media type uses progressive or interlace scanning.
(Does not accept min-/max- prefixes.)

grid Whether the device uses a grid-based display, such as a terminal window.

(Does not accept min-/max- prefixes.)

Deprecated features

The following features have been deprecated in Media Queries Level 4 Working Draft and are discouraged from use.

device-width

The width of the device’s rendering surface (the whole screen).
(Deprecated in favor of width.)

device-height

The height of the device’s rendering surface (the whole screen).
(Deprecated in favor of height.)

device-aspect-ratio

Ratio of the whole screen’s (rendering surface) width to height.
(Deprecated in favor of aspect-ratio.)

New in Media Queries Level 4

These features have been added in the Working Draft of MQ4. Some may gain browser support, and some may be
dropped from future drafts. I include them here to show you where the W3C sees media queries going. For details,
see drafts.csswg.org/mediaqueries-4.

update-frequency

How quickly (if at all) the output device modifies the appearance of the content.

overflow-block

How the device handles content that overflows the viewport along the block axis.

overflow-inline

Whether the content that overflows the viewport along the inline axis can be scrolled.

color-gamut

The approximate range of colors that are supported by the user agent and output device.

pointer

Whether the primary input mechanism is a pointing device and how accurate it is.

hover

Whether the input mechanism allows the user to hover over elements.

any-pointer

Whether any available input mechanism is a pointing device, and how accurate it is.

any-hover

Whether any available input mechanism allows hovering.

17. Responsive Web Design

493

The Responsive Recipe

How to use media queries

You can use media queries within a style sheet or to conditionally load exter-
nal style sheets. Media queries may not be used with inline styles.

Within a style sheet

The most common way to utilize media queries is to use an @media (“at-
media”) rule right in the style sheet. The examples in this chapter so far are
all @media rules.

When you use media queries within a style sheet, the order of rules is very
important. Because rules later in the style sheet override the rules that come
before them, your media query needs to come after any rules with the same
declaration.

The strategy is to specify the baseline styles that serve as a default, and then
override specific rules as needed to optimize for alternate viewing environ-
ments. In RWD, the best practice is to set up styles for small screens and
browsers that dont support media queries, and then introduce styles for
increasingly larger screens later in the style sheet.

That’s exactly what I did in the headline font-switching example earlier. The
h1 sets a baseline experience with a local serif font, and then gets enhanced
for larger screens with a media query.

With external style sheets

For large or complicated sites, developers may choose to put styles for dif-
ferent devices into separate style sheets and call in the whole .css file when
certain conditions are met. One method is to use the media attribute in the
link element to conditionally load separate .css files. In this example, the
basic styles for a site are requested first, followed by a style sheet that will
be used only if the device is more than 1,024 pixels wide (and if the browser
supports media queries):
<head>
<link rel="stylesheet" href="styles.css">
<link rel="stylesheet" href="2column-styles.css" media="screen and
(min-width:1024px)">
</head>
Some developers find this method helpful for managing modular style sheets,
but it comes with the disadvantage of requiring extra HT TP requests for each
additional .css file. Be sure to provide only as many links as necessary (per-
haps one for each major breakpoint), and rely on @media rules within style
sheets to make minor adjustments for sizes in between.

Similarly, you can carry out media queries with @import rules that pull in
external style sheets from within a style sheet. Notice that the word “media”
does not appear in this syntax, only the type and query.

494 Part lll. CSS for Presentation

<style>
@import url("/default-styles.css");
@import url("/wide-styles.css") screen and (min-width: 1024px);
/* other styles */

</style>

Browser support

We can’t close out a discussion of media queries without a nod to browser
support. The good news is that media queries are supported by virtually all
desktop and mobile browsers in use today. The big exceptions are Internet
Explorer versions 8 and earlier, which have no support. Because of the stay-
ing power of the Windows XP operating system, IE8 continues to show up
in browser use statistics (at 1-2% as [write, ahead of IE 9 and 10). If your
site has hundreds of thousands of users, that 1% ends up being a significant
number of broken experiences.

If you expect to have visitors using old versions of IE, you have a couple of
options. First, you could use the Respond.js polyfill, which adds support for
min-width and max-width to non-supporting browsers. It was created by Scott
Jehl and is available at github.com/scottjehl/Respond.

The other option is to create a separate style sheet with a no-frills desktop
layout and deliver it only to users with IE8 or earlier by using a conditional
comment. Other browsers ignore the content of this IE-specific comment:

<l-- [if 1te IE 8]»

<link rel="stylesheet" href="/path/IE_fallback.css">

<I[endif]-->
Depending on your site statistics and when you are reading this, you may not
need to worry about media query support at all. Lucky you!

CHOOSING BREAKPOINTS

A breakpoint is the point at which we use a media query to introduce a style
change. When you specify min-width: 800px in a media query, you are saying
that 800 pixels is the “breakpoint” at which those particular styles should be
used. FIGURE 17-6 shows some of the breakpoints at which Etsy.com makes
both major layout changes and subtle design tweaks on its home page.

Choosing breakpoints can be challenging, but there are a few best practices
to keep in mind.

When RWD was first introduced, there were only a handful of devices to
worry about, so we tended to base our breakpoints on the common device
sizes (320 pixels for smartphones, 768 pixels for iPads, and so on), and we cre-
ated a separate design for each breakpoint. It didn't take long until we had to
deal with device widths at nearly every point from 240 to 3000+ pixels. That
device-based approach definitely didn’t scale.

Choosing Breakpoints

17. Responsive Web Design 495

Choosing Breakpoints

Etsy o e e B

=3
1y
Wear these for the
e next heat wave.

next heat wave.

o
)

Browss our latost collections.

T W

At 501 pixels, “Sell” At 640 pixels, the “How Etsy
becomes “Sell on Works” images and

Browse our latest collections

At the 480-pixel
breakpoint, the

category Etsy” (averysubtle messages move above the

navigation adjustment). You categories. In smaller views,
changes fromalist canalso see more they were accessible via the
to photos. links in the “Learn how Etsy works” link

“Register” is navigation bar
added to the top under the search
navigation bar. field.

in a yellow bar.

8 i

Etsy 2 = Etgy [wmeen [= | x
Wear these for the Wear these for the
next heat wave. next heat wave.
(== oo] ‘

Browse our latest collections Browse our latest collections

Fnda :i 1. { = mE
=4t Q= 21

Shopfor gifts

T |

At 901 pixels, the search input At 981 pixels, the word “Cart” appears under the

form moves into the top header. shopping cart icon. We now see the full list of
navigation options in the header (no “More” link).
At this point, the layout expands to fill larger
windows until it reaches its maximum width of
1400 pixels. Then margins add space equally on
the left and right to keep the layout centered.

Shop for gifts

FIGURE 17-6. Aseries of breakpoints used by Etsy’s responsive site (2017).

496 Part Ill. CSS for Presentation

Module-Based Breakpoints

A better approach is to create breakpoints for the individual parts of a page
rather than switching out the entire page at once (although for some pages
that may work just fine). A common practice is to create the design for narrow
screens first, and then resize the browser wider and pay attention to the point
at which each part of the page starts to become unacceptable. The naviga-
tion might become too awkward and need a breakpoint at 400 pixels wide,
but the one-column layout might be OK until it reaches 800 pixels, at which
point a two-column design could be introduced.

In his book Responsive Design: Patterns & Principles (A Book Apart), Ethan
Marcotte calls this “content out” design and puts it like this:

For me, that “content out” process begins by looking at the smallest version
of a piece of content, then expanding that element until its seams begin to
show and it starts to lose its shape. Once that happens, that’s an opportunity
to make a change—to introduce a breakpoint that reshapes the element and
preserves its integrity.

If you find that you have a lot of breakpoints within a few pixels or ems of
one another, grouping them together may streamline your style sheet and
process. And it doesnt hurt to keep the screen sizes of the most popular
devices in mind in case nudging your breakpoint down a little helps improve
the experience for a whole class of users. The site Screen Sizes (screensiz.es)
lists the dimensions of a wide range of popular devices. A web search will
turn up similar resources.

Em-Based Breakpoints

The examples in this section have been based on breakpoints with pixel mea-
surements. An alternative, and many would say better, method is to use ems
instead of pixels in the media query. Remember that an em is equal to the
current font size of an element. When used in a media query, an em is based
on the base font size for the document (16 pixels by default, although that
can be changed by the user or the page author).

Pixel-based media queries don't adapt if the user changes their font size set-
tings, which people do in order to be able to read the page more easily. But
em-based media queries respond to the size of the text, keeping the layout of
the page in proportion.

For example, say you have a layout that switches to two columns when the
page reaches 800 pixels. You've designed it so the main column has an opti-
mum text line length when the base font size is the default 16 pixels. If the
user changes their base font size to 32 pixels, that double-sized text will pour
into a space intended for text half its size. Line lengths would be awkward.

Using em-based queries, if the query targets browsers wider than 50em, when
the base font size is 16 pixels, the switch happens at 800 pixels (as designed).

Choosing Breakpoints

17. Responsive Web Design 497

Choosing Breakpoints

However, should the base font size change to 32 pixels, the two-column
layout would kick in at 1,600 pixels (50em x 32px = 1,600px), when there is
plenty of room for the text to fill the main column with the same line lengths
as the original design.

This example used a whole-page layout switch, but media queries on indi-
vidual components (as discussed earlier) can use ems as well. In the next
section, I'll introduce some of the aspects of web pages that require attention
when youre choosing breakpoints.

How Wide Is the Viewport?

I've suggested making your browser wider until you see that a breakpoint is needed,
but how do you know how wide the window is? There are a number of tools that
provide window measurements.

Firefox, Chrome, and Safari all have tools that can show you how a page looks at
specific viewport dimensions. In Responsive Mode (or View), you get a resizable
window-in-a-window that can be set to standard device sizes or resized manually.
The pixel dimensions are displayed as the viewport resizes.

In Firefox, access Responsive Design Mode (FIGURE 17-7) via the Web Developer
Tools (Tools » Web Developer > Responsive Design Mode). Safari’s Responsive
Design Mode is accessible via Develop - Enter Responsive Design Mode. Chrome
offers a Device Toolbar (View - Developer - Developer Tools, and then look for the
Toggle Device Toolbar icon on the left of the menu bar). They all work about the
same, but you may find you prefer one browser’s user interface over another.

To find out how your browser window or device responds to media queries, go to
MQTest.io (mgtest.io) by Viljami Salminen. In addition to viewport width and height,
it reports on other device features such as device-pixel-ratio, aspect ratio, and more.

A simple tool to help identify which media
queries your device responds to.

Reresh tests teratn 19)

1020x000

Remove Freset
ou =

together.

Shop by category
HOME & LIVING

@ seweLnr
@ CLOTHING

Responsive Design Mode in Firefox MQTest.io is a web page that
shows you the exact pixel dimensions of reports on how your browser
its viewport. It has shortcuts to resize it responds to media queries,
to common device dimensions. Chrome including width.

and Safari have similar responsive views.

Checking viewport size in Firefox’s Responsive Design Mode and
MQTest.io.

498 Part Ill. CSS for Presentation

DESIGNING RESPONSIVELY

We've covered the RWD nuts and bolts—now let’s talk about some of the
decisions designers make when creating responsive sites. I am only going to
be able to scratch the surface here, but you'll find much deeper explorations
on these themes in the books and articles listed along the way. For now, I just
want to raise your awareness of responsive strategies. At the end of the sec-
tion, you will use some of these strategies to make the Black Goose Bakery
page responsive.

We've seen a few examples in our exercises of content looking wonky when
the browser gets very narrow or very wide. A three-column layout just doesn’t
fit, and text in an image may become unreadable when it is scaled down to
fit a 320-pixel-wide screen. At the other end of the spectrum, the line length
in single-column layouts becomes too long to read comfortably when the
viewport fills a high-resolution desktop monitor. For many aspects of a web
page, one size does not fit all. As designers, we need to pay attention to where
things fall apart and set breakpoints to “preserve the integrity” of the ele-
ments (as Ethan Marcotte so nicely puts it).

In the broadest of strokes, the tricky bits to keep optimized over a wide range
of viewport sizes include the following;:

* Content hierarchy
¢ Layout

* Typography

¢ Navigation

* Images

* Special content such as tables, forms, and interactive features

Content Hierarchy

Content is king on the web, so it is critical that content is carefully considered
and organized before any code gets written. These are tasks for Information
Architects and Content Strategists who address the challenges of organizing,
labeling, planning, and managing web content.

Organization and hierarchy across various views of the site are a primary
concern, with a particular focus on the small-screen experience. It is best to
start with an inventory of potential content and pare it down to what is most
useful and important for all browsing experiences. Once you know what the
content modules are, you can begin deciding in what order they appear on
various screen sizes.

Keep in mind that you should strive for content parity—that is, the notion
that the same content is accessible regardless of the device used to access the

Designing Responsively

17. Responsive Web Design 499

Designing Responsively

Conditional Loading

Content parity doesn’t mean that

all of the content that fits on a large
screen should be stuffed onto the
small-screen layout. All that scrolling
and extra data to download isn’t
doing mobile users any favors.

A better approach is to use
conditional loading, in which small-
screen users get the most important
content with links to access
supplemental content (comments,
product details, ads, lists of links, etc.)
when they want it. The information is
available to them, just not all at once.
Meanwhile, on larger screens, those
supplemental pieces of content get
displayed in sidebars automatically.

Conditional loading requires
JavaScript to implement, so | won’t
be giving you the specific how-tos
here, but it is good to know that there
are alternatives to cramming every
little thing onto every device.

site. It might be that visitors need to follow a slightly different navigational
path to that information, but dropping portions of your site on small screens
because you think mobile users won’t need it is false thinking. People do bop
between devices mid-task, and you want to be sure they have everything they
need.

This is a woefully brief introduction to what is perhaps the most important
first step of creating a site, but it is just outside the focus of this book. To get
up to speed properly with content strategy, particularly as it applies to RWD,
I recommend the following books:

* Content Strategy for the Web, 2nd Edition, by Kristina Halvorson and
Melissa Rich (New Riders)

* Content Strategy for Mobile by Karen McGrane (A Book Apart)

Layout

Rearranging content into different layouts may be the first thing you think of
when you picture responsive design, and with good reason. The layout helps
form our first impression of a site’s content and usability.

As mentioned earlier, responsive design is based on fluid layouts that expand
and contract to fill the available space in the viewport. One fluid layout is
usually not enough, however, to serve all screen sizes. More often, two or
three layouts are produced to meet requirements across devices, with small
adjustments between layout shifts.

Designers typically start with a one-column layout that fits well on small
handheld devices and rearrange elements into columns as more space is
available. They may also have the design for the widest screens worked out
early on so there is an end-point in mind. The design process may involve
a certain amount of switching between views and making decisions about
what happens along the way.

Layout and line length

A good trigger for deciding when to adjust the layout is to look at text line
lengths. Lines of text that are too stubby or too long are difficult to read,
so you should aim for optimal line lengths of 45 to 75 characters, including
spaces. If your text lines are significantly longer, it’s time to make changes to
the layout such as increasing the margins or introducing an additional col-
umn. You might also increase the font size of the text to keep the character
count in the desired range.

Clarissa Peterson introduces a neat trick for testing line lengths in her book
Learning Responsive Web Design (O’Reilly). Put a span around the 45th to 75th
characters in the text and give it a background color (FIGURE 17-8). That way,
you can easily check whether the line breaks are happening in the safe zone

500 Part lIl. CSS for Presentation

at a glance. Of course, this line length hint would be removed before the site
is made public.

In this book, Philadelphia Ice Creams, comprising the first group,
are very palatable, but expensive. In many parts of the country it
is quite difficult to get good cream. For that reason, I have given a
group of creams, using part milk and part cream, but it must be
remembered that it takes smart "juggling" to make ice cream from
milk. By far better use condensed milk, with enough water or
milk to rinse out the cans.

Highlight the 45th to 75th characters to test for optimal line lengths at
a glance.

Responsive layout patterns

The manner in which a site transitions from a small-screen layout to a
wide-screen layout must make sense for that particular site, but there are
a few patterns (common and repeated approaches) that have emerged over
the years. We can thank Luke Wroblewski (known for his “Mobile First”
approach to web design, which has become the standard) for doing a sur-
vey of how responsive sites handle layout. The article detailing his findings,
“Multi-Device Layout Patterns” (www.lukew.com/ff/entry.asp?1514), is getting
on in years, but the patterns persist today. Following are the top patterns Luke
named in his article (FIGURE 17-9):

Mostly fluid

This pattern uses a single-column layout for small screens, and another
fluid layout that covers medium and large screens, with a maximum
width set to prevent it from becoming too wide. It generally requires less
work than other solutions.

Column drop

This solution shifts between one-, two-, and three-column layouts based
on available space. When there isn't room for extra columns, the sidebar
columns drop below the other columns until everything is stacked verti-
cally in the one-column view.

Layout shifter

If you want to get really fancy, you can completely reinvent the layout for
a variety of screen sizes. Although expressive and potentially cool, it is not
necessary. In general, you can solve the problem of fitting your content to
multiple environments without going overboard.

Tiny tweaks

Some sites use a single-column layout and make tweaks to type, spacing,
and images to make it work across a range of device sizes.

Designing Responsively

17. Responsive Web Design 501

http://www.lukew.com/ff/entry.asp?1514

Designing Responsively

Mostly fluid Column drop

Layout shifter Tiny tweaks

o=

Off canvas

Examples of the responsive layout patterns identified by Luke
Wroblewski.

Off canvas

As an alternative to stacking content vertically on small screens, you may
choose to use an “off-canvas” solution. In this pattern, a page component
is located just out of sight on the left or right of the screen and flies into
view when requested. A bit of the main content screen remains visible on
the edge to orient users as to the relationship of moving parts. This was
made popular by Facebook, wherein Favorites and Settings were placed
on a panel that slid in from the left when users clicked a menu icon.

You can see working examples of these and additional layout patterns on the
“Responsive Patterns” page assembled by Brad Frost (bradfrost.github.io/this-
is-responsive/patterns.html).

Typography

Typography requires fine-tuning along the spectrum from small-screen to
wide-screen views in order to keep it legible and pleasant to read. Here are a
few typography-related pointers (FIGURE 17-10):

Font face

Be careful about using fancy fonts on small screens and be sure to test
for legibility. At small sizes, some fonts become difficult to read because

502 Part lIl. CSS for Presentation

Philadelphia Ice Creams

Comprising the first group, are very palatable.
but expensive. In many parts of the country it
is quite difficult to get good cream. For that
reason, 1 have given a group of creams, using
part milk and part cream, but it must be
remembered that it takes smart “juggling” (©
make ice cream from milk. By far hetter use
condensed milk, with enough water or milk to
rinse out the cans.

Ordinary fruit ereams may be made with
condensed milk at a cost of about fifteen cents.
& quart, which, of course, is cheaper than
ordinary milk and cream. The cream for
Philadelphia Ice Cream should be rather rich,
but not double eream.

1f pure raw cream is stirred rapidly, it swells.
and becomes frothy, like the beaten whites of
eggs, and is "whipped cn‘m“v” To prevent this
Narrow screens:
Legible fonts
Smaller type size
Tighter line height

Philadelphia Tce Creams

Comprising the first group, are very palatable, but expensive. In many
parts of the country it is quite difficult to get good cream. For that reason, I
have given a group of creams, using part milk and part cream, but it must
be remembered that it takes smart "juggling” to make ice cream from milk.
By far better use condensed milk, with enough water or milk to rinse out

the cans.

Ordinary fruit creams may be made with condensed milk at a cost of about
fifteen cents a quart, which, of course, is cheaper than ordinary milk and
crcam. The cream for Philadelphia Ice Cream should be rather rich, but
not double cream.

Wide screens:
Stylized fonts OK
Larger type size
Open line height

Designing Responsively

Narrow margins Wider margins

General typography guidelines for small and large screens.

line strokes become too light or extra flourishes become little blobs.
Consider also that small screens may be connecting over cellular, so tak-
ing advantage of locally available fonts may be better for performance
than requiring a web font to download. If a strict brand identity requires
font consistency on all devices, be sure to choose a font face that works
well at all sizes. If that is not a concern, consider using a web font only on
larger screens. We strive to serve the same design to all devices, but as with
everything else in web design, flexibility is important.

Font size

Varying viewport widths can wreak havoc on line lengths. You may find
that you need to increase the font size of text elements for wider viewports
to maintain a line length of between 45 and 75 characters. It also makes it
easier to read from the distance users typically sit from their large screens.
Conversely, you could use em-based media queries so that the layout stays
proportional to the font size. With em-based queries, line lengths stay
consistent.

Line height

Line height is another measurement that you may want to tweak as
screens get larger. On average, line height should be about 1.5 (using a
number value for the 1ine-height property); however, slightly tighter line
spacing (1.2 to 1.5) is easier to read with the shorter line lengths on small
screens. Large screens, where the type is also likely to be larger, can handle
more open line heights (14 to 1.6).

Margins
On small screens, make the most of the available space by keeping left

and right margins on the main column to a minimum (2—4%). As screens
get larger, you will likely need to increase side margins to keep the line

Variable Fonts

In late 2016, OpenType released a
new font technology called OpenType
Font Variations, known less formally
as “variable fonts.” You can change
the weight, width, style (italic), slant,
and optical size of a variable font by
using font-* style properties. The
marvel of this technology is that you
can deliver one font file (that’s just
one call to the server) and stretch and
manipulate it to suit many purposes,
such as to make it narrower to
preserve height and line length on
small screens. Browser support for
variable fonts is due to start kicking
inin 2018. For more information, see
the article “Get Started with Variable
Fonts” by Richard Rutter at medium.
com/@clagnut/get-started-with-
variable-fonts-c055fd73ecd?7.

The axis-praxis.org site allows you
to play around with variable fonts
using sliders to adjust the weight and
other qualities. Note that you need a
browser that supports variable fonts
for it to work.

17. Responsive Web Design 503

Designing Responsively

Fluid Typography with
Viewport Units

To make the size of text proportional
to the size of the viewport, use the
viewport-percentage lengths, vw and
vh, for font-size. A vw (viewport
width) unit is equal to 1% of the
width of the viewport (or the “initial
containing block,” as it is called in
the specification). One vh is 1% of
the viewport height. The spec also
defines a vmin unit (the smaller of
vw or vh) and vmax (the larger of

vw or vh), but they are not as well
supported.

Browser support is pretty good with
the exception of IE9 and earlier and
support for vmin and vmax. There are
quite a few known bugs, so be sure
to check the Known Issues tab on the
CanlUse.com page for these values.

For an exploration of using viewport
units for text, read “Responsive Font
Size and Fluid Typography with vh
and vw” by Michael Riethmuller

at Smashing Magazine (www.
smashingmagazine.com/2016/05/
fluid-typography).

lengths under control and just to add some welcome whitespace to the
layout. Remember to specify margins above and below text elements in
em units so they stay proportional to the type.

Navigation

Navigation feels a little like the Holy Grail of Responsive Web Design. It
is critical to get it right. Because navigation at desktop widths has pretty
much been conquered, the real challenges come in re-creating our navigation
options on small screens. A number of successful patterns have emerged for
small screens, which I will briefly summarize here (FIGURE 17-11):

Top navigation

If your site has just a few navigation links, they may fit just fine in one or
two rows at the top of the screen.
Priority +

In this pattern, the most important navigation links appear in a line
across the top of the screen alongside a More link that exposes additional
options. The pros are that the primary links are in plain view, and the
number of links shown can increase as the device width increases. The
cons include the difficulty of determining which links are worthy of the
prime small-screen real estate.

Select menu

For a medium list of links, some sites use a select input form element.
Tapping the menu opens the list of options using the select menu UI of
the operating system, such as a scrolling list of links at the bottom of the
screen or on an overlay. The advantage is that it is compact, but on the
downside, forms aren’t typically used for navigation, and the menu may
be overlooked.

Link to footer menu

One straightforward approach places a Menu link at the top of the page
that links to the full navigation located at the bottom of the page. The risk
with this pattern is that it may be disorienting to users who suddenly find
themselves at the bottom of the scroll.

Accordion sub-navigation

When there are a lot of navigation choices with sub-navigation menus, the
small-screen solution becomes more challenging, particularly when you
can't hover to get more options as you can with a mouse. Accordions that
expand when you tap a small arrow icon are commonly used to reveal
and hide sub-navigation. They may even be nested several levels deep. To
avoid nesting navigation in accordion submenus, some sites simply link
to separate landing pages that contain a list of the sub-navigation for that
section.

504 Part lIl. CSS for Presentation

http://www.smashingmagazine.com/2016/05/fluid-typography
http://www.smashingmagazine.com/2016/05/fluid-typography
http://www.smashingmagazine.com/2016/05/fluid-typography

Designing Responsively

About MC Ea

Blog

FAQ

Jobs

Accordion sub-navigation

[) v

Top navigation Priority +
Blog Shop About Contact Shop Contact About MOREv Shop Contact
Shop Contact About Blog FAQ Jobs
@ tege
Select menu Link to footer menu
11- a good company =
Sho
[Menu options . n]& P
« Kitchen
| | « Bedroom
« Office
Done sh
op Contact
Contact
Menu options About
Blog About Blog
Shop Blog
About FAQ leo
Contact
Jobs

Overlay toggle (covers top of screen)

Shop

Contact

About

Blog

Push toggle (pushes content down)

Shop

Contact

About

Blog

o

Off-canvas/fly-in

Shop

Contact

About

Blog

FAQ

Jobs

FIGURE 17-11. Responsive navigation patterns.

MENU

oC

17. Responsive Web Design 505

Designing Responsively

Designing for Fingers

Keep in mind that people use their
fingers to get around on touch
devices, which these days include
smartphones, tablets, and even
desktop-sized screens like Microsoft
Surface and iPad Pro.

Links in navigation should be big
enough to easily target with thumbs
and fingertips. Apple requires 44
pixels for its apps, and that’s a good
ballpark to keep in mind for links on
web pages as well.

Another consideration for touch
devices is that there is no hover state.
Hovering has become the convention
for opening sub-navigation on web
pages on the desktop, but with

no mouse, that experience is very
different with touch. Most devices
open the submenu with a second
click. If you use hover in your
navigation and elsewhere on your
site, you’ll need to do thorough
device testing. Someday, we may be
able to write a media query to test
for hover, but in the meantime, either
avoid it or test the alternatives.

Areally great book about all of this
stuff is Josh Clark’s Designing for
Touch (A Book Apart).

Push and overlay toggles

In toggle navigation, the navigation is hidden but expands downward
when the menu link is tapped. It may push the main content down below
it (push toggle) or slide down in front of the content (overlay toggle).

Off-canvas/fly-in
This popular pattern puts the navigation in an off-screen panel to the
left or right of the main content that slides into view when you tap the
menu icon.

For a deeper dive into the pros and cons of navigation patterns, read Brad
Frost’s article “Responsive Navigation Patterns” (bradfrost.com/blog/web/
responsive-nav-patterns). Brad also includes examples of these patterns and
more on his Responsive Patterns page (bradfrost.github.io/this-is-responsive/
patterns.html).

For working examples of these patterns with the code used to create them,
see the “Adventures in Responsive Navigation” page assembled by Eric Arbé
at responsivenavigation.net.

Images

Images require special attention in responsive designs. Here is a quick run-
down of some of the key issues, most of which should sound familiar:

* Use responsive image markup techniques (covered in Chapter 7) to pro-
vide multiple versions of key images for various sizes and resolutions.

* Serve the smallest version as the default to prevent unnecessary data
downloads.

* Be sure that important image detail is not lost at smaller sizes. Consider
substituting a cropped version of the image for small screens.

* Avoid putting text in graphics, but if it is necessary, provide alternate ver-
sions with larger text for small screens.

Special Content

Without the luxury of wide-open, desktop viewports, some of our common
page elements pose challenges when it comes to fitting on smaller screens:

Forms

Forms often take a little finagling to fit the available space appropriately.
Flexbox is a great tool for adding flexibility and conditional wrapping to
form fields and their labels. A web search will turn up some fine tutorials.
Also make sure that your form is as efficient as possible, with no unneces-
sary fields, which is good advice for any screen size. Finally, consider that

506 Part lIl. CSS for Presentation

https://bradfrost.github.io/this-is-responsive/patterns.html
https://bradfrost.github.io/this-is-responsive/patterns.html

Designing Responsively

form inputs will be used with fingertips, not mouse pointers, so increase
the target size by adding ample padding or margins and by making labels

tappable to select an input.

Tables

One of the greatest challenges in small-screen design is how to deal with
large data tables. Not surprisingly, because there are many types of tables,
there are also many solutions. See the “The Trouble with Tables” sidebar

for more information and resources.

Interactive elements

A big embedded map may be great on a desktop view of a site, but it is
less useful when it is the size of a postage stamp. Consider whether some
interactive features should be substituted for other methods for perform-
ing the same task. In the case of the map, adding a link to a map can trig-
ger the device’s native mapping app to open, which is designed to provide
a better small-screen experience. Other interactive components, such as

carousels, can be adapted for smaller viewports.

The Trouble with Tables

Large tables, such as those shown back in FIGURE 8-1, can

be difficult to use on small-screen devices. By default, they are
shrunk to fit the screen width, rendering the text in the cells too
small to be read. Users can zoom in to read the cells, but then
only a few cells may be visible at a time, and it is difficult to
parse the organization of headings and columns.

Designers and developers have created a number of approaches
for making tables responsive. To be honest, using tables on
small devices is still relatively new, so right now what we're
seeing is a ot of experimentation and throwing solutions
against the wall to see what sticks. Most solutions involve some
advanced web development mojo (more than we can take on
with only a few chapters under your belt), but I do want you

to be familiar with responsive tables. There are three general
approaches: scrolling, stacking, and hiding.

For scrolling solutions, the table stays as wide as it needs to be,
and users can scroll to the right to see the columns that won't
fit. This can be accomplished with JavaScript or CSS alone. You
can even anchor the left column to the window so that it stays
put when the rest of the table scrolls.

Another approach is to stack up the entries in a long, narrow
scroll. Each entry repeats the headers, so the data is always
presented with the proper context. Again, you could do this with
JavaScript or CSS alone. The downside is that the list can end
up very long, and it makes it difficult to compare entries, but at
least all of the information is visible without horizontal scrolling.

You may also choose to hide certain columns of information
when the page first loads on small devices and give the user
the option to click to see the whole table or to toggle on and off
specific columns. That is a little more risky from an interaction
design perspective. Those columns just might not be seen at all.

CSS Tables and Flexbox are other options for making tabular
material responsive. The best approach entirely depends on the
type of data you're publishing and how the table is expected to
be used. If you are interested in learning more, | recommend the
following resources:

o “Accessible, Simple, Responsive Tables” by Davide Rizzo on
CSS-Tricks (css-tricks.com/accessible-simple-responsive-
tables/): A roundup of solutions using CSS tables.

e “CSS-only Responsive Tables” by David Bushell (dbushell.
com/2016/03/04/css-only-responsive-tables/): A CSS-only
scrolling approach using CSS shadows for improved usability.

* “Picking a Responsive Tables Solution” by Jason Grigsby
at Cloud Four (cloudfour.com/thinks/picking-responsive-
tables-solutiony).

* Responsive Tables by ZURB Studios (zurb.com/playground/
responsive-tables): A fixed-left-column scrolling solution
using JavaScript and CSS.

* Tablesaw by Filament Group (github.com/filamentgroup/

tablesaw): A group of JQuery (JavaScript) plug-ins for
creating a variety of responsive table effects.

17. Responsive Web Design 507

http://dbushell.com/2016/03/04/css-only-responsive-tables/
http://dbushell.com/2016/03/04/css-only-responsive-tables/
http://zurb.com/playground/responsive-tables
http://zurb.com/playground/responsive-tables

Designing Responsively

That should give you a feel for some of the aspects of a site that need special
attention in a responsive design. We covered content hierarchy, various lay-
out patterns, typography tweaks, responsive navigation patterns, and image
strategies, and addressed tables, forms, and interactive features. Id say that’s
enough lecturing. Now you’'ll get some hands-on time in EXERCISE 17-1.

EXERCISE 17-1. Making the bakery home page responsive

We've done a lot of work on the Black Goose Bakery site over the

last few chapters, but the resulting site works best on large screens.

In this exercise, we're going to back up a few steps and build it
again using a small-screen-first strategy, making changes to layout,
navigation, typography, and more at strategic breakpoints.

I've done the heavy lifting of writing the necessary styles for each
breakpoint, but | will talk you through each step and share the
reasoning for the changes. The starting style sheet (bakery-rwd.
css) as well as the finished style sheet (bakery-rwd-finished.css)
and the other files for the site are provided with the materials for
this chapter. The HTML file, bakery.html, hasn’t changed since we
added the container element to it in Chapter 16, CSS Layout
with Flexbox and Grid, and we will not need to edit it again.

Getting Started

Open the HTML file (bakery.html) in a browser with a Responsive
View (see the previous sidebar, “How Wide Is the Viewport?”)

so you can expand the viewport window and watch the changing
pixel dimensions. FIGURE 17-12 shows the page at 320 pixels
wide with the default, narrow-screen styles that will be the starting
point for this design.

The content of the page is the same as in previous chapters, but if
you worked on the exercises in Chapter 16, you'll notice that I've
changed a few styles to make the initial layout suitable for small
screens. Allow me to point out the characteristics of this baseline
design:

* Layout: The page has a one-column layout for small screens.
There are no borders around the main text area, and the Hours
section has a scalloped edge on the top instead of the side. That
maintains the look and feel, but is more appropriate when the
sections are stacked.

* Navigation: The navigation menu, which was created with
Flexbox, couldn’t flex small enough to fit across a small screen.
To make it fit, | turned on wrapping (flex-wrap: wrap;)and
set the width of each 11 to 50% so there would be two on each
row. | also made it so they can both grow and shrink as needed
(flex: 1 1 50%).

* Conditional header text: The tagline was taking up a lot
of vertical space, and | decided it wasn't critical. | hid the
paragraph (display: none;)and | will make it visible again
when there is more room.

* Typography: On small screens, | decided to use a legible sans-
serif font for the text and not to employ my web font because it
is likely to be difficult to read at small sizes.

* Images: | set the img elements for the bread and muffin images
todisplay: block so they have the full width of the viewport
to themselves with no text sneaking in next to them. Setting the
side margins to auto keeps them centered horizontally.

¢ Miscellaneous:

— The award appears at the bottom of the page because there
is not enough space for it to be positioned at the top.

— | highlighted a span from the 45th to 75th characters to reveal
when the line lengths get too long.

MENU

ABOUT

—UCUldLE

aade from scratch
each aay. stop by to see our
seasonal muffin flavors!

LEARN MORE ABOUT HOW WE MAKE OUR
MUFFINS...

Fresh from the Oven
Hours

BREADS
MONDAY: 5am to 3pm

TUESDAY: 5am to 3pm
WEDNESDAY: 5am to 3pm
THURSDAY: 5am to 3pm
FRIDAY: 5am to 3pm

SATURDAY: 6am to 4pm

SUNDAY: 6am to 4pm

Our breads are made daily from
highest-quality whole grain flour,
water, salt, and yeast or sourdough
starter. Simply and naturally, and
never any preservatives " "~ig
key to achieving t*

All content copyright ©® 2017, Black Goose

The small-screen design is our starting point.

508 Part lIl. CSS for Presentation

Fixing the Navigation

Now we can start tailoring the design for other screen sizes. Using
a Responsive View tool, | can resize the viewport and get an instant
readout of the dimensions of the window. Give it a try on your
browser. Keep making it wider, and you’ll see that some things
look OK, and some things start looking awkward pretty quickly.

One thing that looks awkward to me right away is the stacked
navigation at the top. I'd like it to switch to one centered line

as soon as there is room, which to my eye happens when the
viewport is 400 pixels wide (FIGURE 17-13).

Are you ready to write your first media query? Open the style sheet
(bakery-rwd.css) in a text editor. Remember that media queries
need to come after other rules for the same declaration, so to keep
this exercise simple, we'll add them at the end of the style sheet,
before </style>. Add this query as you see it here. Remember to
make sure you have the right number of nesting curly brackets:

@media screen and (min-width: 400px) {
nav ul 1i {
flex: none;
}

nav ul {
justify-content: center;

}

This tells the browser that when the page is on a screen and the
viewport is 400 pixels or wider, set the “flex” of menu list items to
“none.” The none keyword is equivalent to flex: 0 0 auto;, so
the items are not allowed to grow or shrink and will be sized based
on their content. I've centered the flexbox container by setting
justify-content: center.

Save the style sheet and reload the page in the browser. Try
resizing the viewport to see how it works at wider sizes. | think this

NEWS

CONTACT

Designing Responsively

centered arrangement will work for even the widest of screens, so
navigation is all set. If you had navigation with additional elements
such as an inline logo and a search box, you might find it best to
create a few different arrangements over a number of breakpoints.

Floating Images

As | continue to make the viewport gradually wider, | notice that
the main images start looking very lonely on a line alone, and that
there is room to start wrapping text around them again at about
480 pixels wide. Let’s take care of that awkward whitespace by
floating the images to the left once the screen reaches 480 pixels
(FIGURE 17-14):

@media screen and (min-width: 480px) {
main img {
float: left;
margin: 0 lem lem O;

}
}

NOTE: If you like, you can include the CSS shapes from
Chapter 15, Floating and Positioning, for a more interesting
text wrap. I've omitted them here for brevity and because of
limited browser support.

Text and Typography

Once the screen gets to be about 600 pixels wide, | feel like there
is enough room to introduce some embellishments. There is room
for the tagline in the header, so I'll set that to display again.

Now some attention to typography. I like the Stint Ultra Expanded
web font, but it isn’t key to the company’s brand, so | omitted it on
the narrow layout because of line length issues. At this breakpoint,
| can begin using it because I know it will be more legible and
result in comfortable line lengths. I've also loosened up the line
height a little. I'll take advantage of the extra space to add a e

Fresh from the Oven Fresh from the Oven

BREADS BREADS

Our breads are made
daily from highest-
quality whole grain
flour, water, salt, and
yeast or sourdough
starter. Simply and
naturally, and never
any preservatives.
Patience is key to
achieving the proper
level of fermentation
and haking each loaf to perfection. Available in whole
arain. sourdouah. olive loaf. classic rve. and notato-

Our breads are made dally from highest-quality whole
grain flour, water, salt, and yeast or sourdough starter.

A breakpoint is needed to fill
in the awkward space around
the image.

At 480 pixels wide, the image
is floated to the left.

The navigation started to look awkward, so |
add a breakpoint at 400 pixels to switch it to one line.

The images float left once there is enough
width to accommodate wrapping text.

17. Responsive Web Design 509

Designing Responsively

EXERCISE 17-1. Continued

Fresh from the Oven

BREADS

S -

MUFFINS

-

This medium size
layout is well suited for tablet-sized
devices.

rounded border around the main text area to bring it closer to the original brand identity
for the site. The result is an enhanced one-column layout that is well suited for tablet-sized
devices (FIGURE 17-15).

Here is the media query for the 600-pixel breakpoint. Add this to the bottom of the style
sheet after the other two queries:

@media screen and (min-width: 600px) {
header p {
display: block;
margin-top: -1.5em;
font-family: Georgia, serif;
font-style: italic;
font-size: 1.2em;

main, h2, h3 {

font-family: 'Stint Ultra Expanded', Georgia, serif;
}
h2, h3 {

font-weight: bold;

main {
line-height: 1.8em;
padding: lem;
border: double 4px #EADDC4;
border-radius: 25px;
margin: 2.5%;

}

}

Multicolumn Layout

As | continue to make the viewport wider and pay attention to the yellow highlighted span
of characters, | see that the text line is growing longer than 75 characters. | could increase
the font size or the margins, but I think this is a good point to introduce a second column
to the layout. If you aren’t targeting a specific device, the exact breakpoint is subjective.
I've chosen 940 pixels as the point above which the page gets a columned layout.

I've simply taken the grid layout styles from the previous chapter and reapplied them
here. On the aside element, | moved the scalloped background graphic to the left edge.
In addition, | set a maximum width of 1200px on the container and set its side margins to
auto, so if the browser window is wider than 1,200 pixels, the layout will stay a fixed width
and get centered in the viewport. Finally, | absolutely positioned the award graphic at the
top of the page now that there’s enough room (FIGURE 17-16).

Add this final media query at the end of the style sheet. You can copy and paste them
from the final exercise in Chapter 16 (that’s what | did) and make a few tweaks to the
#container and #aside rules as shown:

@media screen and (min-width: 940px) {
#container {
display: grid;
grid-template-rows: auto min-height Sem;
grid-template-columns: minmax(25em, 1fr) 16em;
grid-template-areas:
"banner banner"
"main hours"
"footer footer";
max-width: 1200px;

510 PartlIl. CSS for Presentation

Designing Responsively

margin: 0 auto;
position: relative;

}

header {
grid-area: banner;

main {
grid-area: main;

}

aside {
grid-area: hours;
background: url(images/scallop.png) repeat-y left top;
background-color: #F6F3ED;
padding: 1em;
padding-left: 45px;

footer {
grid-area: footer;

}

#award {
position: absolute;
top: 30px;
left: s50px;

}

}

And we’re donel! Is this the most sophisticated responsive site ever? Nope. Is there even
more we could do to improve the design at various screen sizes? Certainly! But now

you should have a feel for what it’s like to start with a small-screen design and make
changes that optimize for increasingly larger sizes. Consider it a modest first step to future
adventures in RWD.

M 00sE vy

wou love at Black Goose Bistro..

Fresh from the Oven

BREADS

&

SUNDAY: 6am to 4pm

MUFFINS
e T

N 'M

The two-column grid layout is appropriate for viewports over 940
pixels. On very wide screens, as shown here, the container stops expanding at 1,200
pixels wide and is centered horizontally.

NOTE

The highlighted background on the
length span should be turned off before
you publish, but I've left it visible in the
figures so you can see how our line
length is faring across layouts.

17. Responsive Web Design 511

A Few Words About Testing

Building a Device Lab

If you want to set up your own device
lab, I recommend reading the primer
Building a Device Lab by Destiny
Montague and Lara Hogan (Five
Simple Steps Publishing). The book is
a summary of everything the authors
learned while creating a killer device
lab for Etsy. It is available for free at
buildingadevicelab.com.

A FEW WORDS ABOUT TESTING

In the previous exercise, we relied on the Responsive View in a modern
browser to make decisions about style changes at various sizes, but although
it’s a handy tool for creating an initial design, much more testing is required
before the design can be considered ready for final launch. That is even more
critical for sites that include features that rely on JavaScript or server-side
functionality.

There are three general options for testing sites: real devices, emulators, and
third-party services. We'll look at each in this section.

Real Devices

There is really no substitute for testing a site on a variety of real devices and
operating systems. Beyond just seeing how the site looks, testing on real
devices shows you how your site performs. How fast does it load? Are the
links easy to tap? Do all the interactive features work smoothly? Do they
work at all?

Web development companies may have a device lab comprising iPhones and
iPads of various sizes, Android smartphones and tablets of various sizes, and
Macs and PCs with recent operating systems (Windows and Linux) that can
be used by designers and developers for testing sites (FIGURE 17-17). The size
of the device lab depends on the size of the budget, of course (electronic
devices aren’t cheap!).

FIGURE 17-17. The device lab at Filament Group in Boston, Massachusetts.

If you don't have the luxury of working at a big company with a big lab, there
are alternatives:

* Ifyou live in a big city, you may be near a device lab that is open for public
use. Check the opendevicelab.com site to see if there is one near you.

512 PartllIl. CSS for Presentation

* You can build your own lab with a collection of used devices. At mini-
mum, you should have access to an iPhone, Android phone, iPad, 7" tablet
(like iPad Mini), and computers running macOS and Microsoft Windows.
The good news is that you generally don't need a data plan for every
device because you can test over WiFi.

* If buying devices is not feasible, you can ask friends and coworkers to bor-
row their phones and tablets briefly. Asking permission at a mobile retail
store to load web pages on their devices is not unheard of.

If you do have multiple real devices for testing, using a synchronization tool
makes the process a whole lot smoother. Software like BrowserSync (browser-
sync.io) and Ghostlab (www.vanamco.com/ghostlab/) runs on your computer
and beams whatever is on your screen to all your devices simultaneously so
you don’t need to load the page on each one individually: It’s like magic!

Emulators

If a particular device is out of your reach, you could use an emulator, a desk-
top application that emulates mobile device hardware and operating systems.
The emulator presents a window that shows exactly how your site would
behave on that particular device (FIGURE 17-18). Emulators require a lot of
space on your computer and they can be buggy, but it is certainly better than
not testing on that device at all.

A good starting point for exploring emulators is Maximiliano Firtman’s
“Mobile Emulators & Simulators: The Ultimate Guide” (www.mobilexweb.
com/emulators).

[Ep—

Pery
7 Select Hardware

s 5X Fresh from the Oven

BREADS

- -
The Android Emulator lets you set up The Nexus 5X The Bakery page

a wide variety of phones, televisions, emulator displays an viewed on the Nexus
wearables, and tablets for testing. image of the device at 5X emulator.

| chose a Nexus 5X. actual size. All of the

buttons work as they
would on the phone.

A Few Words About Testing

Examples of the

Android Emulator (download at
developer.android.com/studio/index.
html).

17. Responsive Web Design 513

http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators

More RWD Resources

Third-Party Services

Another option for testing your site on over 1,000 devices is to subscribe
to a service like BrowserStack (browserstack.com) or CrossBrowserTesting
(crossbrowsertesting.com). For a monthly fee, you get access to a huge variety
of device simulators (FIGURE 17-19). There are many such services available,
some of which are free or offer free trials. They don’t give you the same
insights as testing on actual devices, but it is another better-than-nothing
alternative.

O srowserstack Bnasien

Rapidly test your website for cross browser compatibllity across 1100+ browsers.

16016 cone. @
s -
® @ » L)

- Bl - £l

BrowserStack.com CrossBrowserTesting.com

Screenshots generated by BrowserStack and CrossBrowserTesting
(using free trial tools). Notice the variation in how the bakery page displays. This is why
we test!

MORE RWD RESOURCES

We've covered the mechanics of using fluid layouts, flexible images, and
media queries to make a page that is usable across a wide range of screen
sizes. We've looked at the design concerns and some common responsive pat-
terns for layout, navigation, typography, and images. You even got a chance to
try out creating a responsive page on your own. But this is really only the tip
of the iceberg, and I encourage you to continue learning about RWD, particu-
larly if you are considering web design or development as a career. Following
is a list of RWD resources that I've found helpful and should point you in
the right direction.

Books
Responsive Web Design, 2e, by Ethan Marcotte (A Book Apart)

This book is required reading. Ethan goes into much greater detail than I
was able to here on how to calculate flexible grids and how to use media
queries. Plus, it’s just plain fun to read.

514 Part lll. CSS for Presentation

Learning Responsive Web Design: A Beginner’s Guide by Clarissa Peterson
(O’Reilly)
Clarissa provides a comprehensive overview of all aspects of responsive
design, from detailed code examples to broad strategies on workflow and
mobile-first design.

Smashing Book #35: Real-Life Responsive Web Design, various authors
(Smashing Magazine)
A collection of practical techniques and strategies from prominent web
designers.
Atomic Design by Brad Frost (self-published)
Brad describes his modular approach to RWD, which has become quite
popular for large site development.
Responsive Design Workflow by Stephen Hay (New Riders)

Stephen Hay introduces his “design in the browser” method to creating
responsive sites. This book is jam-packed with suggestions on how to
approach web design and development.

Implementing Responsive Design by Tim Kadlec (New Riders)

Tim Kadlec is a leader in the mobile web design community, and his book
is a comprehensive guide to designing and building a responsive site.

Online Resources

Responsive Web Design Is... (responsivedesign.is)

A collection of articles and podcasts about web design. You can also sign
up for the “RWD Weekly” newsletter and keep your finger on the pulse of
RWD. The site is a side project of Justin Avery and Simple Things.

Responsive Resources (bradfrost.github.io/this-is-responsive/resources.html)

For one-stop shopping for everything you could possibly want to know
about RWD, look no further than Brad Frost’s Responsive Resources. He
has gathered hundreds of links to resources related to strategy, design
tools, layout, media queries, typography, images, components, develop-
ment, testing, content management systems, email, tutorials, and more.
Seriously, there is enough here to keep you busy for months.

Media Queries (mediaqueri.es)

A gallery of exceptional examples of responsive websites curated by
Eivind Uggedal.

More RWD Resources

NOTE

Most of these titles were written before
CSS Grid Layout became a viable option.
Keep in mind that you have advanced
tools for flexible layouts not mentioned
in these books.

17. Responsive Web Design 515

https://justinavery.me/
https://simplethin.gs/
https://bradfrost.github.io/this-is-responsive/resources.html

Test Yourself

TEST YOURSELF

Here we are at the end of another chapter, so you know what that means...
quiz time! Get the answers in Appendix A if youre stumped.

1. What makes a responsive site different from a mobile (m-dot) site?

2. What does this do?

<meta name="viewport" content="width=device-width, initial-scale=1">

3. How do you make sure an image gets smaller when its container gets
smaller in the layout?

4. What does this do?

@media screen and (min-width: 60em) {
body {
margin: 0 10%;
}
}

5. What are some strategies for creating a layout that adjusts to the available
width of the viewport?

6. What is the advantage of using ems as a measurement in media queries?

7. List three ways in which a media query may be used.

8. Name three tweaks you may make to typography to make it work well
on small screens.

9. How might you handle navigation with a lot of submenus on a small
screen?

10. List three options for testing websites on multiple devices.

516 Part lIl. CSS for Presentation

TRANSITIONS,
RANSFORMS, AND
ANIMATION

We've seen CSS used for visual effects like rounded corners, color gradients,
and drop shadows that previously had to be created with graphics. In this
chapter, we’ll look at some CSS3 properties for producing animated interac-
tive effects that were previously possible only with JavaScript or Flash.

We'll start with CSS Transitions, a nifty way to make style changes fade
smoothly from one to another. Then we’ll discuss CSS Transforms for repo-
sitioning, scaling, rotating, and skewing elements and look at how you can
animate them with transitions. I'm going to close out the chapter with brief
introductions to 3-D Transforms and CSS Animation, which are important to
know about but are too vast a topic to cover here, so I'll give you just a taste.

The problem with this chapter is that animation and time-based effects don’t
work on paper, so [can’t show them off right here. I did the next best thing,
though, and made the source code for the figures available in the materials for
this chapter (learningwebdesign.com/5e/materials) in a folder called figures.
Just open the file in your browser.

EASE-Y DOES IT (CSS TRANSITIONS)

Picture, if you will, a link in a navigation menu that changes from blue to red
when the mouse hovers over it. The background is blue...mouse passes over
it...BAM! Red! It goes from state to state instantly, with no states in between.
Now imagine putting your mouse over the link and having the background
gradually change from blue to red, passing through several shades of purple
on the way. It’s smoooooth. And when you remove the mouse, it fades back
down to blue again.

CHAPTER

18

IN THIS CHAPTER
Creating smooth transitions

Moving, rotating, and scaling
elements

Combining transitions and
transforms

A few words about 3-D
transforms

Keyframe animations

517

http://www.learningwebdesign.com/5e/materials

Ease-y Does It (CSS Transitions)

CSS Transition Support

The good news is that all modern
browsers released since 2013 support
CSS transition properties without

the need for prefixes. There are a few
holes in support you should know
about:

* Most notably, Internet Explorer
versions 9 and earlier do not
support transitions and ignore
transition properties entirely.

e Chrome and Safari versions
released between 2010 and 2013
support transitions with the
-webkit- prefix. Later versions do
not require a prefix.

¢ On mobile, iOS versions 3.1-6.0
(2010-2013) and Android versions
2.1-4.3 (2009-2013) require the
-webkit- prefix. Later versions do
not require prefixes.

* Firefox versions released between
2011 and 2012 require the -moz-
prefix, but they are nearly extinct
as | write this.

As always, check your own server’s
statistics (be sure to pay attention to
mobile use) to see which browsers
you need to support, and check
CanlUse.com for support and bug
details.

In the examples throughout this
chapter, I use only the standard
(non-prefixed) properties. If you
need to support browsers that
require prefixes, | suggest using
Autoprefixer, which is discussed in
Chapter 19, More CSS Techniques.
And remember, when using prefixed
properties, always include the non-
prefixed version last for forward
compatibility with supporting
browsers.

That’s what CSS Transitions do. They smooth out otherwise abrupt changes
to property values between two states over time by filling in the frames
in between. Animators call that tweening. When used with reserve, CSS
Transitions can add sophistication and polish to your interfaces and even
improve usability.

CSS Transitions were originally developed by the WebKit team for the Safari
browser, and they are a Working Draft at the W3C (see Note). Browser sup-
port for Transitions is excellent (see the “CSS Transition Support” sidebar), so
there is no reason not to use them in your designs, particularly if you treat
them as an enhancement. For example, on the rare non-supporting browser
(P’'m looking at you, old IE), our link snapping directly from blue to red is
not a big deal.

NOTE

You can read CSS Transitions Module for yourself at www.w3.org/TR/css-transitions-1/.

Transition Basics

Transitions are a lot of fun, so let’s give them a whirl. When applying a
transition, you have a few decisions to make, each of which is set with a CSS

property:
* Which CSS property to change (transition-property) (Required)
* How long it should take (transition-duration) (Required)

* The manner in which the transition accelerates (transition-timing-
function)

* Whether there should be a pause before it starts (transition-delay)

Transitions require a beginning state and an end state. The element as it
appears when it first loads is the beginning state. The end state needs to be
triggered by a state change such as :hover, :focus, or :active, which is what
we'll be using for the examples in this chapter. You could use JavaScript to
change the element (such as adding a class attribute) and use that as a tran-
sition trigger as well.

Let’s put that all together with a simple example. Here is that blue-to-red link
you imagined earlier (FIGURE 18-1). There’s nothing special about the markup.
I added a class so I could be specific about which links receive transitions.

The transition properties are applied to the object that will be transitioned—
in this case, the a element in its normal state. You'll see them in the set of other
declarations for . smooth, like padding and background-color. I've changed the
background color of the link to red by declaring the background-color for the
:hover state (and :focus too, in case someone is tabbing through links with
a keyboard).

518 Part lIl. CSS for Presentation

Ease-y Does It (CSS Transitions)

THE MARKUP

awesomesauce

.smooth {
display: block;
text-decoration:none;
text-align: center;
padding: lem 2em;
width: 10em;

border-radius: 1.5em; @0'35
color: #fff;

background-color: mediumblue;
transition-property: background-color;

transition-duration: 0.3s;
}

.smooth:hover, .smooth:focus {
background-color: red;

} awemme-uue

Specifying the property

The background color
of this link gradually fades from blue
to red over .3 seconds when awesorme-

Values: property-name | all | none ssuicea transition is applied.

Default: all

Appliesto: all elements, :before and :after pseudo-elements

Inherits: no

transition-property identifies the CSS property that is changing and that
you want to transition smoothly. In our example, it’s the background-color.
You can also change the foreground color, borders, dimensions, font- and
text-related attributes, and many more. TABLE 18-1 lists the animatable CSS

properties as of this writing. The general rule is that if its value is a color,
length, or number, that property can be a transition property:.

How long should it take?

Values: time
Default: 0s
Appliesto: all elements, :before and :after pseudo-elements

Inherits: no

transition-duration sets the amount of time it takes for the animation to
complete in seconds (s) or milliseconds (ms). I've chosen .3 seconds, which is
just enough to notice something happened but not so long that the transition
feels sluggish or slows the user down. There is no correct duration, of course,
but I've found that .2s seems to be a popular transition time for Ul elements.
Experiment to find the duration that makes sense for your application.

18. Transitions, Transforms, and Animation 519

Ease-y Does It (CSS Transitions)

Animatable CSS properties

Backgrounds

background-color

background-position

Borders and outlines

border-bottom-color
border-bottom-width
border-left-color
border-left-width
border-right-color
border-right-width
border-top-color
border-top-width
border-spacing
outline-color

outline-width

Color and opacity

color
opacity

visibility

Font and text

font-size
font-weight
letter-spacing
line-height
text-indent
text-shadow
word-spacing

vertical-align

Element box measurements

height
width
max-height
max-width
min-height
min-width

margin-bottom

Continues...

Timing Functions

Values: ease | linear | ease-in | ease-out | ease-in-out | step-start | step-end
| steps | cubic-bezier (#,#,#,#)

Default: ease

Appliesto: all elements, :before and :after pseudo-elements

Inherits: no

The property and the duration are required and form the foundation of a
transition, but you can refine it further. There are a number of ways a tran-
sition can roll out over time. For example, it could start out fast and then
slow down, start out slow and speed up, or stay the same speed all the way

through, just to name a few possibilities. I think of it as the transition “style,”
but in the spec, it is known as the timing function or easing function.

The timing function you choose can have a big impact on the feel and believ-
ability of the animation, so if you plan on using transitions and CSS anima-
tions, it is a good idea to get familiar with the options.

If T set the transition-timing-function to ease-in-out, the transition will
start out slow, then speed up, then slow down again as it comes to the end
state.

.smooth {
transition-property: background-color;
transition-duration: 0.3s;

transition-timing-function: ease-in-out;

}

The transition-timing-function property takes one of the following key-
word values:
ease
Starts slowly, accelerates quickly, and then slows down at the end. This is
the default value and works just fine for most short transitions.
linear
Stays consistent from the transition’s beginning to end. Because it is so
consistent, some say it has a mechanical feeling,
ease-in
Starts slowly, then speeds up.
ease-out
Starts out fast, then slows down.
ease-in-out

Starts slowly, speeds up, and then slows down again at the very end. It is
similar to ease, but with less pronounced acceleration in the middle.

520 PartlIl. CSS for Presentation

cubic-bezier(x1,y1,x2,y2)

The acceleration of a transition can be plotted with a curve called a Bezier
curve. The steep parts of the curve indicate a fast rate of change, and the
flat parts indicate a slow rate of change. FIGURE 18-2 shows the Bezier
curves that represent the function keywords as well as a custom curve [
created. You can see that the ease curve is a tiny bit flat in the beginning,
gets very steep (fast), then ends flat (slow). The linear keyword, on the
other hand, moves at a consistent rate for the whole transition.

You can get the feel of your animation just right by creating a custom
curve. The site Cubic-Bezier.com is a great tool for playing around with
transition timing and generating the resulting code. The four numbers in
the value represent the x and y positions of the start and end Bezier curve
handles (the pink and blue dots in FIGURE 18-2).

cubic-bezier(.12,.88,.87,.4)

Preview & compare
Suration: CT

Library

second

ease

Tip: Right ciic
which you can shar

ve and select "Copy Link Address” to get a permalink to it

Examples of Bezier curves from Cubic-Bezier.com. On the left is my

custom curve that starts fast, slows down, and ends fast.

steps(#, start|end)

Divides the transitions into a number of steps as defined by a stepping
function. The first value is the number of steps, and the start and end
keywords define whether the change in state happens at the begin-
ning (start) or end of each step. Step animation is especially useful for
keyframe animation with sprite images. For a better explanation and
examples, I recommend the article “Using Multi-Step Animations and
Transitions,” by Geoff Graham on CSS-Tricks (css-tricks.com/using-multi-
step-animations-transitions/).

step-start

Changes states in one step, at the beginning of the duration time (the
same as steps(1,start)). The result is a sudden state change, the same as
if no transition had been applied at all.

step-end

Changes states in one step, at the end of the duration time (the same as
steps(1,end)).

Ease-y Does It (CSS Transitions)

Continued.

margin-left
margin-top
padding-bottom
padding-left
padding-right
padding-top

Position

top

right
bottom
left
z-index
clip-path
Transforms

(not in the spec as of this writing,
but supported)

transform

transform-origin

18. Transitions, Transforms, and Animation 521

Ease-y Does It (CSS Transitions)

NOTE

The W3C has broken out the timing func-
tions into their own spec so they are eas-
fer to share among modules. It is avail-
able at www.w3.org/TR/css-timing-1/.

It’s difficult to show the various options on a still page, but I have put together
a little demo, which is illustrated in FIGURE 18-3 and available in the figures
folder with the materials for this chapter. The width of each labeled element
(white with a blue border) transitions over the course of 4 seconds when
you hover over the green box. They all arrive at their full width at exactly
the same time, but they get there in different manners. The image shown in
FIGURE 18-3 was taken at the 2-second mark, halfway through the duration
of the transition.

e

completion

progression

ease linear ease-in ease-out
! ! —C) !
! ! ! ! Q
I I I I 1
I I I I 1
: ‘ : : |
‘ : : |
: ! : : :
1
! ! ! —
ease-in-out step(4, end) step-start step-end
ease
linear
ease-in
ease-out
ease-in-out
steps(4,end)
step-start
step-end

The width of the white boxes is set to transition from 0 to 100% width over 4 seconds.
This screenshot shows the progress after 2 seconds (50%) for each timing function.

In this transition-timing-function demo, the elements reach full
width at the same time but vary in the manner in which they get there. If you'd like to
see itin action, the chi8_figures.html file is available with the materials for this chapter.

522 Part lIl. CSS for Presentation

Setting a Delay

Values: time
Default: 0s
Appliesto: allelements, :before and :after pseudo-elements

Inherits: no

The transition-delay property, as you might guess, delays the start of the
animation by a specified amount of time. In the following example, the back-
ground color transition starts .2 seconds after the pointer moves over the link.

.smooth {

transition-property: background-color;
transition-duration: 0.3s;
transition-timing-function: ease-in-out;
transition-delay: 0.2s;

The Shorthand transition Property

Thankfully, the authors of the CSS3 spec had the good sense to give us the
shorthand transition property to combine all of these properties into one
declaration. You've seen this sort of thing with the shorthand border property.
Here is the syntax:

transition: property duration timing-function delay;
The values for each of the transition-* properties are listed out, separated
by character spaces. The order isnt important as long as the duration (which

is required) appears before delay (which is optional). If you provide only one
time value, it will be assumed to be the duration.

Using the blue-to-red link example, we could combine the four transition
properties we've applied so far into this one line:
.smooth {

transition: background-color 0.3s ease-in-out 0.2s;

}

Definitely an improvement.

Applying Multiple Transitions

So far, we've changed only one property at a time, but it is possible to tran-
sition several properties at once. Let’s go back to the “awesomesauce” link
example. This time, in addition to changing from blue to red, Td like the
letter-spacing to increase a bit. I also want the text color to change to black,

Ease-y Does It (CSS Transitions)

18. Transitions, Transforms, and Animation 523

Ease-y Does It (CSS Transitions)

but more slowly than the other animations. FIGURE 18-4 attempts to show
these transitions on this static page.

background-color
letter-spacing

awesnmesa uce

a 'wesomesauce

color

2s

The color, background-color, and letter-spacing change at
different paces.

One way to do this is to list all of the values for each property separated by
commas, as shown in this example:

.smooth {

transition-property: background-color, color, letter-spacing;
transition-duration: 0.3s, 2s, 0.3s;
transition-timing-function: ease-out, ease-in, ease-out;

}

.smooth:hover, .smooth:focus {
background-color: red;
letter-spacing: 3px;
color: black;

}

The values are matched up according to their positions in the list. For
example, the transition on the color property (second in the list) has a dura-
tion of 2s and uses the ease-in timing function. If one list has fewer values
than the others, the browser repeats the values in the list, starting over at the
beginning. In the previous example, if I had omitted the third value (.3s) for
transition-duration, the browser would loop back to the beginning of the
list and use the first value (.3s) for letter-spacing. In this case, the effect
would be the same.

You can line up values for the shorthand transition property as well. The
same set of styles we just saw could also be written as follows:

524 Part lIl. CSS for Presentation

.smooth {

transition: background-color 0.3s ease-out,
color 2s ease-in,
letter-spacing 0.3s ease-out;

A Transition for All Occasions

But what if you just want to add a little bit of smoothness to all your state
changes, regardless of which property might change? For cases when you
want the same duration, timing function, and delay to apply to all transitions
that might occur on an element, use the all value for transition-property.
In the following example, 've specified that any property that might change
for the .smooth element should last .2 seconds and animate via the ease-in-
out function.

.smooth {

transition: all 0.2s ease-in-out;

}

For user interface changes, a short, subtle transition is often all you need for
all your transitions, so the all value will come in handy. Well, that wraps up
our lesson on CSS3 Transitions. Now you give it a try in EXERCISE 18-1.

EXERCISE 18-1. Trying out transitions

In this exercise, we're going to create the rollover and active states for a menu link
(FIGURE 18-5) with animated transitions. I've put together a starter document
(exercise_18-1.html) for you in the materials folder for this chapter at learningwebdesign.
com/5e/materials. Be sure you are using an up-to-date desktop browser to view your
work (see Note).

Normal state.

MeEn Women KIGS SALE
:hover, : focus
The background and border colors change.

YEn women NIGS: SALE
:active
Link appears to be pressed down.

Men Wwomen Kias SALE

In this exercise, we’'ll create transitions between these link states.

Ease-y Does It (CSS Transitions)

NOTE

If you're using a touch device for this
exercise, you'll miss out on this effect
because there is no hover state on touch
screens. You may see the hover state
with a single tap. Transitions triggered
by a click/tap or when the page loads
will work on all devices, but they are not
covered here.

©

18. Transitions, Transforms, and Animation 525

http://www.learningwebdesign.com/
http://www.learningwebdesign.com/

Ease-y Does It (CSS Transitions)

EXERCISE 18-1. Continued

First, take a look at the styles that are already applied. The list
has been converted to a horizontal menu with Flexbox. The a
element has been set to display as a block element, underlines

are turned off, dimensions and padding are applied, and the color,

background color, and border are established. | used the box-

shadow property to make it look as though the links are floating off

the page.

1. Now we’ll define the styles for the hover and focus states. When

the user puts the pointer over or tabs to the link, make the
background color change to green (#c6de89) and the border
color change to a darker shade of green (#a3c058).

a:hover, a:focus {
background-color: #c6de89;
border-color: #a3c058;

}

2. While the user clicks the link (:active), make it move down by

3 pixels as though it is being pressed. Do this by setting the a

element’s position to relative and its top position to Opx, and

then change the value of the top property for the active state.
This moves the link 3 pixels away from the top edge (in other
words, down).

NOTE: Setting the top to Opx in the initial state is for working
around a bug that arises when transitioning the top, bottom,
left, and right properties.

a {

position: relative;
top: Opx;

a:active {
top: 3px;

3. Logically, if the button were pressed down, there would be less

room for the shadow, so we’'ll reduce the box-shadow distance

as well.
a:active {
top: 3px;

box-shadow: 0 1px 2px rgba(0,0,0,.5);

}

4. Save the file and give it a try in the browser. The links should
turn green and move down when you click or tap them. I'd
say it's pretty good just like that. Now we can enhance the
experience by adding some smooth transitions.

5. Make the background and border color transition ease in over
0.2 seconds, and see how that changes the experience of using
the menu. I'm using the shorthand transition property to
keep the code simple. I'm also using the default ease timing
function at first so we can omit that value.

I’'m not using any vendor prefixes here because modern

browsers don’t need them. If you wanted to support mobile
browsers released in 2013 and earlier, you could include
the -webkit- prefixed version as well, but since this isn’t
production code, we're fine without it.

a {
transition: background-color 0.2s,
border-color 0.2s;
¥

. Save your document, open it in the browser, and try moving

your mouse over the links. Do you agree it feels nicer? Now I'd
like you to try some other duration values. See if you can still see
the difference with a 0.1s duration. Now try a full second (1s).

I think you'll find that 1 second is surprisingly slow. Try setting

it to several seconds and trying out various timing-function
values (just add them after the duration times). Can you tell

the difference? Do you have a preference? When you are done
experimenting, set the duration back to 0.2 seconds.

. Now let’s see what happens when we add a transition to the

downward motion of the link when it is clicked or tapped.
Transition both the top and box-shadow properties because
they should move in tandem. Let’s start with a 0.2s duration like
the others.

a{
transition:
background-color 0.2s,
border-color 0.2s,
top 0.2s,
box-shadow 0.2s;

}

Save the file, open it in the browser, and try clicking the links.
That transition really changes the experience of using the
menu, doesn’t it? The buttons feel more difficult to “press.” Try
increasing the duration. Do they feel even more difficult? I find
it interesting to see the effect that timing has on the experience
of a user interface. It is important to get it right and not make
things feel sluggish. I'd say that a very short transition such

as 0.1 second—or even no transition at all—would keep these
buttons feeling snappy.

. If you thought increasing the duration made the menu

uncomfortable to use, try adding a short 0.5-second delay to the
top and box-shadow properties.

a{
transition:
background-color 0.2s,
border-color 0.2s,
top 0.1s 0.5s,
box-shadow 0.1s 0.5s;

}

I think you'll find that little bit of extra time makes the whole
thing feel broken. Timing is everything!

526 Part lIl. CSS for Presentation

CSS TRANSFORMS

Values: rotate() | rotateX() | rotateY() | rotateZ() | rotate3d() |
translate() | translateX() | translateY() | scale() | scaleX() |
scaleY() | skew() | skewX() | skewY() | none

Default: none

Appliesto: transformable elements (see sidebar)

Inherits: no

The CSS3 Transforms Module (www.w3.0rg/TR/css-transforms-1) gives
authors a way to rotate, relocate, resize, and skew HTML elements in both
two- and three-dimensional space. It is worth noting up front that trans-
forms change how an element displays, but it is not motion- or time-based.
However, you can animate from one transform state to another using transi-
tions or keyframe animations, so they are useful to learn about in the context
of animation.

This chapter focuses on the more straightforward two-dimensional trans-
forms because they have more practical uses. Transforms are supported on
virtually all current browser versions without vendor prefixes (see the sidebar
“CSS Transforms Support” for exceptions).

You can apply a transform to the normal state of an element, and it appears
in its transformed state when the page loads. Just be sure that the page is
still usable on browsers that don't support transforms. It is common to intro-
duce a transform only when users interact with the element via :hover or a
JavaScript event. Either way, transforms are a good candidate for progressive
enhancement—if an IE8 user sees an element straight instead of at a jaunty
angle, it’s probably no biggie.

FIGURE 18-6 shows a representation of four two-dimensional transform func-
tions: rotate(), translate(), scale(), and skew() (see Note). The dashed
outline shows the element’s original position.

rotate() translate()

CSS Transforms

Transformable Elements

You can apply the transform
property to most element types:

* HTML elements with replaced
content, such as img, canvas, form
inputs, and embedded media

* Elements with their display set to
block, inline-block, inline-
table (or any of the table-*
display types), grid, and flex

It may be easier to note the element
types you cannot transform, which
include:

* Non-replaced inline elements, like
em or span

* Table columns and column groups
(but who'd want to?)

scale()

NOTE

There are actually five 2-D transform
functions in the CSS spec. The fifth,
matrix(), allows you to craft your own
combined transformation using six val-
ues and some badass trigonometry.
There are tools that can take a number
of transforms and combine them into a
matrix function, but the result isn’t very
user-friendly. Fascinating in theory, but
more than | want to take on personally.

skew()

Four types of transforms: rotate(), translate(), scale(), and skew().

18. Transitions, Transforms, and Animation 527

CSS Transforms

CSS Transforms Support

As of this writing, CSS Transforms are
supported by every major browser
without vendor prefixes; however,
that support has happened more
recently than Transitions, and there
are a few more holes. Here are a few
browser-related pointers:

* Internet Explorer 8 and earlier have
no support for transforms. Version
9 supports Transforms with the
-ms- prefix.

e |E10and 11 and all versions of
Edge support transforms without
prefixes, but they do not support
transforms on elements in SVGs.

* Use the -webkit- prefix if you
need to support the following
browsers:

— Android v2.1 to 4.4.4 (prefixes
dropped in 2017)

— OS Safariv3.2 to 8.4 (prefixes
dropped in 2015)

— Safari 8 and earlier (prefixes
dropped in 2015)

— Opera versions up to v.22
(prefixes dropped in 2014)

As of this writing, it is still
recommended that you include
-ms- and -webkit- prefixes for
transform, but that may no longer
be the case by the time you are
reading this. Check Can/Use.com
for updated browser information,
and ShouldlPrefix.com for
recommendations.

When an element transforms, its element box keeps its original position and
influences the layout around it, in the same way that space is left behind by
a relatively positioned element. It is as though the transformation magically
picks up the pixels of the rendered element, messes around with them, and
lays them back down on top of the page. So, if you move an element with
transform, youre moving only a picture of it. That picture has no effect on
the surrounding layout. Let’s go through the transform functions one by one,
starting with rotate().

Transforming the Angle (rotate)

If youd like an element to appear on a bit of an angle, use the rotate()
transform function. The value of the rotate() function is an angle specified
in positive (clockwise) or negative (counterclockwise) degrees. The image in
FIGURE 18-7 has been rotated —10 degrees (350 degrees) with the following
style rule. The tinted image shows the element’s original position for refer-
ence.
img {

width: 400px;

height: 300px;

transform: rotate(-10deg);

}

Notice that the image rotates around its center point, which is the default
point around which all transformations happen. But you can change that
easily with the transform-origin property.

transform: rotate(-10deg);

Rotating an img element by using transform: rotate().

528 Part lIl. CSS for Presentation

CSS Transforms

Values: percentage | length | 1eft | center | right | top | bottom

Default: 50% 50%

Appliesto: transformable elements

Inherits: no

The value for transform-origin is either two keywords, length measurements,
or percentage values. The first value is the horizontal offset, and the second is
the vertical offset. If only one value is provided, it will be used for both. The
syntax is the same as you learned for background-position back in Chapter

13, Colors and Backgrounds. If we wanted to rotate our image around a point
at the center of its top edge, we could write it in any of the following ways:

transform-origin: center top;

transform-origin: 50%, 0%;

transform-origin: 200px, O;
The images in FIGURE 18-8 have all been rotated 25 degrees, but from differ-
ent origin points. It is easy to demonstrate the origin point with the rotate()

function, but keep in mind that you can set an origin point for any of the
transform functions.

Transforming the Position (translate)

Another thing you can do with the transform property is give the element’s
rendering a new location on the page by using one of three translate() func-
tions, as shown in the examples in FIGURE 18-9. The translateX() function
allows you to move an element on a horizontal axis; translateY() is for mov-
ing along the vertical axis; and translate() combines both x and y values.

transform: translateX(50px);

transform: translateY(25px); transform-origin: 400px 0;

transform: translate(50px, 25px); /* (translateX, translateY) */

Changing the point
around which the image rotates by
using transform-origin.

transform: translate(90px, 60px); transform: translate(-5%, -25%);

Moving an element around with the translate() function.

18. Transitions, Transforms, and Animation 529

CSS Transforms

Provide length values in any of the CSS units or as a percentage value.
Percentages are calculated on the width of the bounding box—that is, from
border edge to border edge (which, incidentally, is how percentages are calcu-
lated in SVG, from which transforms were adapted). You can provide positive
or negative values, as shown in FIGURE 18-9.

If you provide only one value for the shorthand translate() function, it will
be presumed to be the translateX value, and translateY will be set to zero.
So translate(20px) would be equivalent to applying both translateX(20px)
and translateY(0).

How do you like the transform property so far? We have two more functions
to go.

Transforming the Size (scale)

Make an element appear larger or smaller by using one of three scale func-
tions: scaleX() (horizontal), scaleY() (vertical), and the shorthand scale().
The value is a unitless number that specifies a size ratio. This example makes
an image 150% its original width:
a img {
transform: scaleX(1.5);

}

The scale() shorthand lists a value for scaleX and a value for scaleY. This
example makes an element twice as wide but half as tall as the original:
a img {
transform: scale(2, .5);

}

Unlike translate(), however, if you provide only one value for scale(), it
will be used as the scaling factor in both directions. So specifying scale(2) is
the same as applying scaleX(2) and scaleY(2), which is intuitively the way
youd want it to be.

FIGURE 18-10 shows the results of all our scaling endeavors.

transform: scale(1.25);

transform: scale(.75); transform: scale(1.5, .5);

Changing the size of an element with the scale() function.

530 PartlIl. CSS for Presentation

CSS Transforms

Making It Slanty (skew)

The quirky collection of skew properties—skewX(), skewY(), and the short-
hand skew()—changes the angle of either the horizontal or vertical axis
(or both axes) by a specified number of degrees. As for translate(), if you
provide only one value, it is used for skewX(), and skewY() will be set to zero.

The best way to get an idea of how skewing works is to take a look at some
examples (FIGURE 18-11):
a img {
transform: skewX(15deg);

}

a img {
transform: skewY(30deg);

}

a img {
transform: skew(15deg, 30deg);
}

Applying Multiple Transforms
It is possible to apply more than one transform to a single element by listing
out the functions and their values, separated by spaces, like this:
transform: function(value) function(value);
In the example in FIGURE 18-12, 've made the forest image get larger, tilt a

little, and move down and to the right when the mouse is over it or when it
is in focus:

img:hover, img:focus {
transform: scale(1.5) rotate(-5deg) translate(50px,30px);
}

:hover, : focus
Normal state rotate(), translate(), and scale() applied

transform: skew(15deg, 30deg);

Slanting an
element by using the skew()
function.

Applying scale(), rotate(), and translate() to a single element.

18. Transitions, Transforms, and Animation 531

CSS Transforms

It is important to note that transforms are applied in the order in which they
are listed. For example, if you apply a translate() and then rotate(), you get
a different result than with a rotate() and then a translate(). Order matters.

Another thing to watch out for is that if you want to apply an additional
transform on a different state (such as :hover, :focus, or :active), you need
to repeat all of the transforms already applied to the element. For example,
this a element is rotated 45 degrees in its normal state. If T apply a scale()
transform on the hover state, I would lose the rotation unless I explicitly
declare it again:

a {
transform: rotate(45deg);

}
a:hover {
transform: scale(1.25); /* rotate on a element would be lost */

}

To achieve both the rotation and the scale, provide both transform values:

a:hover {
transform: rotate(45deg) scale(1.25); /* rotates and scales */

}

Smooooooth Transforms

The multiple transforms applied to the redwood forest image look interesting,
but it might feel better if we got there with a smooth animation instead of just
BAM! Now that you know about transitions and transforms, let’s put them
together and make some magic happen. And by “magic,” of course I mean
some basic animation effects between two states. We'll do that together, step-
by-step, in EXERCISE 18-2.

EXERCISE 18-2. Transitioning transforms

In this exercise, we’ll make the travel photos in the gallery shown in FIGURE 18-13 grow
and spin out to an angle when the user mouses over them—and we’ll make it smoooooth
with a transition. A starter document (exercise_18-2.html) and all of the images are
available in the materials folder for this chapter.

1. Open exercise_18-2.html in a text editor, and you will see that there are already styles
that arrange the list items horizontally and apply a slight drop shadow. The first thing
we'll do is add the transform property for each image.

2. We want the transforms to take effect only when the mouse is over the image or when
the image has focus, so the transform property should be applied to the :hover and
:focus states. Because | want each image to tilt a little differently, we’ll need to write a
rule for each one, using its unique ID as the selector. You can save and check your work
when you’re done.

532 Part lIl. CSS for Presentation

CSS Transforms

Photos get larger and tilt on :hover and :focus . A transition is used
to help smooth out the change between states. You can see how it works when you are
finished with this exercise (or check it out in the ch18_figures.html page).

a:hover #imgl, a:focus #imgl {
transform: rotate(-3deg);

}

a:hover #img2, a:focus #img2 {
transform: rotate(5deg);

}

a:hover #img3, a:focus #img3 {
transform: rotate(-7deg);

}

a:hover #img4, a:focus #imga {
transform: rotate(2deg);

}

NOTE

As of this writing, prefixes are still recommended for the transform
property, so for production-quality code, the complete rule would
look like this:
athover #imgl, a:focus #imgl {
-webkit-transform: rotate(-3deg);

-ms-transform: rotate(-3deg); /* for IE9 */
transform: rotate(-3deg);

Because we are checking our work on a modern browser, we can
omit the prefixes for this exercise.

3. Now let’s make the images a little larger as well, to give visitors a
better view. Add scale(1.5) to each of the transform values.
Here is the first one; you do the rest:

a:hover #imgl {
transform: rotate(-3deg) scale(1.5);

}

Note that my image files are created at the larger size and then
scaled down for the thumbnail view. If we started with small
images and scaled them larger, they would look crummy.

4. As long as we are giving the appearance of lifting the photos
off the screen, let’s make the drop shadow appear to be a little
farther away by increasing the offset and blur, and lightening the
shade of gray. All images should have the same effect, so add
one rule using a:hover img as the selector.

a:hover img {
box-shadow: 6px 6px 6px rgba(0,0,0,.3);
}

Save your file and check it out in a browser. The images should
tilt and look larger when you mouse over them. But the action is
kind of jarring. Let’s fix that with a transition.

5. Add the transition shorthand property to the normal img
state (i.e., not on :hover or :focus). The property we want
to transition in this case is transform. Set the duration to 0.3
seconds and use the linear timing function.

img {

transition: transform 0.3s linear;

}

NOTE

The prefixed transform property should be included in the context

of a transition as well, as shown in this fully prefixed declaration:
-webkit-transition: -webkit-transform .3s linear;

The -ms- prefix is not needed because transitions are not supported
by IES. Those users will see an immediate change to the trans-
formed image without the smooth transition, which is fine.

And that’s all there is to it! You can try playing around with different
durations and timing functions, or try altering the transforms or
their origin points to see what other effects you can come up with.

18. Transitions, Transforms, and Animation 533

CSS Transforms

3-D Transforms

In addition to the two-dimensional transform functions we’ve just seen, the
CSS Transforms spec also describes a system for creating a sense of three-
dimensional space and perspective. Combined with transitions, you can use
3-D transforms to create rich interactive interfaces, such as image carousels,
flippable cards, or spinning cubes! FIGURE 18-14 shows a few examples of
interfaces created with 3-D transforms.

It’s worth noting that this method does not create 3-D objects with a sense of
volume; it merely tilts the otherwise flat element box around on three axes
(animation expert Val Head calls them “postcards in space”). The rotating
cube example in the figure merely stitches together six element boxes at dif-
ferent angles. That said, 3-D transforms still add some interesting depth to an
otherwise flat web page.

Put your mockups in perspective

Animated book covers by Marco Barria Webflow transform tools example
tympanus.net/Development/AnimatedBooks/ 3d-transforms.webflow.com

Movie poster animation by Marco Kuiper 3D CSS Rotating Cube by Paul Hayes
demo.marcofolio.net/3d_animation_css3/ paulrhayes.com/experiments/cube-3d/

Some examples of 3-D transforms. The book covers, movie posters,
and 3-D cube also have cool animation effects, so it's worth going to the links and
checking them out. Webflow is a visual web design tool that includes the ability to
create 3-D transformed elements.

3-D transforms are not a need-to-know skill for folks just starting out in web
design, so 'm not going to go into full detail here, but I will give you a taste
of what it takes to add a third dimension to a design. If you’d like to learn
more, the following tutorials are good places to start (although the browser
support information they contain may be out-of-date):

534 Part lIl. CSS for Presentation

* “Adventures in the Third Dimension: CSS 3D Transforms” by Peter
Gasston (coding.smashingmagazine.com/2012/01/06/adventures-in-the-
third-dimension-css-3-d-transforms/)

* “Intro to CSS 3D Transforms” by David DeSandro (desandro.github.
com/3dtransforms/)

To give you a very basic example, I'm going to use the images from EXERCISE
18-2 and arrange them as though they are in a 3-D carousel-style gallery
(FIGURE 18-15).

CSS Transforms

FIGURE 18-15. Ouraquarium images arranged in space.. .space. . .space. ..

The markup is the same unordered list used in the previous exercise:

</1i>
</1i>

</1i>
</1i>

The first step is to add some amount of “perspective” to the containing ele-
ment by using the perspective property. This tells the browser that the child
elements should behave as though they are in 3-D space. The value of the
perspective property is some integer larger than zero that specifies a dis-
tance from the element’s origin on the z-axis. The lower the value, the more
extreme the perspective. I have found that values between 300 and 1,500 are
reasonable, but this is something you need to fuss around with until you get
the desired effect.
ul {

width: 1000px;

height: 100px;

list-style-type: none;

padding: 0;

margin: O;

perspective: 600;

NOTE

When using the -webkit- prefix for
transform, include the prefixed version
of perspective as well (-webkit-per-
spective).

18. Transitions, Transforms, and Animation 535

http://coding.smashingmagazine.com/2012/01/06/adventures-in-the-third-dimension-css-3-d-transforms/
http://coding.smashingmagazine.com/author/peter-gasston/
http://coding.smashingmagazine.com/author/peter-gasston/

Keyframe Animation

The perspective-origin property (not shown) describes the position of your
eyes relative to the transformed items. The values are a horizontal position
(left, center, right, or a length or percentage) and a vertical position (top,
bottom, center, or a length or percentage value). The default (FIGURE 18-15)
is centered vertically and horizontally (perspective-origin: 50% 50%). The
final transform-related property is backface-visibility, which controls
whether the reverse side of the element is visible when it spins around.

With the 3-D space established, apply one of the 3-D transform functions
to each child element—in this case, the 1i within the ul. The 3-D func-
tions include translate3d, translateZ, scale3d, scaleZ, rotate3d, rotateX,
rotateY, rotatez, and matrix3d. You should recognize some terms in there.
The *Z functions define the object’s orientation relative to the z-axis (picture
it running from your nose to this page, whereas the x- and y-axes lie flat on
the page).

In our example in FIGURE 18-15, each 1i is rotated 45 degrees around its
y-axis (vertical axis) by using the rotateY function, which works as though
the element boxes are rotating around a pole.

Compare the result to FIGURE 18-16, in which each 1i is rotated on its x-axis
(horizontal axis) by using rotateX. It’s as though the element boxes are rotat-
ing around a horizontal bar.

1i {
float: left;
margin-right: 10px;
transform: rotateX(45deg);
}

The same list of images rotated on their horizontal axes with
rotateX().

Obviously, I'm barely scratching the surface of what can be done with 3-D
transforms, but this should give you a mental model for how it works. Next
up, I'll introduce you to a more sophisticated way to set your web pages in
motion.

KEYFRAME ANIMATION

The CSS Animations Module allows authors to create real, honest-to-good-
ness keyframe animation. FIGURE 18-17 shows just a few examples that you
can see in action online. Unlike transitions that go from a beginning state to

536 Part lIl. CSS for Presentation

WATCH MADMANIMATION

How | Learned to Walk

by Andrew Wang-Hoyer
andrew.wang-hoyer.com/experiments/
walking/

MADMANIMATION

by Anthony Calzadilla and Andy Clarke
stuffandnonsense.co.uk/content/demo/
madmanimation/—hint: click WATCH

Animated Web Banners With CSS3
[nortzoncs I

? Lost at sea?
Relax - we've got your rudder, \

Tttty

Animated Web Banner

by Caleb Jacob
tympanus.net/codrops/2012/01/10/
animated-web-banners-with-css3/

Adorable animated submarine
by Alberto Jerez
codepen.io/ajerez/pen/EaEEOW

FIGURE 18-17. Examples of animations using only CSS.

an end state, keyframe animation allows you to explicitly specify other states
at points along the way, allowing for more granular control of the action.
Those “points along the way” are established by keyframes that define the
beginning or end of a segment of animation.

Creating keyframe animations is complex, and more than I can cover here.
But I would like for you to have some idea of how it works, so T'll sketch out
the minimal details. The following resources are good starting points for
learning more:

* CSS Animations Level 1 (a Working Draft at the time of this writing) at www.
w3.0rg/TR/css-animations-1/.

* Transitions and Animations in CSS by Estelle Weyl (O'Reilly).

* “Animation & UX Resources” by Val Head (valhead.com/ui-animation).
Val has compiled a mega-list of resources regarding web animation,
including links to tutorials, articles, tools, galleries, and more. It is not
limited to CSS keyframe animation, but as long as youre delving into
animation, you can trust Val to point you to good stuff.

Keyframe Animation

CSS transitions are
animations with two
keyframes: a start state
and an end state. More
complex animations
require many keyframes
to control property
changes in the sequence.

NOTE

Keyframe animation is known as explicit
animation because you program its
behavior. By contrast, transitions are an
example of implicit animation because
they are triggered only when a property
changes.

18. Transitions, Transforms, and Animation 537

http://valhead.com/ui-animation/

Keyframe Animation

~N

Animation Tools

If you want to add a simple animation
effect to an element—a quick flip here
or a little shimmy there—you may be
able to find a premade effect you can
apply to your design. Here are a few
sites that provide ready-made CSS

for common animation effects (some
also use JQuery plug-ins, but they
explain how to use them):

¢ Animate.css by Daniel Eden
(daneden.github.io/animate.css/)

¢ CSS Animation Cheat Sheet by
Justin Aguilar (www.justinaguilar.
com/animations/index.html)

* AngryTools CSS Animation Kit
(angrytools.com/css/animation/)

0% red

20% orange
40% yellow
60% green

80% blue

100% purple

Animating through
the colors of the rainbow by using
keyframes.

* “CSS: Animation” course by Val Head on Lynda.com (www.lynda.com/
CSS-tutorials/CSS-Animation/439683-2.html). You'll need a subscription to
Lynda.com, but if you are in web-design-learning mode, it may be a good
investment.

* “CSS Animation for Beginners” by Rachel Cope (robots.thoughtbot.com/
css-animation-for-beginners). This is a clearly written tutorial with lots of
examples.

* “The Guide to CSS Animation: Principles and Examples” by Tom
Waterhouse (www.smashingmagazine.com/2011/09/the-guide-to-css-ani-
mation-principles-and-examples/). This tutorial goes beyond CSS code to
include tips for creating natural animation effects.

Establishing the Keyframes

The animation process has two parts:

1. Establish the keyframes with a @keyframes rule.

2. Add the animation properties to the elements that will be animated.

Here is a very simple set of keyframes that changes the background color of
an element over time. It’s not a very action-packed animation, but it should
give you a basic understanding of what a @keyframes rule does.
@keyframes colors {

0% { background-color: red; }

20% { background-color: orange; }

40% { background-color: yellow; }

60% { background-color: green; }

80% { background-color: blue; }

100% { background-color: purple; }

}

The keyframes at-rule identifies the name of the animation, the stages of the
animation represented by percentage (%) values, and the CSS properties that
are affected for each stage. Here’s what a @keyframes rule looks like abstracted
down to its syntax:
@keyframes animation-name {
keyframe { property: value; }
/* additional keyframes */

}

The sample @keyframes rule says: create an animation sequence called “col-
ors.” At the beginning of the animation, the background-color of the element
should be red; at 20% through the animation runtime, the background color
should be orange; and so on, until it reaches the end of the animation. The
browser fills in all the shades of color in between each keyframe (or tweens it,
to use the lingo). This is represented the best I could in FIGURE 18-18.

Each percentage value and the property/value declaration defines a keyframe
in the animation sequence.

538 Part lIl. CSS for Presentation

https://www.lynda.com/CSS-tutorials/CSS-Animation/439683-2.html
https://www.lynda.com/CSS-tutorials/CSS-Animation/439683-2.html
http://www.smashingmagazine.com/2011/09/the-guide-to-css-animation-principles-and-examples/
http://www.smashingmagazine.com/2011/09/the-guide-to-css-animation-principles-and-examples/

As an alternative to percentages, you can use the keyword from for the start of
an animation sequence (equivalent to 0%) and the keyword to for denoting
the end (100%). The following example makes an element slide in from right
to left as the left margin reduces to O:

@keyframe slide {

from { margin-left: 100% }
to { margin-left: 0%; }

Adding Animation Properties

Now we can apply this animation sequence to an element or multiple ele-
ments in the document by using a collection of animation properties that are
very similar to the set of transition properties that you already know.

[am going to apply the rainbow animation to the #magic div in my document:

<div id="magic">Magic!</div>
In the CSS rule for #magic, I make decisions about the animation I want to
apply:
* Which animation to use (animation-name) (Required).

* How long it should take (animation-duration) (Required).

* The manner in which it should accelerate (animation-timing-function).
This property uses the same timing function keywords that we covered
for CSS Transitions.

* Whether to pause before it starts (animation-delay).

Looks familiar, right? There are a few other animation-specific properties to
know about as well:

animation-iteration-count

How many times the animation should repeat. This can be set to a whole
number or infinite.

animation-direction

Whether the animation plays forward (normal), in reverse (reverse), or
alternates back and forth starting at the beginning (alternate), or alter-
nates starting from the end (alternate-reverse).

animation-fill-mode

The animation fill mode determines what happens with the animation
before it begins and after it ends. By default (none), the animation shows
whatever property values were not specified via @keyframes. If you want
the last keyframe to stay visible after the animation plays, use the for-
wards keyword. If there is a delay set on the animation and you want
the first keyframe to show during that delay, use backwards. To retain the
beginning and end states, use both.

Keyframe Animation

CSS Keyframe Browser
Support

All current versions of major desktop
and mobile browsers support CSS
keyframe animation without vendor
prefixes. Here are the exceptions:

* Internet Explorer 9 and earlier do
not support keyframe animation
at all. The animation will appearin
its start state, so be sure that first
frame is an acceptable fallback.

* You need to use the -webkit-
prefix to support the following
browsers: Safari and i0S Safari 8
and earlier (2014), Chrome 41 and
earlier (2015), Opera 29 and earlier
(2015), and Android 4.4.4 and
earlier (2014). As | am writing this,
these browsers represent enough
traffic that it is still recommended
that you include the -webkit-
prefix, but that may change
based on when you are doing
development and who your target
audience is.

Note that you need the prefixed
keyframe at-rule as well as prefixed
animation-* properties. As
always, the standard, unprefixed
rules go after prefixed versions.

@-webkit-keyframes

-webkit-animation-*

18. Transitions, Transforms, and Animation 539

Keyframe Animation

animation-play-state

Whether the animation should be running or paused when it loads. The
play-state can be toggled on and off based on user input with JavaScript
or on hover.

The animation-name property tells the browser which keyframe sequence to
apply to the #magic div. I've also set the duration and timing function, and
used animation-iteration-count to make it repeat infinitely. I could have
provided a specific number value, like 2 to play it twice, but how fun are only
two rainbows? And for fun, I've set the animation-direction to alternate,
which makes the animation play in reverse after it has played forward. Here
is the resulting rule for the animated div:

#magic {

animation-name: colors;
animation-duration: 5s;
animation-timing-function: linear;
animation-iteration-count: infinite;
animation-direction: alternate;

}

That gets a bit verbose, especially when you consider that each property may
also follow a prefixed version. You can also use the animation shorthand
property to combine the values, just as we did for transition:
#magic {
animation: colors 5s linear infinite alternate;

}

Those are the bare bones of creating keyframes and applying animations to
an element on the page. To make elements move around (what we typically
think of as “animation”), use keyframes to change the position of an element
on the screen with translate (the best option for performance) or with the
top, right, bottom, and left properties. When the keyframes are tweened, the
object will move smoothly from position to position. You can also animate
the other transform functions such as scale and skew.

When to Use Keyframe Animation

To keep my example simple, I chose to change only the background color of
a button element, but of course, keyframe animations can be used to create
real animations, especially when combined with the CSS transform functions
for spinning and moving elements around on the page. If you only need to
change an element from one state to another, a transition is the way to go. But
if you have a linear animation such as moving a character, an object, or its
parts around, keyframe animation is the most appropriate choice.

For more complex keyframe animations, particularly those that change with
user interaction or require complex physics, using JavaScript for animation
may be a better choice than CSS animation. JavaScript animation also has

540 Part lIl. CSS for Presentation

Animation Inspectors

Both Chrome and Firefox offer tools to inspect and modify web animations
(FIGURE 18-19). When you inspect an animated element in the Developer Tools,
click the Animations tab to see a timeline of all the animations applied to that
object. You can slow down the animation to reveal what is happening on a detailed
level. You can also modify the animation by making changes to the timing, delay,
duration, and keyframes. For more information, see the following;

¢ Firefox Animation Inspector (developer.mozilla.org/en-US/docs/Tools/Page_
Inspector/How_to/Work_with_animations)

* Chrome Animation Inspector (developers.google.com/web/tools/chrome-
devtools/inspect-styles/animations)

Firefox Animation Inspector

Computed Animations Fonts

1x ~ 00:00.850

Tilter
transform

Chrome Animation Inspector

Console Animations x Rendering X

o Il | 100% | 25% 10%

® o 250ms 500ms
) opacity &
div._lazy-placeholder? i
4 visibility Py
div._image.js—respuns:‘ opacity b

Animation inspectors are part of the developer tools offered by
Firefox and Chrome browsers.

better support in older browsers, making it preferable if animation is critical
to the mission of the page. CSS keyframe animation is a good solution for
simple animations used as an enhancement to a baseline experience.

I should note that as I write this, there is a lot of excitement in the web com-
munity for animating SVG graphics. When you place the source code for an
SVG directly in the HTML document, the elements in it are available to be
animated. As of this writing, there are still limitations and browser support
issues around using CSS to animate SVGs, but as browser support grows, this
approach looks very promising. In the meantime, JavaScript has better access
to SVG properties, has better browser support, and is the more common solu-
tion for SVG animation.

Keyframe Animation

18. Transitions, Transforms, and Animation 541

Wrapping Up

Need a Little Inspiration?

The Codrops blog (tympanus.net/
codrops/), curated by Manoela llic
and Pedro Botelho, is a treasure
trove of examples of CSS transitions,
transforms, and animations.

Check out the Playground for cool
experiments (like the collection of
hover effects in FIGURE 18-20) and
the Tutorials section for step-by-
step how-to information with code
examples.

Original Hover Effects

One of many
examples of CSS transitions,
transforms, and animations at the
Codrops blog.

&

WRAPPING UP

I hope T've helped you to wrap your head around how CSS can be used to
add a little motion and smoothness to your pages. For adding motion to a
web page, we have CSS Transitions to smooth out changes from one state to
another and CSS Keyframe Animation for animating a series of states. We
also looked at CSS Transforms for repositioning, spinning, resizing, or skew-
ing an element when it is rendered on the screen.

Used thoughtfully, animation can make your interfaces more intuitive and
enhance your brand personality. It's powerful stuff, but with great power
comes great responsibility. To learn how to use web animation to enhance
the user experience in a meaningful way, I recommend the book Designing
Interface Animation: Meaningful Motion for User Experience by Val Head
(Rosenfeld Media).

Now let’s see if you were paying attention with a 12-question quiz!

TEST YOURSELF

Think you know your way around transitions, transforms, and keyframe
animations? Here are a few questions to find out (answers in Appendix A):

1. What is tweening?

2. If a transition had keyframes, how many would it have?

3. Write out the transition declaration (property and value) you would use
to accomplish the following:

a. Wait .5 seconds before the transition starts.

b. Make the transition happen at a constant speed.

¢. Make the transition last .5 seconds.

d. Make the lines of text slowly grow farther apart.

542 Part lIl. CSS for Presentation

Which of the following can you not animate?

a. width

>N

padding

c. text-transform

e

word-spacing

Which timing function will be used if you omit the transition-timing-
function property? Describe its action.

In the following transition, what does .2s describe?

transition: color .2s linear;
Which transition will finish first?
a. transition: width 300ms ease-in;

b. transition: width 300ms ease-out;

Write the transform declaration to accomplish the following:

a. Tilt the element 7 degrees clockwise.

b. Reposition the element 25 pixels up and 50 pixels to the left.

c. Rotate the element from its bottom-right corner.

d. Make a 400-pixel-wide image display at 500 pixels wide.

In the following transform declaration, what does the 3 value describe?

transform: scale(2, 3)

Test Yourself

18. Transitions, Transforms, and Animation 543

Test Yourself

10. Which 3-D transform would look more angled and dramatic?
a. perspective: 250;

b. perspective: 1250;

11. What happens halfway through this animation?

@keyframes border-bulge {
from { border-width: 1px; }
25% { border-width: 10px; }
50% { border-width: 3px; }
to { border-width: 5px; }

12. Write the animation declaration you would use to accomplish the
following:

a. Make the animation play in reverse.

b. Make the entire animation last 5 seconds.

¢. Wait 2 seconds before running the animation.

d. Repeat the animation three times and then stop.

e. The end state of the animation stays visible after the animation is
done playing.

544 Part lll. CSS for Presentation

CSS Review: Transitions, Transforms, and Animation

CSS REVIEW: TRANSITIONS,
TRANSFORMS, AND ANIMATION

Here is a summary of the properties covered in this chapter.

Property

Description

animation

A shorthand property that combines animation properties

animation-name

Specifies the named animation sequence to apply

animation-duration

Specifies the amount of time the animation lasts

animation-timing-function

Describes the acceleration of the animation

animation-iteration-count

Indicates the number of times the animation repeats

animation-direction

Specifies whether the animation plays forward, in reverse, or
alternates back and forth

animation-play-state

Specifies whether the animation is running or paused

animation-delay

Indicates the amount of time before the animation starts
running

animation-fill-mode

Overrides limits to when animation properties can be
applied

backface-visibility

Determines whether the reverse side of an element may be
visible in 3-D transforms

perspective

Establishes an element as a 3-D space and specifies the per-
ceived depth

perspective-origin

Specifies the position of your viewpoint in a 3-D space

transform

Specifies that the rendering of an element should be altered
via one of the 2-D or 3-D transform functions

transform-origin

Denotes the point around which an element is transformed

transform-style

Preserves a 3-D context when transformed elements are
nested

transition

A shorthand property that combines transition properties

transition-property

Defines which CSS property will be transitioned

transition-duration

Specifies the amount of time the transition animation lasts

transition-timing-function

Describes the manner in which the transition happens
(changes in acceleration rates)

transition-delay

Specifies the amount of time before the transition starts

18. Transitions, Transforms, and Animation

545

MORE CSS
ECHNIQUES

By now you have a solid foundation in writing style sheets. You can style
text and element boxes, float and position objects, create responsive page
layouts using Flexbox and Grid, and even add subtle animation effects to
your designs. But there are a few more common techniques that you should
know about.

If you look over at the “In This Chapter” list, you'll see that this chapter is a
grab bag of sorts. It starts with general approaches to styling forms and the
special properties for table formatting. We'll cover other tricks of the trade
including clearing out browser styles with a CSS reset, using images in place
of text (only when necessary!), reducing the number of server requests with
CSS sprites, and checking whether a browser supports a particular CSS fea-
ture. Let’s dig in!

STYLING FORMS

Web forms can look a bit hodgepodge right out of the box with no styles
applied (FIGURE 19-1), so you'll certainly want to give them a more profes-
sional appearance using CSS. Not only do they look better, but studies show
that forms are much easier and faster to use when the labels and inputs are
lined up nicely. In this section, we’ll look at how various form elements can
be styled.

Now, 'm not going to lie: styling forms is somewhat of a dark art because of
the variety of ways in which browsers handle form elements. And for really
slick, custom forms, you will generally need to turn to JavaScript. But the
efforts are well worth it to improve usability.

There aren’t any special CSS properties for styling forms; just use the stan-
dard color, background, font, border, margin, and padding properties that

CHAPTER

19

IN THIS CHAPTER

Styling forms

Style properties for tables
Using a CSS reset or normalizer
Image replacement techniques
CSS sprites

CSS feature detection

547

Styling Forms

Coordinated Fonts

By default, a browser may use
different fonts at different sizes for
various input types. For example, it
may use the system font on buttons
and a constant-width font like Courier
for textarea inputs. If you'd like all
inputs to use the same font as the
surrounding text on the page, you

can force the form elements to inherit
font settings:

button, input, select,
textarea {
font-family: inherit;
font-size: 100%

}

Custom Sneaker Order Form

e Name:
e Email:
* Telephone:

¢ Tell us about yourself: 2
e Size: (5 3) Sizes refiect standard men's sizes
¢ Sneaker Color:

—Color
° Red
o Blue
o Black
o Silver

¢ Add-on Features:
—Feature
o Sparkley laces
o [Metallic logo
o Light-up heels
o MP3-enabled

® ENTER

Forms tend to be ugly and difficult to use with HTML alone. Don’t
worry—this one gets spiffed up in FIGURE 19-2.

you've learned in the previous chapters. The following is a quick rundown of
the types of things you can do for each form control type.

Text inputs (text, password, email, search, tel, url)

Change the appearance of the box itself with width, height, background-
color, background-image, border, border-radius, margin, padding, and
box-shadow. You can also style the text inside the entry field with the color
property and the various font properties.

The textarea element

This can be styled in the same way as text-entry fields. textarea ele-
ments use a monospace font by default, so you may want to change that
to match your other text-entry fields. Because there are multiple lines,
you may also specify the line height. Note that some browsers display a
handle on the lower-right corner of the textarea box that makes it resiz-
able, but you can turn it off by adding the style resize: none. Text areas
display as inline-block by default, but you can change them to block
with the display property.

Button inputs (submit, reset, button)

Apply any of the box properties to submit and reset buttons (width,
height, border, background, margin, padding, and box-shadow). It is worth
noting that buttons are set to the border-box sizing model by default.
Most browsers also add a bit of padding by default, which can be over-
ridden by your own padding value. You can also style the text that appears
on the buttons.

Radio and checkbox buttons

The best practice for radio and checkbox buttons is to leave them alone. If
you are tenacious, you can use JavaScript to change the buttons altogether.

548 Part lIl. CSS for Presentation

Drop-down and select menus (select)

You can specify the width and height for a select element, but note that
it uses the border-box box-sizing model by default. Some browsers allow
you to apply color, background-color, and font properties to option ele-
ments, but it’s probably best to leave them alone to be rendered by the
browser and operating system.

Fieldsets and legends

You can treat a fieldset as any other element box, adjusting the bor-
der, background, margin, and padding. Turning the border off entirely
is one way to keep your form looking tidy while preserving semantics
and accessibility. By default, legend elements are above the top border of
the fieldset, and, unfortunately, browsers make them very difficult to
change. Some developers use a span or b element within the legend and
apply styles to the contained element for more predictable results. Some
choose to hide it in a way that it will still be read by screen readers (legend

Styling Forms

{width: 1px; height: 1px; overflow: hidden;}).

Now we know what we can do to style individual controls, but the grander
goal is to make the form more organized and easier to use. FIGURE 19-2 shows
the “after” shots of the unstyled form from FIGURE 19-1. There color, font,
border, and spacing changes, and the labels and input elements are nicely
aligned as well. And not only that, the form is responsive! I've used Flexbox to

Wide viewport

Narrow viewport

Custom Sneaker Order Form

Custom Sneaker Order
Form

Name:
Name:
Email:
Telephone: Email:
Tell us about
yourself: Telephone:

Tell us about

Size: om— Slcesrefiec yourself:

Sneaker Color: Red Blue Black Silver

Add-on Sparkley laces

Features: Metallic logo Size: 5 y
2

Light-up heels
MP3-enabled

ENTER

Sizes reflect standard US men's sizes
Sneaker Color:
Red Blue Black
Silver

Add-on
Features:

Sparkley laces
Metallic logo

Light-up heels

MP3-enabled

ENTER

This responsive form uses Flexbox to allow text inputs to resize and to

shift the position of the labels on small screens.

HEADS UP

The following form elements cannot
be changed with CSS alone: inputs
for range, color, date pickers, file
picker, option, optgroup, datalist,
progress, and meter. /t is possible to
customize them by using JavaScript,
which is beyond the scope of this book.

19. More CSS Techniques 549

Styling Forms

NOTE

If you don’t want to use Flexbox, you
can line up labels by using floats. Set
labels to display: block, give them a
width and height, and float them to the
left. You need to clear the 1i elements
(clear: both) so they start below the
previous floated pair.

make the labels stack on top of their respective inputs and fieldsets on narrow
screens so there is no wasted space.

If youd like to take a look at the actual markup and styles, the document
sneakerform.html is available with the materials for this chapter (learningweb-
design.com/5e/materials). T've left careful and thorough comments through-
out that explain exactly what each style is for. My approach to styling the
Custom Sneaker Order Form can be summarized as follows:

Set the box-sizing to border-box for the whole document. This makes
sizing form elements more predictable.

Give the form a max-width (so it can shrink to fit smaller viewports) and
optional decorative styling like the green background and rounded bor-
der in the example.

Get rid of the bullets and spacing around the unordered lists that were
used to mark up the form semantically.

Turn list items (each containing a label and some sort of input or field-
set) into flex containers by setting their display to flex (see Note). Turn
on wrapping, which is what allows the input to shift below the labels on
small screens.

Give the labels fixed widths (flex: 0 0 8em;) so they are sized the same
regardless of screen size. Because labels on checkboxes and radio buttons
work differently, set them to override the 8em width (flex: 1 1 auto;).

Allow the input, textarea, and fieldsets to grow to fill the remaining
space (flex: 1 1 20em;). When the screen is too narrow for them to fit
next to the labels, they wrap below.

Set the text input fields” font-family to inherit so they use the same font
as the rest of the document instead of whatever font the browser uses for
forms. Text inputs also get heights, borders, and a little padding.

Fieldsets and legends are tricky to style. Turn off the border and padding
on the fieldset, and then hide the legend in a way that it will still be read
aloud before each checkbox or radio button option. Because there is both
a label and a legend for each fieldset, I made sure they are not exactly the
same so they won’t be redundant when read aloud by a screen reader. The
legend should be shorter because it is repeated for each option.

The submit button has a rounded border, background color, and font
styling. Set the side margins to auto so it will always be centered in the
width of the form.

This is a very simple example, but it should give you a general idea of how
forms can be styled. You may also want to add highlight styles for interac-
tivity, such as :hover styles on the buttons and :focus styles for text inputs
when they are selected.

550 Part lIl. CSS for Presentation

http://learningwebdesign.com/5e/materials
http://learningwebdesign.com/5e/materials

STYLING TABLES

Like any other text content on a web page, content within table cells can be
formatted with various font, text, and background properties.

You will probably want to adjust the spacing in and around tables. To adjust
the amount of space within a cell (cell padding), apply the padding property
to the td or th element. Spacing between cells (cell spacing) is a little more
complicated and is related to how CSS handles cell borders. CSS provides two
methods for displaying borders between table cells: separated or collapsed.
These options are specified with the table-specific border-collapse property
with separate and collapse values, respectively.

Values: separate | collapse
Default: separate
Appliesto: table and inline-table elements

Inherits: yes

Separated Borders

By default, borders are separated, and a border is drawn on all four sides of
each cell. The border-spacing property lets you specify the space between
cell borders.

Values: horizontal-length vertical-length
Default: 0
Appliesto: table and inline-table elements

Inherits: yes

The values for border-spacing are two length measurements. The horizontal
value comes first and applies between columns. The second measurement is
applied between rows. If you provide one value, it will be used both horizon-
tally and vertically. The default setting is 0, causing the borders to double up
on the inside grid of the table (see Note).

The table in FIGURE 19-3 is set to separate with 15 pixels of space between
columns and 5 pixels of space between rows. A purple border has been
applied to the cells to make their boundaries clear.

NOTE

Although the border-spacing default is 0, browsers generally add 2 pixels of space for
the obsolete cellspacing attribute by default. If you want to see the borders double
up, you need to set the cellspacing attribute to 0 in the table element.

Styling Tables

NOTE

In the past, cell padding and spacing
were handled by the cellpadding and
cellspacing attributes in the table
element, respectively, but they have
been made obsolete in HTML5 because
of their presentational nature.

19. More CSS Techniques 551

Styling Tables

td
bgrder: 3px solid purple; [Celll| |Cell2 | [Cell3 | [Cell4] [CellS5 |

table { [Cell6 | |Cell7 | |Cell8 | [Cell9f [Cell 10}
border-collapse: separate; n

border-spacing: 15px spx; [Cell 11] [CelizpdCeli1s] [| [| |

border: none; ‘

3px border 15px 5px

The separated table border model.

For tables with separated borders, you can indicate whether you want empty
cells to display their backgrounds and borders by using the empty-cells
property. For a cell to be “empty,” it may not contain any text, images, or non-
breaking spaces. It may contain carriage returns and space characters.

Values: show | hide
Default: show
Appliesto: table cell elements

Inherits: yes

FIGURE 19-4 shows the previous separated table-border example with its
empty cells (what would be Cell 14 and Cell 15) set to hide.

empty-cells: hide; [Cell 1| |Cell2 | [Cell3 | [Cell4] [Cell5 |
[Cell6 | [Cell7] [Cell8 | [Celld] [Cell 10}
[Cell 11] |Cell 12} [Cell 13

Hiding empty cells with the empty-cells property.

Collapsed Borders

In the collapsed border model, the borders of adjacent borders “collapse” so
that only one of the borders is visible and the space is removed (FIGURE 19-5).
In the example, although each table cell has a 3-pixel border, the borders
between cells measure a total of 3 pixels, not 6. In instances where neighbor-
ing cells have different border styles, a complicated pecking order is called
in to determine which border will display, which you can read in the spec.

The advantage to using the collapsed table-border model is that you can style
the borders for tr, col, rowgroup, and colgroup elements. With the separated
model, you can't. Strategic use of horizontal and vertical borders improves the
readability of complicated tables, making the collapsed model an attractive
choice.

552 Part lIl. CSS for Presentation

tdb{ . . . Cell 1 |Cell2 |Cell 3 [Cell 4Cell 5
order: 3px solid purple;
{able { Cell 6 |Cell 7 |Cell 8 |Cell 9|Cell 10
able
border-collapse: collapse; Cell 1Y|Cell 12{Cell 13
border: none;
3px border

The collapsed border model.

Table Layout

Values: auto | fixed
Default: auto
Appliesto: table orinline-table elements

Inherits: yes

The table-layout property allows authors to specify one of two methods
of calculating the width of a table. The fixed value bases the table width on
width values provided for the table, columns, or cells. The auto value bases the
width of the table on the minimum width of the contents of the table. Auto
layout may display nominally more slowly because the browser must calcu-
late the default width of every cell before arriving at the width of the table.

That covers basic form and table formatting. I know this is a beginner’s book,
but in the next section, 'm going to introduce you to a few intermediate CSS
techniques that may make your work easier and your pages faster.

s R

Table Display Properties

CSS 2.1 includes a number of values for the display property that allow authors to
attach table display behaviors to elements. The table-related display values are
table, inline-table, table-row-group, table-header-group, table-footer-
group, table-row, table-column-group, table-column, table-cell, and
table-caption.

The original intent for these values was to provide a mechanism for applying table
display behaviors to XML languages that may not have elements like table, tr, or td
in their vocabularies.

In recent years, table display values have become another method for achieving

page layout effects such as vertical centering and flexible column widths. CSS table
layout may be useful as a fallback design for older browsers that do not support CSS
Grid or Flexbox. Note that this is not the same as using table-based layout with HTML
markup. With CSS table layout, the semantics of the source document stay intact. If
you’d like to learn more, | recommend the article “Layout Secret #1: The CSS Table
Property” by Massimo Cassandro (www.sitepoint.com/solving-layout-problems-css-
table-propertyy).

Now that Flexbox and Grid are gaining momentum, | suspect the table layout
methods will eventually go by the wayside.

Styling Tables

Pick a Side

When you use the caption element
in a table, it will appear above the
table by default. If you'd prefer it to
be below the table, you can use the
caption-side property to position
it there.

Values: top | bottom
Default: top
Applies to: table caption element

Inherits: yes

19. More CSS Techniques 553

http://www.sitepoint.com/solving-layout-problems-css-table-property/
http://www.sitepoint.com/solving-layout-problems-css-table-property/

A Clean Slate (Reset and Normalize.css)

NOTE

You can get the CSS reset on the web at
meyerweb.com/eric/tools/css/resety.

A CLEAN SLATE
(RESET AND NORMALIZE.CSS)

As you know, browsers have their own built-in style sheets (called user agent
style sheets) for rendering HTML elements. If you don’t supply styles for an
h1, you can be certain that it will display as large, bold text with space above
and below. But just how much larger and how much space may vary from
browser to browser, giving inconsistent results. Furthermore, even if you do
provide your own style sheet, elements in your document may be secretly
inheriting certain styles from the user agent style sheets, causing unexpected
results.

There are two methods for getting a consistent starting point for applying
your own styles: a CSS reset or normalize.css. They take different approaches,
so one or the other may be the best solution for what you need to achieve.

CSS Reset

The older approach is a CSS reset, a collection of style rules that overrides
all user agent styles and creates a starting point that is as neutral as possible.
With this method, you need to specify all the font and spacing properties for
every element you use. It’s a truly from-scratch starting point.

The most popular reset was written by Eric Meyer (the author of too many
CSS books to list). It is presented here, and I've also included a copy of it in
the materials folder for this chapter for your copy-and-paste pleasure (see
Note). If you look through the code, you'll see that the margins, border, and
padding have been set to O for a long list of block elements. There are also
styles that get typography to a neutral starting point, clear out styles on lists,
and prevent browsers from adding quotation marks to quotes and block-
quotes.

/* http://meyerweb.com/eric/tools/css/reset/
v2.0 | 20110126 License: none (public domain)*/
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, g, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, ol, ul, 1i,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,figure, figcaption, footer,
header, hgroup,menu, nav, output, ruby, section, summary,
time, mark, audio, video {

margin: 0;
padding: 0;
border: 0;

font-size: 100%;
font: inherit;
vertical-align: baseline;

554 Part Ill. CSS for Presentation

http://meyerweb.com/eric/tools/css/reset/

/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,footer, header, hgroup,
menu, nav, section {

display: block;

}
body {
line-height: 1;

}
ol, ul {

list-style: none;
}

blockquote, q {
quotes: none;
}

blockquote:before, blockquote:after,
q:before, q:after {

content: ;
content: none;

}

table {
border-collapse: collapse;
border-spacing: 0;

}

To use the reset, place these styles at the top of your own style sheet so your
own styles override them. You can use them exactly as you see them here or
customize them as your project requires. I also recommend reading Eric’s
posts about the thinking that went into his settings at meyerweb.com/eric/
tools/css/reset/ and meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning,.
A web search will reveal other, potentially smaller, CSS reset options.

Normalize.css

A more nuanced approach is to use Normalize.css, created by Nicolas
Gallagher and Jonathan Neal. They painstakingly combed through the user
agent styles of every modern browser (desktop and mobile) and created a
style sheet that tweaks their styles for consistency, rather than just turning
them all off. Normalize.css gives you a reasonable starting point: paragraphs
still have some space above and below, headings are bold in descending sizes,
lists have markers and indents as you would expect. It also includes styles
that make form widgets consistent, which is a nice service. FIGURE 19-6
shows the difference between CSS reset and Normalize.css starting points.

You can download Normalize.css at necolas.github.io/normalize.css/ and
include it before your own styles. It is too long to print here, but you will find
that it is well organized and includes comments with clear explanations for
each section. For Nicolas’s thoughts on the project, see nicolasgallagher.com/
about-normalize-css/.

Normalize.css is considered a superior successor to the cruder CSS reset, but
I think it is important to be aware of both options. Or, if slight differences
from browser to browser are just fine with you (as they are for a lot of profes-
sional developers), you don’t need to use either.

A Clean Slate (Reset and Normalize.css)

19. More CSS Techniques 555

https://necolas.github.io/normalize.css/

Image Replacement Techniques

CSS reset

List Item

List Item

List Item

List Item

List Item

Big letters

Less big of letters
Getting smaller
Hello world

Kid Rock

Ant man

Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, elit. Fugit dignissi

consectetur 1 rem consequuntur sunt vero!

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aperiam iste, soluta quibusdam ullam error qui atque 7,
i ibus aspernatur enim magni velit. Distinctio, adipisci.

expedita quod dicta vel tenetur, quos,
Singles in your area
Don't click fancy
loud
loud?
copyright forever

NOTE

Before going through the effort of an
image replacement technique, consider
whether the alt text in an img element
is all you need. In the case of a logo, the
alt text could represent the company
name should the image of the logo not
be seen. Frankly, the logo example in this
section could probably be handled that
way. That said, there may be instances
in which you need to replace an actual
string of text with an image, in which
case an image replacement technique
might be a good thing to have in your
CSS toolbox.

Normalize.css

o List ltem
o Listltem
s List ltem
+ List ltem
o List ltem

Big letters
Less big of letters

iusto maxime, quibusdam ut harum

Getting smaller
Hello world
Kid Rock

Antman

Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Fugit dignissimos iusto maxime, quibusdam ut
harum consectetur ' rem consequuntur sunt vero!

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aperiam iste, soluta quibusdam ullam error qui
atque 7, expedita quod dicta vel laudantium tenetur, quos, voluptatibus aspernatur enim magni velit.
Distinctio, adipisci.

Singles in your area
Don't click | fancy

loud

loud?

copyright forever

The difference between CSS reset (left) and Normalize.css (right).
(Credit: screenshot of a Codepen created by Zach Wolf.)

IMAGE REPLACEMENT TECHNIQUES

Before web fonts were a viable option, we needed to use an image anytime we
wanted text in a font fancier than Times or Helvetica. Fortunately, that is no
longer the case, but every now and then, it may still be necessary to replace a
text element with an image in a way that is still accessible to screen readers.
One common scenario is using a stylized logo in place of a company name
in a heading (see Note).

Removing the text altogether and replacing it with an img element is a bad
idea because the text content is gone forever. The solution is to use a CSS-
based image replacement technique that uses the image as a background in
the element, then shifts the text out of the way so that it is not rendered on
the page. Visual browsers see the background image, while the text content
stays in the file for the benefit of search engines, screen readers, and other
assistive devices. Everybody wins!

Many image replacement techniques have been developed over the years (see
Note), but the most popular is the Phark technique created by Mike Rundle. It
uses a large negative indent to move the text off to the left of the visible page.

In the example in FIGURE 19-7, I use the Phark technique to display the
Jenware logo in place of the h1 “Jenware” text in the HTML source. The
markup is simple:

<h1 id="logo">Jenware</h1>

556 Part lIl. CSS for Presentation

The style rule is as follows:

#logo {
width: 450px;
height: 80px;
background: url(jenware.png) no-repeat;
text-indent: -9999px;
}

06000000

What is actually happening:
text-indent: -9999px;

Jemvare 06000006

The h1 text content is pushed way off to
the left, outside the browser window. Browser window

The Phark image replacement technique hides the HTML text by
pushing it out of the visible element box with a large negative text indent so only the
background image displays.

There are a few things of note here. First, the h1 element displays as a block
by default, so we can just specify its width and height to match the dimen-
sions of the image used as a background. The text-indent property pushes
the word Jenware over to the left by 9999 pixels. This requires the browser to
render a very wide element box, but the performance hit is minimal.

The downside to any image replacement approach is that it means an extra
request to the server for every image used. It can also be more work creating
graphics every time a heading changes. Again, before you reach for an image
replacement, consider whether a web font or inline image with alt text may
do the trick. In the next section, we'll look at a way to curb unnecessary server
requests.

CSS SPRITES

When I talked about performance back in Chapter 3, Some Big Concepts You
Need to Know, I noted that you can improve site performance by reducing
the number of requests your page makes to the server (a.k.a. HT TP requests).
One strategy for reducing the number of image requests is to combine all
your little images into one big image file so that only one image gets request-
ed. The large image that contains multiple images is known as a sprite, a term
coined by the early computer graphic and video game industry. That image

CSS Sprites

NOTE

You can view a gallery of old techniques
at “The Image Replacement Museum,”
assembled by Marie Mosley (css-tricks.
com/the-image-replacement-museumy).

19. More CSS Techniques 557

CSS Sprites

gets positioned in the element via the background-position property in such
a way that only the relevant portion of it is visible. An example should make
this clear.

If I want to show a collection of six social media icons on my page, I can turn
those six graphics into one sprite and reduce the number of HT TP requests
accordingly (FIGURE 19-8). You can see in the figure that the icons have been
stacked into one tall graphic (social.png). This example also uses an image
replacement technique so the text for each link is still available to screen
readers.

Get social!

Qe

The separate icons in this panel are contained on one sprite
image (social.png) that is postioned in each a element.

social.pn
cla-png background-position: 0, -40px;

background-position: 0, 0; h a m

Replacing separate graphic files with one sprite image cuts down on
the number of HTTP requests to the server and improves site performance.

THE MARKUP

Twitter</1li>
Facebook</1i>
Google+</1i>
LinkedIn</1i>
Dropbox</1i>
Pinterest</1i>

THE STYLES

.hide {
text-indent: 100%;
white-space: nowrap;
overflow: hidden;

}

558 Part lIl. CSS for Presentation

1li a {
display: block;
width: 40px;
height: 40px;
background-image: url(social.png);

}

1i a.twitter { background-position: 0 0; }

1i a.fb { background-position: 0 -40px; }

1i a.gplus { background-position: 0 -80px; }

1i a.linkedin { background-position: 0 -120px; }
1i a.dropbox { background-position: 0 -160px; }
1i a.pinterest { background-position: 0 -200px; }

In the markup, each item has two class values. The hide class is used as a
selector to apply an image replacement technique. This one was developed by
Scott Kellum and uses a left indent of 100% to move the text out of sight. The
other class name is particular to each social network link. The unique class
values allow us to position the sprite appropriately for each link.

At the top of the style sheet you'll see the image replacement styles. Notice
in the next rule that all link (a) elements use social.png as their background
image.

Finally, we get to the styles that do the heavy lifting. The background-posi-
tion is set differently for each link in the list, and the visible element box
works like a little window revealing a portion of the background image. The
first item has the value 0,0; this positions the top-left corner of the image in
the top-left corner of the element box. To make the Facebook icon visible,
we need to move the image up by 40 pixels, so its vertical position is set to
—40px (its horizontal position of 0 is fine). The image is moved up by 40-pixel
increments for each link, revealing image areas farther and farther down the
sprite stack.

In this example, all of the icons have the same dimensions and stack up
nicely, but that is not a requirement. You can combine images with a variety
of dimensions on one sprite. The process of setting a size for the element and
then lining the sprite up perfectly with the background-position property is
the same.

CSS FEATURE DETECTION

One of the dominant challenges facing web designers and developers is deal-
ing with uneven browser support. Useful new CSS properties emerge regu-
larly, but it takes a while for them find their way into browsers, and it takes
much longer for the old non-supporting browsers to fade into extinction.

Fortunately, we have a few methods for checking to see if a browser supports
a particular feature so we can take advantage of cutting-edge CSS while also
providing thoughtful fallbacks for non-supporting browsers. Using feature
detection with fallbacks sure beats the alternatives of a) not using a property

CSS Feature Detection

Sprite Generators

There are many online tools that
create sprite image files and their
respective styles automatically.
Just upload or drag-and-drop your
individual graphics to the page, and
the tool does the rest. One that |
find easy to use is CSSsprites (css.
spritegen.com). If you need your
sprites to be responsive, use their
responsive version at responsive-css.
spritegen.com.

19. More CSS Techniques 559

CSS Feature Detection

Original image (no effect)

until it is universally supported, or b) using it and letting users with non-
supporting browsers have a broken experience.

We'll look at two ways to detect whether a feature is supported: feature que-
ries with a new CSS at-rule (@supports) and a JavaScript-based tool called
Modernizr.

CSS Feature Queries (@supports)

The CSS3 Conditional Rules Module Level 3 (www.w3.0rg/TR/css3-conditional/)
introduces the @supports rule for checking browser support of a particular
property and value declaration. Commonly referred to as a feature query, it
works like a media query in that it runs a test, and if the browser passes that
test, it applies the styles contained in the brackets of the at-rule. The syntax
for @supports is as follows:

@supports (property: value) {
/* Style rules for supporting browsers here */

}

Note that the query is for an entire declaration, both the property and a
value. It was designed this way because sometimes you may test for a new
property (such as initial-letter), and sometimes you may need to test for
a new value for an existing property. For example, the display property is
universally supported, but the newer grid keyword value is not. Note also
that there is no semicolon at the end.

Let’s look at a more specific example. I think it would be cool to use the new
mix-blend-mode property to make a photo of watermelons blend in with the
background (similar to a Layer Blending Mode in Photoshop). As of this
writing, it is supported only in Firefox, Chrome, and Safari. As a fallback for
non-supporting browsers, I create a somewhat less interesting blended effect
using the opacity property (FIGURE 19-9).

As seen on browsers that support Fallback for non-supporting browsers
mix-blend-mode: multiply; (opacity: .5)

FIGURE 19-9. The original image (left), the result using the mix-blend-mode
property with multiply keyword (center), and the fallback style using opacity (right).

560 Part lIl. CSS for Presentation

As of this writing, the best practice is to specify the fallback styles first, and
then override them with a set of styles targeted at browsers that support the
feature. Note that I also need to set the opacity back to 1 so it overrides my

fallback style.
THE MARKUP

<div id="container">
<figure class="blend">

</figure>
</div>

THE STYLES

#container {
background-color: #96D4E7;
padding: 5em;

.blend img {
opacity: .5;

@supports (mix-blend-mode: multiply) {
.blend img {
mix-blend-mode: multiply;
opacity: 1;

Operators

The @supports rule can be used with three operators to refine the feature test:
not, and, and or:

not

The not operator lets us test for when a specific property/value pair is
not supported.

@supports not (mix-blend-mode: hue) {
/* styles for non-supporting browsers */
}

Someday, this will be useful for supplying fallback styles, but with the current
browser support, you risk non-supporting browsers skipping everything in
the @supports rules, including the fallbacks. That's why I used the override
method in the previous example.

and

Applies styles only when all of the conditions in a series of two or more
are met.
@supports (border-radius: 10em) and (shape-outside: circle()) {

/* styles that apply only when the browser supports
shape-outside AND border-radius */

CSS Feature Detection

WARNING

The browser has to report for itself
whether it has implemented the feature.
If the feature is implemented in a buggy
way, you may still encounter problems
even when using feature queries.

19. More CSS Techniques 561

CSS Feature Detection

Not every new feature needs a
feature query. Some features, such as
border-radius, simply don’t render
on non-supporting browsers, and
that is just fine.

or

Use the or operator to apply styles when any of a series of conditions are
met. This one is particularly useful for vendor-prefixed properties.
@supports (-webkit-transform: rotate(10deg)) or
(-ms-transform: rotate(1odeg)) or

(transform: rotate(10deg))
/* transform styles */

}

Browser support

Feature queries began working in Chrome, Firefox, and Opera back in 2013,
and they are supported by every version of Microsoft Edge. Safari added
support in version 9 in 2015. Unfortunately, no version of Internet Explorer
supports feature queries, which leaves a big hole in the support picture until
those old browsers go away.

Non-supporting browsers use your fallback design, so make sure that it is
usable at the very least. Beware, however, of browsers that do not support
@supports but may support newer CSS features that you might be inclined
to test. Flexbox is a great example. Safari 8 recognizes the Flexbox proper-
ties, but does not recognize @supports, so if all of your Flexbox layout rules
are tucked away inside a feature query, Safari 8 won't see them. That’s why
feature queries aren’t the best tool for detecting Flexbox or any property that
has better support than @supports itself. Grid Layout, on the other hand, is
a great place to put feature queries to work because every browser that sup-
ports display: grid also supports @supports. Again, Can/Use.com is a good
resource for comparing support.

Pros and cons

Feature queries are an exciting new tool for web development. They allow us
to take advantage of new CSS properties sooner in a way that doesn’t rely on
JavaScript (we'll look at Modernizr, a JavaScript solution, next). Downloading
and running a script (even a small one) is slower than using CSS alone.

On the downside, limited browser support (for now) means @supports is not
as far-reaching as Modernizr. However, if it accomplishes your goals, it should
be your first choice. Fortunately, the browser environment will only continue
to improve, giving CSS feature queries the advantage over a script-based solu-
tion in the long run.

So what is this “Modernizr” youe hearing so much about?

Modernizr

Modernizr is a lightweight JavaScript library that runs behind the scenes and
tests for a long list of HTMLS and CSS3 features when the page is loaded in

562 Part lIl. CSS for Presentation

the browser. For each feature it tests, it stores the result (supports/doesn’t sup-
port) in a JavaScript object that can be accessed with scripts and optionally as
a class name in the html root element that can be used in CSS selectors. 'm
going to focus on the latter CSS method.

How it works

When Modernizr runs, it appends the html element with a class name for
each feature it detects. For example, if it is configured to test for Flexbox,
when it runs on a browser that does support Flexbox, it adds the .flexbox
class name to the html element:

<html class="js flexbox">

If the feature is not supported, it adds the feature name with a .no- prefix.
On a non-supporting browser, the Flexbox test would be reported like this:

<html class="js no-flexbox">

With the class name in place on the root element, everything on the page
becomes part of that class. We can use the class name as part of a selector to
provide different sets of styles depending on feature support:

.flexbox nav {
/* flexbox styles for the nav element here */

}

.no-flexbox nav {
/* fallback styles for the nav element here */

}

This example is short and sweet for demonstration purposes. Typically, you'll
use Modernizr to test for many features, and the html tag gets filled with a
long list of class names.

How to use it

First, you need to download the Modernizrjs script. Go to Modernizr.com and
find the Download link. From there you can customize the script to contain
just the HTML and CSS features you want to test, a nice way to keep the file
size of the script down. Click the Build button, and you will be given several
options for how it can be saved. A simple click on Download saves the script
in a .js file on your computer.

Once you have your script, put it in the directory with the rest of the files for
your project. Add it to the head of your HTML document, before any linked
style sheets or other scripts that need to use it:
<head>
<script src="modernizr-custom.js"></script>

<!--other scripts and style sheets -->
</head>

CSS Feature Detection

19. More CSS Techniques 563

Wrapping Up Style Sheets

Finally, open your HTML document and assign the no-js class name to the
html element.

<html class="no-js">

Modernizr will change it to js once it detects that the browser supports
JavaScript. If JavaScript (and therefore Modernizr) fails to run, you will not
know whether or not features are supported.

Pros and cons

Modernizr is one of the most popular tools in web developers’ arsenals
because it allows us to design for particular features rather than whole
browsers. It is easy to use, and the Modernizr site has thorough and clear
documentation to help you along. Because it’s JavaScript, it works on the vast
majority of browsers. The flip side to that, however, is that because it relies
on JavaScript, you can’t be 100% certain that it will run, which is its main
disadvantage. It will also be slightly slower than using CSS alone for feature
detection.

WRAPPING UP STYLE SHEETS

That concludes our whirlwind tour of Cascading Style Sheets. You've come a
long way since styling an h1 and a p back in Chapter 11, Introducing Cascading
Style Sheets. By now, you should be comfortable formatting text and even
doing basic page layout. While CSS is easy to learn, it takes a lot of time and
practice to master. If you get stuck, you will find that there are many resources
online to help you find the answers you need. The nice thing about CSS is
that you can start with just the basics and then build on that knowledge as
you gain proficiency in your web development skills.

In the next chapter, T'll introduce you to tools that web developers use to
improve their workflow, including tools for writing CSS more efficiently and
optimizing the results. But if you're feeling overwhelmed with CSS properties,
you can breathe a sigh of relief. We're done!

TEST YOURSELF

See how well you picked up the CSS techniques in this chapter with these
questions. As you may have guessed, the answers are available in Appendix A.

1. What is the purpose of a CSS reset?
a. To override browser defaults
b. To make presentation more predictable across browsers
c. To prevent elements from inheriting unexpected styles

d. All of the above

564 Part lIl. CSS for Presentation

2. What is the purpose of a CSS sprite?
a. To improve site performance
b. To use small images in place of large ones, reducing file size
¢. To reduce the number of HTTP requests
d. aandc

e. All of the above

3. What is the purpose of an image replacement technique?
a. To achieve really big text indents
b. To use a decorative graphic in place of text

c. To remove the text from the document and replace it with a decora-
tive image

d. To maintain the semantic content of the document
e. bandd
f. All of the above

4. Name two approaches to aligning form controls and their respective
labels without tables. A general description will do here.

5. Match the style rules with their respective tables in FIGURE 19-10.

a. table { border-collapse: collapse;}
td { border: 2px black solid; }

b. table { border-collapse: separate; }
td { border: 2px black solid; }

c. table {
border-collapse: separate;
border-spacing: 2px 12px; }
td { border: 2px black solid; }

d. table {
border-collapse: separate;
border-spacing: 5px;
border: 2px black solid; }
td { background-color: #99f; }

e. table {
border-collapse: separate;
border-spacing: 5px; }
td { background-color: #99f;
border: 2px black solid; }

Test Yourself

O [cell Al[cell g][cell d]

[Cell Dfcell E||Cell F]

O [cela

Cell B

Cell C

Cell D

Cell E

Cell F

@ [cell Al[cell 8] [cell]

[cell D||cell E||cell F]

Cell A Cell B Cell C
Cell D Cell E Cell F

O [cell alfcell B][cell

[cell Dl[cell E||cell F|

Match these tables
with the code examples in Question 5.

19. More CSS Techniques 565

CSS Review: Table Properties

6. Using Modernizr to test for border-radius, say whether the div will dis-
play with rounded corners based on the following generated class results:

.border-radius div {
border: 1px solid green;
border-radius: .5em;

a. <html class="js .no-border-radius">

b. <html class="js .border-radius">

c. <html class="no-js">

7. As of this writing, what advantage does Modernizr have over CSS feature
detection? What long-term advantage will CSS feature detection have over
Modernizr?

CSS REVIEW: TABLE PROPERTIES

The following is a summary of the properties covered in this chapter.

Property Description

border-collapse Specifies whether borders between cells are separate or
collapsed

border-spacing Denotes the space between cells set to render as separate

caption-side Specifies the position of a table caption relative to the table

(top or bottom)

empty-cells Specifies whether borders and backgrounds should render
for empty cells

table-layout Specifies how table widths are calculated

566 Part lIl. CSS for Presentation

MODERN WEB
DEVELOPMEN
TOOLS

In the exercises in this book, you've been writing static HTML pages with
embedded style sheets, saving them, and opening them in your browser.
Although that is a perfectly valid approach, it is likely not the way you would
work if you were doing web development for a living. I figure if you are learn-
ing web design and development, you should be familiar with how things are
done in a professional environment.

This chapter introduces you to some of the tools used by web developers to
make their work easier and their code more robust:

* CSS processors for writing CSS more efficiently and optimizing the result-
ing code so it works across all browsers

* Build tools that automate the sorts of repetitive tasks you encounter when
producing code

* Git, a version control program that keeps track of your previous versions
and mabkes it easy for teams to work together on the same code

What these advanced tools have in common is that they are generally used
with a command-line interface (CLI). So, before we look at specific tools, let’s
first get up to speed with the command line.

GETTING COZY WITH THE
COMMAND LINE

You probably use a computer with a graphical user Interface (GUI), with
icons that stand for files and folders, pull-down menus full of options, and
intuitive actions like dragging files from folder to folder or into the trash.

Computer users in the ’60s and ’70s didn’t have that luxury. The only way
to get a computer to perform a task was to type in a command. Despite our

CHAPTER

20

IN THIS CHAPTER

Introduction to the
command line

CSS preprocessors and
postprocessors

Build tools and task runners

Git version control

567

Getting Cozy with the Command Line

fancy GUISs, typing commands into a command-line terminal is far from
obsolete. In fact, the more experienced you become at web development, the
more likely it is you'll dip into the command line for certain tasks. If you are
already a programmer, the command line will be nothing new.

The command line is still popular for a number of reasons. First, it is use-
ful for accessing remote computers, and developers often need to access and
manage files on remote web servers. In addition, it is easier to write a program
for the command line than a standalone application with a GUI, so many of
the best tools for optimizing our workflow exist as command-line programs
only. A lot of those tools can be used together in a pipeline for accomplishing
complex tasks.

The time- and sanity-saving benefits are powerful incentives to take on the
command line. Trust me: if you can learn all those elements and style proper-
ties, you can get used to typing a few commands.

The Command-Line Terminal

The program that interprets the commands you type is called a shell (visual
interfaces are also technically a shell; theyre just fancier). Every Mac and
Linux machine comes installed with Terminal, which uses a shell program
called bash. On macQOS, you will find the Terminal program in Applications >
Utilities (FIGURE 20-1).

[NN] &) jen — -bash — 80x24
Last login: Sun Sep 17 13:23:06 on ttys20@

JensAiri~ jens 1s

Applications Downloads Movies Public
Desktop Dropbox Music Sites
Documents Library Pictures

JensAir:~ jens [

The Terminal window in macOS.

Windows users have a few more hoops to jump through to get set up. The
default command-line tool on Windows is Command Prompt (most eas-
ily accessed with Search), which can perform many of the functions you
may want to do as a developer; however, it does not use bash. Because so
many tools use bash, it is better to install a bash-based shell emulator like

568 Part lIl. CSS for Presentation

Cygwin (cygwin.com) or cmder (cmder.net). If you use Windows 10, it is rec-
ommended that you install a Linux environment on your machine by using
Windows Subsystem (msdn.microsoft.com/en-us/commandline/wsl/about) or
Ubuntu, available in the Windows store (www.microsoft.com/en-us/store/p/
ubuntu/9nblggh4msve).

Getting Started with Commands

When you launch a Terminal window, the first thing you see is a command-
line prompt, which is a string of characters that indicates the computer is
ready to receive your command:

$:

The dollar sign is common, but you may see another symbol in your terminal
program (see Terminal Tip). The underscore in this example stands for the
cursor position, which may appear as a little rectangle or a flashing line.

The complete prompt that I see in Terminal begins with my computer’s name
(“JensAir”) and an indication of the working directory—that is, the directory
the shell is currently looking at. In GUI terms, the working directory is the
folder you are “in.” In this example, the tilde (~) indicates that I am looking at
my root User directory. The “jen” before the prompt character is my username.
In future examples, I will abbreviate the prompt to simply $:.

JensAir:~ jen$: _

When you see the prompt, type in a command, and hit Enter. The computer
executes the command and gives you a new prompt when it is finished. It is
very no-nonsense about it. For some commands, there may be feedback or
information displayed before the next prompt appears. Sometimes everything
happens behind the scenes, and all you see is a fresh prompt.

When you're learning about the command line, it is common to start with
the built-in commands for navigating the file system, tasks typically handled
by the Finder on the Mac and My Computer on Windows. Because they are
fairly intuitive, that’s where I'm going to start my simple command-line les-
son as well.

A nice little utility to try as a beginner is pwd (for “print working directory”),
which displays the complete path of the working (current) directory. To use it,
simply type pwd after the prompt. It’s a good one to try first because you can't
break anything with it, but for seasoned users, it is useful for figuring out
exactly where you've landed if you'e disoriented. The forward slash indicates
that this path starts at the root directory for the entire computer.

$: pwd

/Users/jen
Here’s another easy (and low-risk!) example. Typing the 1s command at the
prompt returns a list of the files and directories in the working directory

Getting Cozy with the Command Line

You can customize the appearance

of Terminal by selecting Preferences
> Profile and changing the settings.

If you want to keep yourself amused,
you can change the prompt character
from $ to the character of your
choice, including an emoji (osxdaily.
com/2013/04/08/add-emoji-
command-line-bash-prompty/).

NOTE

Your user directory is the default root
directory in Terminal and is represented
by a tilde (~) in the prompt, as we saw in
the previous example.

20. Modern Web Development Tools 569

Getting Cozy with the Command Line

(/Users/jen). You can compare it to the Finder view of the same folder in
FIGURE 20-2. They are two ways of looking at the same thing, just as direc-
tory and folder are two terms for the same thing depending on your view.

JensAir:~ jen$ 1s

Applications Downloads Movies Public
Desktop Dropbox Music Sites
Documents Library Pictures
JensAir:~ jen$
eoe@ @& jen
<>)8 B=0mo = # 7 @ a
Favorites
& iCloud Drive D D 0 e
E Al My Files =
@ AirDrop Desktop Documents Downloads Applications
[Desktop
ﬁ} jen .
= i@l i A
[Documents — L = o
© Downloads Movies Music Pictures Public
;Ih\\,- Applications
:.: Dropbox s
©
(/]
Sites Dropbox

1 of 10 selected, 186.26 GB available —

Finder view of the jen home folder.

Some utilities, like pwd, require only their name at the prompt to run, but it is
more common that you'll need to provide additional information in the form
of flags and arguments. A flag changes how the utility operates, like an option
or a preference. It follows the command name and is indicated by a single
or double dash (-). In many cases, flags can be abbreviated to just their first
letter because they are used in context with a particular utility. For example,
I can modify the 1s utility with the -1 flag, which instructs the computer to
display my directory contents in “long” format, including permission settings
and creation dates:

Dotfiles

There are some files on your
computer that are kept hidden in

the Finder view. These files, known
as dotfiles, start with (you guessed
it) a dot, and they tend to handle
information that is intended to
function behind the scenes. If you
type 1s -a(-ais shorthand for “all”),

you can reveal the dotfiles lurking in

JensAir:~ jen$ 1s -1

. o . total 0
i;t::ﬁ;ﬁ&;;:Eﬁfii!;g;fgiiﬁéz dTwXT-Xr-X 5 jen staff 170 Jul 8 2016 Applications
X drwx------ 57 jen staff 1938 Sep 11 09:47 Desktop

as well, but for most users’ purposes, drwx------ 26 jen staff 884 May 18 11:34 Documents

hidden is a good thing. drwx------ + 151 jen staff 5134 Sep 3 15:47 Downloads
drwx------ @ 48 jen staff 1632 Aug 16 16:34 Dropbox
drwx------ @ 72 jen staff 2448 Jul 15 11:21 Library
drwx------ 22 jen staff 748 Oct 6 2016 Movies
drwx------ 12 jen staff 408 Sep 29 2016 Music
drwx------ 14 jen staff 476 Oct 13 2016 Pictures
drwxr-Xxr-x 6 jen staff 204 May 6 2015 Public
drwxr-xr-x 11 jen staff 374 Jul 10 2016 Sites

JensAir:~ jen$

570 PartlIl. CSS for Presentation

An argument provides the specific information required for a particular
function. For example, if I want to change to another directory, I type cd (for
“change directory”) as well as the name of the directory I want to go to (see
Mac Terminal Tip). To make my Dropbox directory the new working directory,
[type this:

JensAir:~ jen$: cd Dropbox

After I hit Enter, my prompt changes to JensAir:Dropbox jen$, indicating
that I am now in the Dropbox directory. If I entered 1s now, I'd get a list of
the files and folders contained in the Dropbox folder (definitely way too long
to show here).

To go up a level, and get back to my home user directory (), I can use the
Unix shorthand for “go up a level”: .. (remember that from your URL path
lesson?). The returned prompt shows I'm back at my root directory (*).

JensAir:Dropbox jen$ cd ..
JensAir:~ jen$

Some other useful file-manipulation commands include mv (moves files and
folders), cp (copies files), and mkdir (creates a new empty directory). The rm
command removes a file or folder in the working directory. Be careful with
this command, however, because it doesnt just move files to the Trash; it
removes them from your computer entirely (see the “A Word of Caution” note).

Another handy command is man (short for manual), which displays docu-
mentation for any command you pass to it. For example, man 1s shows a
description of the 1s (list) command and all of its available flags. Some man
pages are long. To move down in the scroll, hitting the Return key moves you
down one line at a time. To move down a page at a time, hit fn+down arrow
on a Mac or Shift+Page Down on Linux. To go back up a page, it’s fn+up
arrow or Shift+Page Up, respectively. Finally, to quit out of the man page, type
q to return to the prompt.

Learning More

Not surprisingly, these commands are just the tip of the tip of the iceberg
when it comes to command-line utilities. For a complete list of commands
that can be used with bash, see “An A—Z Index of the Bash Command Line for
Linux” at ss64.com/bash/. You'll pick these up on an as-needed basis, so don’t
get overwhelmed. In addition, as you start installing and using new tools like
the ones listed in this chapter, you'll gradually learn the commands, flags, and
arguments for those too. All part of a day’s work!

Clearly, I don't have the space (and if I'm being honest, the experience) to
write a comprehensive tutorial on the command line in this chapter, but you
will find books and plenty of tutorials online that can teach you. I found
Michael Hartl’s tutorial “Learn Enough Command Line to Be Dangerous”

Getting Cozy with the Command Line

On the Mac, Terminal is well
connected to Finder. If you need to
enter a pathname to a directory or a
file, you can drag the icon for that file
or folder from Finder to Terminal, and
it will fill in the pathname for you.

Typing cd followed by a space
always takes you back to your home
directory.

A WORD OF CAUTION

The command line allows you to muck
around in critical parts of your computer
that your GUI graciously protects from
you. It’s best not to type in a command if
you don’t know exactly what it does and
how it works. Make a complete backup
of your computer before you start play-
ing around with command line so you
have the peace of mind that your files
are still available if something goes hor-
ribly wrong.

20. Modern Web Development Tools 571

CSS Power Tools (Processors)

Here’s the Thing About
Development Tools

Be aware that the development tool
landscape is ever-shifting. Tools come
and go in rapid-fire fashion, with

the whole development community
jumping on one framework
bandwagon, then moving on to the
next new thing. It's difficult to write
about specific tools in a book that
has to last a couple of years. | have
made an effort to present the most
established and stable tools as of
early 2018, but you should know that
there are many more niche tools out
there, and by the time you read this,
some new tool may be all the rage.
As you read this chapter, focus on

the functions the tools perform, start
with the ones mentioned here when
you’re ready, and keep your ear to the
ground for newer options.

NOTE

Hat tips to Stefan Baumgartner, whose
article “Deconfusing Pre- and Post-
Processing” (medium.com/@ddprrt/
deconfusing-pre-and-post-processing-
d68e3bd078a3) helped me sort out
all this CSS processing stuff, and David
Clark for his clarifying article “It’s Time
for Everyone to Learn About PostCSS”
(davidtheclark.com/its-time-for-every-
one-to-learn-about-postcss/).

to be thorough and accessible if you are starting from square one (www.
learnenough.com/command-line-tutorial#sec-basics). 1 also recommend the
series of tutorials from Envato Tuts+, “The Command Line for Web Design”
(webdesign.tutsplus.com/series/the-command-line-for-web-design--cms-777). 1f
you enjoy video tutorials, try the “Command Line for Non-Techies” course
by Remy Sharp (terminal.training).

Now that you have a basic familiarity with the command line, let’s look at
tools you might use it for, beginning with tools for writing and optimizing CSS.

CSS POWER TOOLS (PROCESSORS)

[know that you are just getting used to writing CSS, but I would be negligent
if I didn’t introduce you to some advanced CSS power tools that have become
central to the professional web developer workflow. They fall into two general
categories:

* Languages built on top of CSS that employ time-saving syntax charac-
teristics of traditional programming languages. These are traditionally
known as preprocessors. The most popular preprocessors as of this writ-
ing are Sass, LESS, and Stylus. When you write your styles in one of these
languages, you have to use a program or script to convert the resulting file
into a standard CSS document that browsers can understand.

* CSS optimization tools take your clean, standard CSS and make it even
better by improving cross-browser consistency, reducing file size for bet-
ter performance, and enhancing many other tasks. Tools that optimize
browser-ready CSS are commonly known as postprocessors.

Before you get too comfortable with the terms preprocessor and postprocessor,
you should know that the distinction is not exactly clear-cut. Preprocessors
have always been able to do some of the optimization tasks that postproces-
sors are good for, and postprocessors are starting to allow some functions
typically found in preprocessors. The lines are blurring, so some folks refer to
all of these tools simply as CSS processors, including souped-up special syn-
taxes for authoring as well as CSS optimizers. Many CSS processor functions
are also built in to third-party tools such as CodeKit (codekitapp.com, Mac
only) for one-stop shopping. I think it is beneficial for you to be familiar with
the traditional terms as they are still in widespread use, and I'm going to use
them here for the sake of simplicity.

Introduction to Preprocessors (Especially Sass)

Preprocessors consist of an authoring syntax and a program that translates
(or compiles, to use the proper term) files written in that syntax to plain old
CSS files that browsers can use (FIGURE 20-3). For example, in Sass, you write

572 PartlIl. CSS for Presentation

https://webdesign.tutsplus.com/series/the-command-line-for-web-design--cms-777
https://medium.com/@ddprrt/deconfusing-pre-and-post-processing-d68e3bd078a3
https://medium.com/@ddprrt/deconfusing-pre-and-post-processing-d68e3bd078a3
https://medium.com/@ddprrt/deconfusing-pre-and-post-processing-d68e3bd078a3

CSS Power Tools (Processors)

in the Sass syntax language and save your files with the .scss suffix, indicating
it is in that language and not a CSS file. The Sass program, originally writ-)
ten in the Ruby language (see Technical Note), converts the SCSS syntax to
standard CSS syntax and saves the resulting file with the .css suffix. LESS and
Stylus work the same way, but they use JavaScript for conversion. All of these
tools are installed and run via the command line.

The Sass project wrote a newer
version in C++ that can be used with
other languages. Most developers
now compile .scss files with Node

Sass because it integrates more
smoothly into a workflow with other
Extended Node.js tools.
(scripting-like) COMPILER Standard - J
CSS syntax (converter) CSS
.5CsS Sass Ruby gem or Node Sass (JS)
less less.js .CSS
.styl stylus.js

A simplified view of the role of a preprocessor.

By far, the most popular preprocessor is Sass (“Syntactically awesome style
sheets”), created by Hampton Catlin and Nathan Weizenbaum, who were
tired of the repetitiveness of normal CSS. Their new syntax allowed CSS
authors to use the type of shortcuts typical in scripting. Originally, it used
an indented, bracket-free syntax (which is still an option), but a later release
known as SCSS (for “Sassy CSS”) is based on the bracketed ({ }) CSS format
we know and love. In fact, a valid CSS document would also be a valid SCSS
document. This makes it much easier to get started with Sass, because it is
familiar, and you can use just a little bit of Sass in style sheets written the way
you've learned in this book.

I'm going to show you a few examples of Sass syntax to give you the general
idea. When you are ready to take on learning Sass, a great first step is Dan
Cederholm’s book Sass for Web Designers (A Book Apart). I've listed addi-
tional resources at the end of the section. In the meantime, let’s look at three
of the most popular Sass features: nesting, variables, and mixins.

Nesting

Let’s say you have an HTML document with a nav element that contains an
unordered list for several menu options. Sass lets you nest the style rules for
the nav, ul, and 1i elements to reflect the structure of the HTML markup.
That alleviates the need to type out the selectors multiple times—the Sass
compiler does that for you. The following example shows nested styles as they
can be written in Sass syntax:

20. Modern Web Development Tools 573

CSS Power Tools (Processors)

nav {
margin: lem 2em;

ul {
list-style: none;
padding: 0;
margin: 0;

1i {
display: block;
width: 6em;
height: 2em;
}
}
}

When Sass converts the SCSS file to standard CSS, it compiles to this:

nav {
margin: lem 2em;

}

nav ul {
list-style: none;
padding: 0;
margin: O;

}

nav ul 1i {
display: block;

width: 6em;
height: 2em;
}
Variables

Avariable is a value you can define once, and then use multiple times through-
out the style sheet. For example, O’Reilly uses the same shade of red repeat-
edly on its site, so their developers could create a variable named “oreilly-red”
and use the variable name for color values. That way, if they needed to tweak
the shade later, they need to change the variable value (the actual RGB color)
only in one place. Here’s what setting up and using a variable looks like in Sass:

$oreilly-red: #900;
a {

border-color: $oreilly-red;

}

When it compiles to standard CSS, the variable value is plugged into the place
where it is called:
a {
border-color: #900;

}

The advantage of using a variable is that you can change the value in one
place instead of searching and replacing through the whole document. When
teams use variable names, it also helps keep styles consistent across the site.

574

Part Ill. CSS for Presentation

CSS Power Tools (Processors)
Mixins
Sass allows you to reuse whole sets of styles by using a convention called
mixins. The following example saves a combination of background, color,

and border styles as a mixin named “special.” To apply that combination of
styles, @include it in the declaration and call it by name:

@mixin special {
color: #fff;
background-color: #befcéd;
border: 1px dotted #59950c;
}
a.nav {
@include special;

a.nav: hover {
@include special;
border: 1px yellow solid;

}
When compiled, the final CSS looks like this:

a.nav {
color: #fff;
background-color: #befcé6d;
border: 1px dotted #59950c;

}

a.nav: hover {
color: #fff;
background-color: #befcéd;
border: 1px dotted #59950c;
border: 1px yellow solid;

}

Notice that the hover state has a second border declaration that overrides
the values in the mixin, and that’s just fine. Mixins are a popular solution for
dealing with vendor prefixes. Here is a mixin for border-radius that includes
an argument (a placeholder for a value you provide indicated with a $):

@mixin rounded($radius) {
-webkit-border-radius: $radius;
-moz-border-radius: $radius;
border-radius: $radius;

}

When including the mixin in a style rule, provide the value for $radius, and
it gets plugged into each instance in the declarations:

aside {
@include rounded(.5em);
background: #f2f5ds5;

}

This compiles to the following:

aside {
-webkit-border-radius: .5em;
-moz-border-radius: .5em;
border-radius: .5em;
background: #f2f5d5;
}

20. Modern Web Development Tools 575

CSS Power Tools (Processors)

LESS and Stylus

Sass is the most widely used
preprocessor, but it’s not the only
game in town for nesting, variables,
mixins, and more.

LESS (lesscss.org) is another CSS
extension with scripting-like abilities.
Itis very similar to Sass, but it lacks
advanced programming logic features
(such as if/else statements) and

has minor differences in syntax.

For example, variables in LESS are
indicated by the @ symbol instead of
$. The other major difference is that

a LESS file is processed into regular
CSS with JavaScript (less.js) instead of
Ruby. Note that compiling a LESS file
into CSS is processor-intensive and
would bog down a browser. For that
reason, it is best to do the conversion
to CSS before sending it to the server.
LESS offers a very active developer
community and the “LESShat” mixin
library.

Stylus (stylus-lang.com) is the
relative new kid on the preprocessor
block. It combines the logic features
of Sass with the convenience of a
JavaScript-based compiler (stylus.
Jjs). It also offers the most flexible
syntax: you can include as much CSS
“punctuation” (brackets, colons, and
semicolons) as you like, prepend
variables with a $ or not, and treat
mixin names like regular properties.
Developers who use Stylus like how
easy it is to write and compile. Nib
and Axis are two mixin libraries
available for Stylus.

When you are ready to take your
CSS authoring to the next level,
you can give each of these a try.
The one you choose is a matter of
personal preference; however, if
you are working on a professional
development team, one may be
chosen for you.

Building a mixin around fill-in-the-blank arguments makes them reusable
and even shareable. Many developers create their own mixin libraries to use
on multiple projects. You can also take advantage of existing mixin libraries
in tools like Compass (an open source CSS authoring framework at compass-
style.org) or Bourbon (bourbon.io). By the time you read this, there may be
others, so search around to see what’s available.

Sass resources

Nesting, variables, and mixins are only a tiny fraction of what Sass can do. It
can handle math operations, “darken” and “lighten” colors mathematically on
the fly, and process if/else statements, just to name a few features.

Once you get some practice under your belt and feel that you are ready to
take your style sheets to the next level, explore some of these Sass and LESS
articles and resources:

* The Sass site (sass-lang.com)

* “Getting Started with Sass,” by David Demaree (alistapart.com/articles/
getting-started-with-sass)

* “An Introduction to LESS, and LESS Vs. Sass,” by Jeremy Hixon (www.
smashingmagazine.com/2011/09/an-introduction-to-less-and-comparison-
to-sass/)

Introduction to Postprocessors (Mostly PostCSS)

As I mentioned earlier, postprocessors are scripts that optimize standard
CSS code to make it better (FIGURE 20-4). “Better” usually means consistent
and bug-free browser support, but there are hundreds of postprocessing
scripts that do a wide variety of cool things. We'll look at some examples in
a moment.

Standard Optimization Better
CSS tools CSS
.CSS PostCSS .CSS
Rework
Pleeease

Postprocessors optimize existing, standard CSS files.

576 Part lIl. CSS for Presentation

The poster child for postprocessing is Autoprefixer, which takes the CSS
styles you write, scans them for properties that require vendor prefixes,
and then inserts the prefixed properties automatically What a time- and
headache-saver!

Back in Chapter 16, CSS Layout with Flexbox and Grid, we used Autoprefixer
via a web page interface (autoprefixer.github.io) to generate the required pre-
fixes. Although the web page is handy (especially while you are learning), it
is more common for postprocessors to be implemented with a task runner
such as Grunt or Gulp. We'll take a quick look at them later in this chapter.

As of this writing, the postprocessing scene is dominated by PostCSS (post-
css.org). PostCSS is “a tool for transforming CSS with JavaScript” created by
Andrey Sitnik, who also created Autoprefixer. PostCSS is both a JavaScript-
based program (a Node.js module, to be precise) and an ecosystem of com-
munity-created plug-ins that solve all sorts of CSS problems.

PostCSS parses the CSS (or a CSS-like syntax such as Sass or LESS), analyzes
its structure, and makes the resulting “tree” available for plug-ins to manipu-
late the code (see Note).

This open API makes it easy for anyone to create a PostCSS plug-in, and as a
result, there are literally hundreds of plug-ins created and shared by develop-
ers (see them at www.postcss.parts). They range from the life-saving to the
esoteric, but because it is a modular system, you can pick and choose just the
tools that you find useful or even create your own. Here are just a few:

* Stylelint (stylelint.io) checks your CSS file for syntax errors (a process
called linting) and redundancies.

* (CSSNext (cssnext.io) allows you to use future CSS Level 4 features today
by generating fallbacks that work across browsers that haven't imple-
mented those features yet.

* PreCSS (github.com/jonathantneal/precss) is a bundle of plug-ins that lets
you write Sass-like syntax (loops, conditionals, variables, mixins, and so
on) and converts it to standard CSS. This is an example of a postproces-
sor being used to aid authoring, which is where the line between pre- and
postprocessing gets blurred.

* Fixie (github.com/tivac/fixie) inserts hacks that are required to make
effects work in old versions of Internet Explorer (“Fix-IE,” get it?).

¢ Color format converters translate alternative color formats (such as HWB,
HCL, and hex + alpha channel) to standard RGB or hexadecimal.

* The Pixrem plug-in converts rem units to pixels for non-supporting
browsers.

* The List-selectors plug-in lists and categorizes the selectors you've used
in your style sheet for code review. It is an example of a plug-in that does
not alter your file but gives you useful information about it.

CSS Power Tools (Processors)

NOTE

The “tree” is formally known as the
Abstract Syntax Tree (AST) and is the API
for PostCSS plug-ins.

20. Modern Web Development Tools 577

http://www.postcss.parts

Build Tools (Grunt and Gulp)

NOTE

PostCSS is not the only postprocessor out
there. Other frameworks include Rework
(github.com/reworkcss/rework) and
Pleeease (pleeease.io), but they are not
as full featured. By the time you read this,
there may be many more. So goes the
world of web development tools.

NOTE

There is a Grunt plug-in for converting
SCSS files, but it is not as full featured
as Ruby.

From that short list, you can probably see why postprocessors have become
so popular. They free you up to write CSS with the syntax you want, taking
advantage of cutting-edge properties and values, but with the peace of mind
that everything will work well across browsers. They also eliminate the need
to know about every browser idiosyncrasy, past and present, in order to do
your job. It’s definitely worth knowing about even if you aren’t quite ready to
take it on right away. Check out these resources for more information:

* Drew Minns’ article “PostCSS: A Comprehensive Introduction” for
Smashing Magazine
(www.smashingmagazine.com/2015/12/introduction-to-postcss/)

* The Envato Tuts+ tutorial “PostCSS Deep Dive”
(webdesign.tutsplus.com/series/postcss-deep-dive--cms-889)

BUILD TOOLS (GRUNT AND GULP)

In the world of software, a build process is required to test source code and
compile it into a piece of executable software. As websites evolved from a
collection of static HTML files to complex JavaScript-reliant applications,
often generated from templates, build tools have become integral to the web
development workflow as well. Some web build tools like Grunt and Gulp
are commonly referred to as task runners. You use them to define and run
various tasks (anything you might do manually from the command line) on
your working HTML, JavaScript, CSS, and image files to get them ready to
publish.

Automation

You can automate your tasks, too, so they happen in the background without
your needing to type commands. To do this, you tell the build tool to “watch”
your files and folders for changes. When a change is detected, it triggers the
relevant tasks to run automatically as you've configured them.

Once you have the task runner configured and set to watch your files, you can
go about your business writing CSS, and all that command-line stuff happens
for you without ever touching a terminal appplication. Here’s how that might
look. Imagine making a change to your Sass file and saving it. Grunt instantly
sees that the .scss file has changed, automatically converts it to .css (see Note),
and then reloads the browser to reflect your change.

Some Common Tasks

The previous section on CSS processors should have given you an idea of
some things that would be nice to automate. Allow me to list several more to
give you a solid view of the ways task runners make your job easier.

578 Part lIl. CSS for Presentation

* Concatenation. It is common for web teams to divide style sheets and
scripts into small, specialized chunks of .css and .js. When it’s time to
publish, however, you want as few calls to the server as possible for per-
formance purposes, so those little chunks get concatenated (put together)
into master files.

* Compression and “minification.” Another way to improve performance
is to make your files as small as possible by removing unnecessary
spaces and line returns. Build tools can compress your CSS and minify
JavaScript.

* Checking your HTML, CSS, and JavaScript for errors (linting).

* Optimizing images with tools that squeeze down the file size of all the
images in a directory.

* Help committing or pushing changes to a version control repository (Git).

* Refreshing your browser to reflect whatever changes you just made to a
file (LiveReload plug-in).

* Building final HTML files from templates and content data (see the side-
bar “Building Sites with Data and Templates”).

* Running CSS pre- and postprocessors.

Grunt and Gulp

The first and most established web build tool is Grunt (gruntjs.com), presum-
ably named for handling all of the “grunt work” for you. It is a JavaScript tool
built on the open source Node.js framework, and you operate it using the
command line. The compelling thing about Grunt is that the development
community has created literally thousands of plug-ins that perform just
about any task you can think of. Just download one, configure it, and start
using it. You do not have to be a JavaScript master to get started.

Another popular option is Gulp (gulpjs.com), which has the advantage of
running a little faster but also requires more technical knowledge than
Grunt because you configure it with actual JS code. Other contenders as of
this writing are Webpack (quite popular!), Brunch, Browserify, and Broccoli.
New tools with amusing names pop up on a regular basis. Some developers
simply use Node.js-based scripts without using a task-runner program as a
go-between. The point is, there are plenty of options.

You will find many online tutorials for learning how to download and con-
figure the build tool of your choice when you are ready to automate your
workflow. I hope that I have made you aware of the possibilities, and when
a job interviewer mentions Grunt and Gulp, you'll know they aren’t just suf-
fering from indigestion.

Build Tools (Grunt and Gulp)

20. Modern Web Development Tools

579

Build Tools (Grunt and Gulp)

Building Sites with Data and Templates

Throughout this book, we’ve been writing the HTML for our
pages manually, wrapping tags around content elements in a
logical source order. All of the content for the page is contained
right there in the .html document. Of course, it is completely
acceptable to build whole sites out of static web pages such as
these, but in the real world—where sites might have thousands
of pages with content tailored to individual users—a more
robust solution is required.

It is more common these days to use a template system or
framework to generate web pages from content stored as data.
The templates use regular HTML markup, so everything you've
learned so far will serve you well, but instead of specific content
between the tags, special data markers are placed to pull in
content from a database or data file.

There are a vast number of tool options for site generation, all
of which are well beyond the scope of this book. However, as
usual, I'd like to give you a taste of what the templating process
might look like.

I once worked on a site that used a template tool called
Handlebars (handlebarsjs.com) to pull content in from data
files written in the YAML (www.yaml.org/start.html) language.
These are just two options for doing this sort of thing. Let’s look
at a small example of how a template and data were used to
assemble the web content shown in FIGURE 20-5.

Jennifer has been designing for the web since 1993 when she worked on the first
‘commercial web site, GNN, from O'Reilly Media. Since then she has gone on to write
several books on web design for O'Reilly, including Web Design in a Nutshell, Learning
Web Design, and the HTMLS Pocket Reference, Mors recently, Jonnifer's days aro filled
with organizing the ARTIFACT Conference. When not working, Jennifer enjoys making
stuff, cooking, travel, indie-rock music, and raising a cool kid.

jenville.com
@jenville

FIGURE 20-5. Asmall portion of a speaker web page that
was created with Handlebars and YAML.

Here is a small snippet of the data as it appears in the YAML
(yml) file:

speaker--name: "Jennifer Robbins"
speaker--description: "Designer, Author, ARTIFACT
Co-founder"
speaker--photo: "/img/speakers/jennifer-robbins.
jpg”
#HTML
speaker--biography: |

<p>Jennifer has been designing for the web since
1993 when she worked on the first commercial web
site, GNN, from 0'Reilly Media. Since then she has

gone on to write several books on web design for
0'Reilly, including <i>Web Design in a Nutshell
</i>, <i>Learning Web Design</i>, and the <i>HTMLS
Pocket Reference</i>. More recently, Jennifer's
days are filled with organizing the ARTIFACT
Conference. ..</p>
speaker--links:
- link--label: "Website"
link--target: "http://www.jenville.com"
link--title: "jenville.com"
- link--label: "Twitter"
link--target: "http://www.twitter.com/jenville"
link--title: "@jenville"
And here is the markup from the Handlebars template
document, speakers.hbs. (I've edited it slightly for brevity.) If
you look at the highlighted code, you see that instead of actual
content, there are the same data labels used in the YAML file
between curly brackets. (If you turn a curly bracket on its side, it
looks like a handlebar mustache, thus the namel!). Notice also
that the template has markup for one label/link pair, but it loops
through and displays all the speaker--1inks in the data file:

<div class="layout--container">
<div class="speaker--photo-container">

</div>
<article class="speaker--content">
<div class="speaker--biography">
{{{page-data.speaker--biography}}}
</div>
<ul class="speaker--links">
{{#feach page-data.speaker--links}}
<1i class="speaker--link-item">{{1link--label}}:
<a href="http://{{link--target}}" class="speaker--
link">{{link--title}}</1i>
{{/each}}

</article>
</div
This is just one example of how templates cut down on
redundancy in markup. The Handlebars site (handlebarsjs.com)
has a nice description of semantic templates right on the home
page if you'd like more information on how it works.

Of course, browsers have no idea what to do with these file
formats, so before the site can be published, it needs to be built
or assembled, merging all the data into the template modules
and all the modules into whole web pages. That is the job of
scripts and build tools like the ones introduced in this section.
Hopefully, this brief example gives you an inkling of how
generated sites work.

580 Part IIl. CSS for Presentation

VERSION CONTROL WITH
GIT AND GITHUB

If you've done any sort of work on a computer, you've probably used some
sort of system for keeping track of the versions of your work. You might have
come up with a system of naming drafts until you get to the “final” version
(and the “final-final” version, and the “final-final-no-really” version, and so
on). You might take advantage of macOS’s Time Machine to save versions
that you can go back to in an emergency. Or you might have used one of the
professional version control systems that have been employed by teams for
decades.

The king of version control systems (VCS) for web development is a robust
program called Git (git-scm.com). At this point, knowing your way around
Git is a requirement if you are working on a team and is a good skill to have
even for your own projects.

In this section, I'll introduce you to the terminology and mental models that
will make it easier to get started with Git. Teaching all the ins and outs of how
to configure and use Git from the command line is a job for another book
and online tutorials (I list a few at the end of the section), but I wish someone
had explained the difference between a “branch” and a “fork” to me when I
was starting out, so that’s what I'll do for you.

We'll begin with a basic distinction: Git is the version control program that
you run on your computer; GitHub (github.com) is a service that hosts Git
projects, either free or for a fee. You interact with GitHub by using Git, either
from the command line, with the user interface on the GitHub website, or
using a standalone application that offers a GUT interface for Git commands.
This was not obvious to me at first, and I want it to be clear to you from the

get-go.

GitHub and services like it (see Note) are mainly web-based wrappers around
Git, offering features like issue tracking, a code review tool, and a web Ul for
browsing files and history. They are convenient, but keep in mind that you
can also set up Git on your own server and share it with your team members
with no third-party service like GitHub involved at all.

Why Use Git

There are several advantages to making Git (and GitHub) part of your work-
flow. First, you can easily roll back to an earlier version of your project if
problems show up down the line. Because every change you make is logged
and described, it helps you determine at which point things might have gone
wrong.

Git also makes it easy to collaborate on a shared code source. You may tightly
collaborate with one or more developers on a private project, merging all of

Version Control with Git and GitHub

Git was created by Linus Torvalds, the
creator of the Linux operating system,
when he needed a way to allow an
enormous community to contribute
to the Linux project.

NOTE

Beanstalk (beanstalkapp.com), GitLab
(gitlab.com), and Bitbucket (bitbucket.
org) are other Git hosting services aimed
at enterprise-scale projects. GitLab has
a free option for public projects, similar
to GitHub, and because it is open source,
you can host it yourself.

20. Modern Web Development Tools 581

Version Control with Git and GitHub

your changes into a primary copy. As an added benetfit, the sharing process is
a way to get an extra set of eyes on your work before it is incorporated. You
may also encourage loose collaboration on a public project by welcoming
contributions of people you don't even know in a way that is safe and man-
aged. Git is a favorite tool for this type of collaboration on all sorts of open
source projects.

Getting up to speed with GitHub in particular is important because it’s what
everyone is using. If your project is public (accessible to anyone), the hosting
is free. For private and commercial projects, GitHub charges a fee for host-
ing. In addition to hosting projects, they provide collaboration tools such as
issue tracking. You may have already found that some of the links to tools I
mentioned in this book go to GitHub repositories. I want you to know what
you can do when you get there.

How Git Works

Git keeps a copy of every revision of your files and folders as you go along,
with every change (called a commit) logged in with a unique ID (generated
by Git), a message (written by you) describing the change, and other meta-
data. All of those versions and the commit log are stored in a repository, often
referred to as a “repo.”

Once you have Git installed on your computer, every time you create a new
repository or clone an existing one, Git adds a directory and files representing
the repo’s metadata alongside other files in the projects folder. Once the Git
repository is initialized, you can commit changes and take advantage of the
“time machine” feature if you need to get back to an earlier version. In this
way, Git is a good tool for a solo workflow.

More likely you'll be working with a team of other folks on a project. In that
case, a hub model is used in which there is an official repository on a central
server that each team member makes a local copy of to work on. Each team
member works on their own machine, committing to their local repo, and at
logical intervals, uploads their work back to the central repository:.

That’s what makes Git a distributed version control system compared to
other systems, like SVN, that require you to commit every change directly to
the server. With Git, you can work locally and offline.

The first part of mastering Git is mastering its vocabulary. Let’s run through
some of the terminology that will come in handy when you're learning Git
and the GitHub service. FIGURE 20-6 is a simplified diagram that should
help you visualize how the parts fit together.

582 Part lIl. CSS for Presentation

Pt

Workspace
(working
directory)

Remote
repository

Index Local

(staging area) repository

Visualization of Git structure.

Working directory

The working directory is the directory of files on your computer in which
you do your actual work. Your working copy of a file is the one that you can
make changes to, or to put it another way, it’s the file you can open from the
hard drive by using Finder or My Computer.

Repository

Your local Git repository lives alongside the files in your working directory.
It contains copies, or snapshots, of all the files in a single project at every
step in its development, although these are kept hidden. It also contains the
metadata stored with each change. There may also be a central repository for
the project that lives on a remote server like GitHub.

Commit

A commit is the smallest unit of Git interaction and the bulk of what you will
do with Git. Git uses “commit” as a verb and a noun. You may “save” your
working document frequently as you work, but you commit (v.) a change
when you want to deliberately add that version to the repository. Usually you
commit at a logical pause in the workflow—for example, when you've fixed
a bug or finished changing a set of styles.

When you commit, Git records the state of all the project files and assigns
metadata to the change, including the username, email, date and time, a
unique multidigit ID number (see the “Hashes” sidebar), and a message that
describes the change. These stored records are referred to as commits (n.). A
commit is like a snapshot of your entire repository—every file it contains—
at the moment in time you made the commit.

Commits are additive, so even when you delete a file, Git adds a commit to
the stack. The list of commits is available for your perusal at any time. On
GitHub, use the History button to see the list of commits for a file or folder.

The level of granularity in commits allows you to view the repository (proj-
ect) at any state it’s ever been at, ever. You never lose work, even as you proceed

Version Control with Git and GitHub

Git Visualization
Resources

Need more help picturing how all
these pieces and commands work
together? Try these visualization
resources:

* The Git Cheatsheet from NDP
Software provides a thorough
interactive mapping of how various
Git commands correspond to the
workspace and local and remote
repositories. It's worth checking
out at ndpsoftware.com/git-
cheatsheet.html#loc=workspace;.

¢ AVisual Git Reference (marklodato.
github.io/visual-git-quide/index-
en.html) is a collection of diagrams
that demonstrate most common
Git commands.

* “Understanding the GitHub Flow”
(guides.github.com/introduction/
flow/) explains a typical workflow
in GitHub.

Hashes

The unique ID that Git generates for
each commit is technically called

a SHA-1 hash, more affectionately
known as simply a hash in the
developer world. It is a 40-character
string written in hexadecimal (0-9
and A-F are used), so the odds

of having a duplicate hash are
astronomical. It is common to use
short hashes on projects instead of
the full 40 characters. For example,
on GitHub, short hashes are seven
characters long, and you’ll see them
in places like a project’s Commits
page. Even with just seven characters,
the chances of collision are tiny.

20. Modern Web Development Tools

583

Version Control with Git and GitHub

NOTE

There are exceptions, as it is possible to
reorder commits; however, it is almost
always true that the head commit is also
the most recent.

further and further. It’s a great safety net. Indirectly this also means that
there’s nothing you can do with Git that you cant undo—you can't ever get
yourself into an impossible situation.

Staging

Before you can commit a change, you first have to make Git aware of the file
(or to track it, to use the proper term). This is called staging the file, accom-
plished by adding it to Git. In the command line, it’s git add filename, but
other tools may provide an Add button to stage files. This creates a local index
of files that you intend to commit to your local repository but havent been
committed yet. It is worth noting that you need to “add” any file that you've
changed, not just new files, before committing them. Staging as a concept
may take a little while to get used to at first because it isn't especially intuitive.

Branch

A branch is a sequential series of commits, also sometimes referred to as a
stack of commits. The most recent commit on any given branch is the head
(see Note). You can also think of a branch as a thread of development. Projects
usually have a primary or default branch, typically (although not necessarily)
called master, which is the official version of the project. To work on a branch,
you need to have it checked out.

When working in a branch, at any point you can start a new branch to do a
little work without affecting the source branch. You might start a new branch
to experiment with a new feature, or to do some debugging, or to play around
with presentation. Branches are often used for small, specific tasks like that,
but you can create a new branch for any purpose you want.

For example, if you are working on “master,” but want to fix a bug, you can
create a new branch off master and give the branch a new descriptive name,
like “bugfix.” You can think of the bugfix branch as a copy of master at the
point at which bugfix was created (FIGURE 20-7), although that’s not exactly
what is happening under the hood.

To work on the bugfix branch, you first need to check it out (git checkout
bugfix), and then you can go about your business of making changes, saving
them, adding them to Git, and committing them. Eventually, the new branch
ends up with a commit history that is different from the source branch.

m—(commitl]-[commit2 H commit3 } commits

new branch merge

BUGFIX commit3 commit4

Creating and merging a new branch.

584 Part lIl. CSS for Presentation

Version Control with Git and GitHub

When you are done working on your new branch, you can merge the changes
you made back into the source branch and delete the branch. If you don't
like what’s happening with the new branch, delete it without merging, and
no one’s the wiser.

Merging

Merging is Git’s killer feature for sharing code. You can merge commits from
one branch into another (such as all of the commits on a feature branch
into master) or you might merge different versions of the same branch that
are on different computers. According to the Git documentation, merging
“incorporates changes from the named commits (since the time their histo-
ries diverged from the current branch) into the current branch.” Put another
way, Git sees merging as “joining two histories together,” so it useful to think
of merging happening at the commit level.

Git attempts to merge each commit, one by one, into the target branch. If
only one branch has changed, the other branch can simply fast-forward to
catch up with the changes. If both branches have commits that are not in the
other branch—that is, if both branches have changes—Git walks through
each of those commits and, on a line-by-line basis, attempts to merge the dif-
ferences. Git actually changes the code inside files for you automatically so
you don’t have to hunt for what’s changed.

However, if Git finds conflicts, such as two different changes made to the
same line of code, it gives you a report of the conflicts instead of trying to
change the code itself. Conflicts are pointed out in the source files between
======= 3nd <<<<<<< characters (FIGURE 20-8). When conflicts arise,
a real person needs to read through the list and manually edit the file by
keeping the intended change and deleting the other. Once the conflicts are
resolved, the files need to be added and committed again.

55 p{
docs.css margin-top: @;
docs.css margin-bottom: 1rem;

}

.container > p {

€€<<<<< big-load-comin-through-container
margin: .6rem auto lrem;
max-width: 88@px;
margin: .5rem auto 1rem;
max-width: 9@apx;

»>>>>>> gh-pages

}

hr {
max-width: 1@@px;
margin: 3rem auto;
border: 8;
border-top: .lrem solid #eee;

}

GitHub conflict report.

20. Modern Web Development Tools 585

Version Control with Git and GitHub

Always pull before you push to avoid
conflicts.

NOTE

Forking is most often used for contribut-
ing to an open source project. For com-
mercial or personal projects, you gener-
ally commit directly to the repository
shared by your team.

Remotes

All of the features we've looked at so far (commits, branches, merges) can be
done on your local computer, but it is far more common to use Git with one
or more remote repositories. The remote repo could be on another computer
within your organization, but it is likely to be hosted on a remote server like
GitHub. Coordinating with a remote repository opens up a few other key Git
features.

Clone

Cloning is making an exact replica of a repository and everything it contains.
It's common to clone a repo from a remote server to your own computer,
but it is also possible to clone to another directory locally. If you are getting
started on an existing project, making a clone of project’s repo is a logical
first step.

Push/pull

If you are working with a remote repository, you will no doubt need to upload
and download your changes to the server. The process of moving data from
your local repository to a remote repository is known as pushing. When you
push commits to the remote, they are automatically merged with the current
version on the server. To update your local version with the version that is on
the server, you pull it, which retrieves the metadata about the changes and
applies the changes to your working files. You can think of pushing and pull-
ing as the remote version of merging.

It is a best practice to pull the remote master frequently to keep your own
copy up-to-date. That helps eliminate conflicts, particularly if there are a lot
of other people working on the code. Many GUI Git tools provide a Sync
button that pulls and pushes in one go.

Fork

You may hear talk of “forking” a repo on GitHub. Forking makes a copy of
a GitHub repository to your GitHub account so you have your own copy to
play around with. Having the repo in your account is not the same as having
a working copy on your computer, so once you've forked it, you need to clone
(copy) it to your own computer (FIGURE 20-9).

People fork projects for all sorts of reasons (see Note). You might just want to
have a look under the hood. You may want to iterate and turn it into some-
thing new. You may want to contribute to that project in the form of pull
requests. In any scenario, forking is a safeguard for repository owners so they
can make the project available to the public while also controlling what gets
merged back into it.

586 Part lIl. CSS for Presentation

George’s Repo Jen’s Repo
github.com/george/app-idea github.com/jen/app-idea

Jen’s
Computer

Once you fork a repository on GitHub, you need to clone it to get a
local working copy. (Based on a diagram by Kevin Markham.)

Pull request

It is important to keep in mind that your forked copy is no longer directly
connected to the original repository it was forked from. You will not be able
to push to the original. If you come up with something you think is valuable
to the original project, you can do what is called a pull request—that is, ask-
ing the owner to pull your changes into the original master.

You can also do a pull request for a repo that you have access to, not just one
that you've forked. For example, if you've made a branch off the main project
branch, you can do a pull request to get your team to review what you've
done and give you feedback before merging your changes back in. In fact,
pull requests may be used earlier in the process to start a discussion about a
possible feature.

Git Tools and Resources

Most Git users will tell you that the best way to use Git is with the command
line. As David Demaree says in his book Git for Humans, “Git’s command-
line interface is its native tongue.” He recommends typing commands and
seeing what happens as the best way to learn Git. The downside of the com-
mand line, of course, is that you need to learn all the Git commands and
perhaps also tackle the command-line interface hurdle itself. The following
resources will help get you up to speed:

* Git for Humans by David Demaree (A Book Apart) is a great place to start
learning Git via the command line (or however you intend to use it!).

* Pro Git by Scott Chacon and Ben Straub (Apress) is available free online
(git-scm.com/book/en/v2).

Version Control with Git and GitHub

20. Modern Web Development Tools

587

Conclusion

e “Git Cheat Sheet” from GitHub is a list of the most common commands
(services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf).

* The Git Reference Manual on the official Git site provides a thorough
listing of commands and features (git-scm.com/docs).

There are also several graphical Git applications available for those who
prefer icons, buttons, and menus for interacting with their repositories, and
there’s no shame in it. I know many developers who use a graphical app and
Terminal side by-side, choosing the tool that most easily allows them to do
the task they need to do. If you feel more comfortable getting started with a
graphical Git tool, I recommend the following:

* GitHub Desktop (from GitHub) is free and available for Mac and
Windows (desktop.github.com).

* Git Tower 2 (Mac and Windows) costs money, but it is more powerful
and offers a thoughtfully designed interface, including visualizations of
branches and merges (www.git-tower.com).

Many code editors have built-in Git support or Git/GitHub plug-ins as well.

If you go to the GitHub.com site, they do a good job of walking you through
the setup process with easy-to-follow tutorials. You can set up an account and
gain some basic GitHub skills in a matter of minutes. Their online documen-
tation is top-notch, and they even have a YouTube channel with video tutori-
als aimed at beginners (www.youtube.com/githubguides).

And speaking of GitHub, for a good introduction to the ins and outs of
the GitHub interface, I recommend the book Introducing GitHub: A Non-
Technical Guide by Brent Beer (O'Reilly).

When you are ready to get started using Git for version control, you'll find all
the support you need.

CONCLUSION

This concludes the web developer “power tools” chapter. We began with an
introduction to the command line, and looked at some strong incentives for
learning to use it. You can write CSS faster and make it more cross-browser
compliant. You can take advantage of task runners and build tools that auto-
mate a lot of the repetitive grunt work you come across as a developer. Finally,
although the command line is not required to use Git, it may make learning
Git easier and will give you repo superpowers as you begin to master it.

We've talked a fair amount about JavaScript in this chapter. In Part IV, I hand
over the keyboard to JavaScript master Mat Marquis, who will introduce you
to JavaScript and its syntax (also somehow managing to make it very enter-
taining). I'll be back in Part V to talk about web images.

588 Part IIl. CSS for Presentation

http://www.youtube.com/githubguides

TEST YOURSELF

It’s time to test your knowledge of the topics introduced in this chapter. See
Appendix A for the answers.

In the computer world, what is a shell?

Why might you want to learn to use the command line?

a. Itisagood way to manipulate files and folders on your own computer.
b. It is a good way to manipulate files and folders on a remote server.

c¢. Itis required for many useful web development tools.

d. All of the above.

What is a prompt?

. What would you expect to happen if you type mkdir newsite after a
command-line prompt?

Name the two primary functions of CSS processors.

Name one advantage of learning Sass.

Name two features you might use a CSS postprocessor for.

What is a task (in relation to a build tool/task runner)?

Test Yourself

20. Modern Web Development Tools

589

Test Yourself

9. What does “Grunt is watching this file” mean?

10. What makes Git a distributed version control system?

11. In Git, what does it mean if a file is staged?

12. What is the difference between a branch and a fork?

13. Why should you pull before you push?

14. What is a pull request?

590 Part lIl. CSS for Presentation

